
Jennifer Brisson
she/her/hers
On Sabbatical until Dec 31, 2025
Professor
PhD
Research Active
- Office Location
- 310 Hutchison
- Telephone
- (585) 275-8392
- Web Address
- Website
Office Hours: By appointment
Research Overview
Research in the laboratory investigates the evolution and development of morphology. We’re particularly interested in the interplay of nature and nurture in affecting final adult morphology. We use a variety of approaches including genetics, genomics, and developmental biology.
Our study system is the pea aphid. Aphids are remarkable insects, able to produce a variety of morphologies across their complex life cycles that alternate between asexual and sexual development. During the asexual phase, females are often wingless and specialize in the mass production of genetically identical wingless daughters. However, if their host plant becomes too crowded, those same females can switch to producing daughter that have wings as adults so that those daughters can fly away and find better food sources. Thus, winged and wingless females of pea aphids are genetically identical yet morphologically very different. How these alternative morphologies are produced is one of the main questions we address in the lab.
During their sexual phase in the fall, pea aphids produce winged and wingless males as well. However, unlike the females the males are not genetically identical and their morphology is not determined by environmental circumstances. Rather, adult male morphology appears to be under the control of a single locus on the X chromosome called aphicarus.
Ongoing projects in the lab include:
• Understanding the male wing dimorphism system. Males are winged and wingless in some species, but monomorphic in others. How has this trait evolved across aphid species? What is the genetic basis of wing dimorphism and is that mechanism the same or different across species?
• Discovering the molecular mechanisms underlying developmental plasticity in pea aphid asexual females. How does a pea aphid mother sense her environment and pass that information on to her developing embryos? How does the developmental timing of environmental sensitivity differ among aphid species?
• Investigating genetic variation for the female polyphenism. We’ve observed that aphid lines respond to high density environments differently. How extensive is this variation in nature? What genes underlie this plasticity variation?
Research Interests
- Evolution of morphology
- Molecular basis of phenotypic plasticity
- Evolution and development in the pea aphid
- The role of epigenetics in polyphenism
Selected Publications
- Driscoll, R. M. H., Liu, X., McDonough, J., Schmidt, J., and J. A. Brisson. 2025. Pea aphid wing plasticity variation has a multigenic basis. Journal of Heredity, esaf006.
- Gregory, L. E., Driscoll, R. M. H., Parker, B. J., and J. A. Brisson. 2025. Impacts of body color, symbionts, and genomic regions on the pea aphid wing plasticity variation. Mol Ecol, 34: e17660.
- Saleh Ziabari*, O., Liu*, F., Deem, K. D., Liu, X., Kholwadwala, A., and J. A. Brisson. 2025. Gene duplication captures morph-specific promoter usage in the evolution of aphid wing dimorphisms. Proc. Natl. Acad. Sci. U.S.A. 122 (8) e2420893122. *authors contributed equally
- Deem, K, and J. A. Brisson. 2024. Problems with paralogs: the promise and challenges of gene duplicates in evo-devo research. Integrative & Comparative Biology. 64(2):556-564.
- Deem, K. D., Gregory, L., Liu, X., Saleh Ziabari, O., and J. A. Brisson. 2024. Evolution and molecular mechanisms of wing plasticity in aphids. Curr. Op. Ins. Sci. 61: 101142
- Liu, X., and J. A. Brisson. 2023. Dopamine mediates the pea aphid wing plasticity. Biology Letters 19: 20230024.
- Saleh Ziabari, O., Li, B., Hardy, N. B., and J. A. Brisson. 2023. Aphid male wing polymorphisms are transient and have evolved repeatedly. Evolution. 77:1056-1065.
- Saleh Ziabari, O., Zhong, Q., Purandare, S. R., Reiter, J., Zera, A. J., and J. A. Brisson. 2022. Pea aphid winged and wingless males exhibit reproductive, gene expression, and lipid metabolism differences. Curr. Res. Insect Sci. 2: 100039.
- Parker, B. J., Driscoll, R. M. H., Grantham, M. E., Hrcek, J., and J. A. Brisson. 2021. Wing plasticity and associated expression varies across the pea aphid biotype complex. Evolution 75:1143-1149.
- Hammelman*, R. E., Heusinkveld*, C. L., Hung, E. T., Meinecke, Al, Parker, B. J., and J. A. Brisson. 2020. Extreme developmental instability associated with wing plasticity in pea aphids. *equal contributions. Proceedings of the Royal Society B 287: 20201349.
- Li, B., Bickel, R. D., Parker, B. J., Saleh Ziabari, O., Liu, F., Vellichirammal, N. N., Simon, J.-C., Stern, D. L., and J. A. Brisson. 2020. A large genomic insertion containing a duplicated follistatin gene is linked to the pea aphid male wing dimorphism. eLife 9:e50608.