Skip to main content

Faculty

Faculty Profile Image

C. Rose Kennedy

  • Assistant Professor of Chemistry
  • (Starting with UR Chemistry Dept. in January 2020)

PhD, Harvard University, 2017

Hutchison Hall
c.r.kennedy@rochester.edu

Website


Research Overview

Research in the Kennedy group is directed toward the development of sustainable chemo-, regio-, and stereoselective catalytic methods for the valorization of chemical feedstock (ranging from petrochemicals to biomass to anthropogenic waste) to produce useful building blocks and materials for applications in chemical synthesis (e.g. therapeutics, flavors & fragrances, agrochemicals, materials etc.) Strategies to achieve these goals draw from the complementary strengths of organometallic chemistry and organocatalysis. Particular emphasis is placed on (i) rational manipulation of attractive secondary coordination sphere interactions to achieve precise control over competing reaction pathways and (ii) reversible application of external stimuli to govern reactivity and selectivity. This work relies heavily on catalyst design driven by insights gleaned from mechanistic elucidation. These pursuits lie at the interface of synthetic organic and organometallic chemistry, and they draw from state-of-the-art experimental and computational techniques in physical organic and inorganic chemistry. Students will gain experience and expertise in organic & organometallic synthesis & characterization, method development, and mechanistic study.

Selected Publications

  • Schmidt, V. A.; Kennedy, C. R.; Bezdek, M. J.; Chirik, P. J. "Selective [1,4]-Hydrovinylation of 1,3-Dienes with Unactivated Olefins Enabled by Iron Diimine Catalysts." J. Am. Chem. Soc. 2018140, 3443–3453. DOI: 10.1021/jacs.8b00245
  • Klausen, R. S.; Kennedy, C. R.; Hyde, A. M.; Jacobsen, E. N. "Chiral Thioureas Promote Enantioselective Pictet–Spengler Cyclization by Stabilizing Every Intermediate and Transition State in the Carboxylic Acid-Catalyzed Reaction." J. Am. Chem. Soc. 2017139, 12299–12309. DOI: 10.1021/jacs.7b06811
  • Kennedy, C. R.‡; Lehnherr, D.‡; Rajapaksa, N. S.; Ford, D. D.; Park, Y.; Jacobsen, E. N. "Mechanism-Guided Development of a Highly Active Bis-thiourea Catalyst for Anion-Abstraction Catalysis." J. Am. Chem. Soc. 2016138, 13525–13528. DOI: 10.1021/jacs.6b09205
  • Kennedy, C. R.; Guidera, J. A.§; Jacobsen, E. N. "Synergistic Ion-Binding Catalysis Demonstrated via an Enantioselective, Catalytic [2,3]-Wittig Rearrangement." ACS Cent. Sci. 20162, 416–423. DOI: 10.1021/acscentsci.6b00125
  • Lehnherr, D.; Ford, D. D.; Bendelsmith, A. J.; Kennedy, C. R.; Jacobsen, E. N. "Conformational Control of Chiral Amido-Thiourea Catalysts Enables Improved Activity and Enantioselectivity." Org. Lett. 201618, 3214–3217. DOI: 10.1021/acs.orglett.6b01435
  • Ford, D. D.; Lehnherr, D.; Kennedy, C. R.; Jacobsen, E. N. "Anion-Abstraction Catalysis: The Cooperative Mechanism of α-Chloroether Activation by Dual Hydrogen-Bond Donors." ACS Catal. 20166, 4616–4620. DOI: 10.1021/acscatal.6b01384
  • Ford, D. D.; Lehnherr, D.; Kennedy, C. R.; Jacobsen, E. N. "On- and Off-Cycle Catalyst Cooperativity in Anion-Binding Catalysis." J. Am. Chem. Soc. 2016138, 7860–7863. DOI: 10.1021/jacs.6b04686
  • Kennedy, C. R.‡; Lin, S.‡; Jacobsen, E. N. "The Cation-π Interaction in Small-Molecule Catalysis." Angew. Chem. Int. Ed. 2016, 55, 12596–12624. DOI: 10.1002/anie.201600547

(‡Equal contributions. § Undergraduate coauthor.)