MATH 4031
Juan Rivera Letelier
TR 9:40AM  10:55AM

Prerequisites: MATH 471 Description: Measuretheoretic foundations of probability. The RadonNikodym theorem and conditional expectation. Infinite products and Kolmogorov's extension theorem. Random variables, modes of convergence, independence, and the monotone class theorem. Laws of large numbers. Characteristic functions and the central limit theorem. Martingales, inequalities, the optional sampling theorem. Introduction to stochastic processes.
 Location
 Hylan Building Room 1106B (TR 9:40AM  10:55AM)

MATH 4371
Naomi Jochnowitz
MW 2:00PM  3:15PM

Prerequisites: MATH 436. Permission of instructor required for undergraduates. Description:Multilinear algebra, quadratic forms, simple and semisimple rings and modules.
 Location
 Meliora Room 210 (MW 2:00PM  3:15PM)

MATH 4531
Stephen Kleene
MW 10:25AM  11:40AM

Prerequisites: MATH 255 and 265. Permission of instructor required for undergraduates. Description: Differentiable manifolds, mappings and embeddings, exterior differential forms, affine connections, curvature and torsion. Riemannian geometry, introduction to Lie groups and Lie algebras.
 Location
 Hylan Room 301 (MW 10:25AM  11:40AM)

MATH 4671
Alex Iosevich
MW 12:30PM  1:45PM

Prerequisites: Math 471. Description: analytic functions as mappings, complex integration, series and product developments, conformal mapping and Dirichlet’s problem, Hilbert spaces, Fourier transform and Sobolev spaces.
 Location
 Meliora Room 218 (MW 12:30PM  1:45PM)

MATH 5061
Arjun Krishnan
TR 12:30PM  1:45PM

Will cover convergence to the basic limiting spectral distributions like Wigner's semicircle law, the MarcenkoPastur law and the circular law. Time permitting, more advanced topics will include free probability, the (universal) fluctuations of the Gaussian ensembles, and Dyson Brownian motion.
 Location
 Hylan Building Room 1101 (TR 12:30PM  1:45PM)

MATH 5351
Naomi Jochnowitz
MW 4:50PM  6:05PM

Field theory, valuations, local rings, affine schemes. Applications to number theory and geometry.
 Location
 Hylan Building Room 206 (MW 4:50PM  6:05PM)

MATH 5651
Dan Geba
MW 12:30PM  1:45PM

Linear partial differential operators with constant coefficients. Elementary solutions; elliptic, hypoelliptic, and hyperbolic operators.
 Location
 Bausch & Lomb Room 269 (MW 12:30PM  1:45PM)

MATH 5691
Steven Gonek
MW 10:25AM  11:40AM

An introduction to analytic number theory, covering arithmetical functions, sieves, the prime number theorem, the prime number theorem for arithmetic progressions, theory of the Riemann zeta function and Dirichlet Lfunctions. The course introduces a wide variety of methods from analysis to solve problems in number theory. No previous knowledge of number theory is necessary. The main requirement is a basic familiarity with complex function theory.
 Location
 Hylan Building Room 1106A (MW 10:25AM  11:40AM)

MATH 59101
Alex Iosevich
–

Blank Description

MATH 59102
Sevak Mkrtchyan
–

Blank Description

MATH 59103
Naomi Jochnowitz
–

Blank Description

MATH 59104
–
–

Blank Description

MATH 59105
–
–

Blank Description

MATH 59106
–
–

Blank Description

MATH 59107
–
–

Blank Description

MATH 59108
–
–

Blank Description

MATH 59109
–
–

Blank Description

MATH 59110
–
–

Blank Description

MATH 59111
–
–

Blank Description

MATH 59112
–
–

Blank Description

MATH 59113
–
–

Blank Description

MATH 59114
–
–

Blank Description

MATH 59115
–
–

Blank Description

MATH 59116
–
–

Blank Description

MATH 59117
–
–

Blank Description

MATH 59118
–
–

Blank Description

MATH 59119
–
–

Blank Description

MATH 5941
Alex Iosevich
–

No description

MATH 59501
Juan Rivera Letelier
–

Blank Description

MATH 59502
Jonathan Pakianathan
–

Blank Description

MATH 59503
–
–

Blank Description

MATH 59504
Alex Iosevich
–

Blank Description

MATH 59505
Carl Mueller
–

Blank Description

MATH 59506
Thomas Tucker
–

Blank Description

MATH 59507
Allan Greenleaf
–

Blank Description

MATH 59508
–
–

Blank Description

MATH 59509
–
–

Blank Description

MATH 59510
–
–

Blank Description

MATH 59511
–
–

Blank Description

MATH 59512
–
–

Blank Description

MATH 59513
–
–

Blank Description

MATH 59514
–
–

Blank Description

MATH 59515
–
–

Blank Description

MATH 59516
–
–

Blank Description

MATH 59517
–
–

Blank Description

MATH 59518
–
–

Blank Description

MATH 59519
–
–

Blank Description

MATH 59520
–
–

Blank Description

MATH 5957
Carl Mueller
–

Blank Description

MATH 595A1
Alex Iosevich
–

Blank Description

MATH 8951
–
–

Blank Description

MATH 8971
Naomi Jochnowitz
–

Blank Description

MATH 8991
Naomi Jochnowitz
–

Blank Description

MATH 9951
Sevak Mkrtchyan
–

Blank Description

MATH 99701
Sevak Mkrtchyan
–

Blank Description

MATH 997A1
Sevak Mkrtchyan
–

Blank Description

MATH 997B1
Sevak Mkrtchyan
–

No description

MATH 99901
Sevak Mkrtchyan
–

Blank Description

MATH 999A1
Sevak Mkrtchyan
–

Blank Description

MATH 999B1
Sevak Mkrtchyan
–

No description
