MATH 403-1
Juan Rivera Letelier
TR 9:40AM - 10:55AM
|
Prerequisites: MATH 471 Description: Measure-theoretic foundations of probability. The Radon-Nikodym theorem and conditional expectation. Infinite products and Kolmogorov's extension theorem. Random variables, modes of convergence, independence, and the monotone class theorem. Laws of large numbers. Characteristic functions and the central limit theorem. Martingales, inequalities, the optional sampling theorem. Introduction to stochastic processes.
- Location
- Hylan Building Room 1106B (TR 9:40AM - 10:55AM)
|
MATH 437-1
Naomi Jochnowitz
MW 2:00PM - 3:15PM
|
Prerequisites: MATH 436. Permission of instructor required for undergraduates. Description:Multilinear algebra, quadratic forms, simple and semi-simple rings and modules.
- Location
- Meliora Room 210 (MW 2:00PM - 3:15PM)
|
MATH 453-1
Stephen Kleene
MW 10:25AM - 11:40AM
|
Prerequisites: MATH 255 and 265. Permission of instructor required for undergraduates. Description: Differentiable manifolds, mappings and embeddings, exterior differential forms, affine connections, curvature and torsion. Riemannian geometry, introduction to Lie groups and Lie algebras.
- Location
- Hylan Room 301 (MW 10:25AM - 11:40AM)
|
MATH 467-1
Alex Iosevich
MW 12:30PM - 1:45PM
|
Prerequisites: Math 471. Description: analytic functions as mappings, complex integration, series and product developments, conformal mapping and Dirichlet’s problem, Hilbert spaces, Fourier transform and Sobolev spaces.
- Location
- Meliora Room 218 (MW 12:30PM - 1:45PM)
|
MATH 506-1
Arjun Krishnan
TR 12:30PM - 1:45PM
|
Will cover convergence to the basic limiting spectral distributions like Wigner's semi-circle law, the Marcenko-Pastur law and the circular law. Time permitting, more advanced topics will include free probability, the (universal) fluctuations of the Gaussian ensembles, and Dyson Brownian motion.
- Location
- Hylan Building Room 1101 (TR 12:30PM - 1:45PM)
|
MATH 535-1
Naomi Jochnowitz
MW 4:50PM - 6:05PM
|
Field theory, valuations, local rings, affine schemes. Applications to number theory and geometry.
- Location
- Hylan Building Room 206 (MW 4:50PM - 6:05PM)
|
MATH 565-1
Dan Geba
MW 12:30PM - 1:45PM
|
Linear partial differential operators with constant coefficients. Elementary solutions; elliptic, hypo-elliptic, and hyperbolic operators.
- Location
- Bausch & Lomb Room 269 (MW 12:30PM - 1:45PM)
|
MATH 569-1
Steven Gonek
MW 10:25AM - 11:40AM
|
An introduction to analytic number theory, covering arithmetical functions, sieves, the prime number theorem, the prime number theorem for arithmetic progressions, theory of the Riemann zeta function and Dirichlet L-functions. The course introduces a wide variety of methods from analysis to solve problems in number theory. No previous knowledge of number theory is necessary. The main requirement is a basic familiarity with complex function theory.
- Location
- Hylan Building Room 1106A (MW 10:25AM - 11:40AM)
|
MATH 591-01
Alex Iosevich
|
Blank Description
|
MATH 591-02
Sevak Mkrtchyan
|
Blank Description
|
MATH 591-03
Naomi Jochnowitz
|
Blank Description
|
MATH 591-04
|
Blank Description
|
MATH 591-05
|
Blank Description
|
MATH 591-06
|
Blank Description
|
MATH 591-07
|
Blank Description
|
MATH 591-08
|
Blank Description
|
MATH 591-09
|
Blank Description
|
MATH 591-10
|
Blank Description
|
MATH 591-11
|
Blank Description
|
MATH 591-12
|
Blank Description
|
MATH 591-13
|
Blank Description
|
MATH 591-14
|
Blank Description
|
MATH 591-15
|
Blank Description
|
MATH 591-16
|
Blank Description
|
MATH 591-17
|
Blank Description
|
MATH 591-18
|
Blank Description
|
MATH 591-19
|
Blank Description
|
MATH 594-1
Alex Iosevich
|
No description
|
MATH 595-01
Juan Rivera Letelier
|
Blank Description
|
MATH 595-02
Jonathan Pakianathan
|
Blank Description
|
MATH 595-03
|
Blank Description
|
MATH 595-04
Alex Iosevich
|
Blank Description
|
MATH 595-05
Carl Mueller
|
Blank Description
|
MATH 595-06
Thomas Tucker
|
Blank Description
|
MATH 595-07
Allan Greenleaf
|
Blank Description
|
MATH 595-08
|
Blank Description
|
MATH 595-09
|
Blank Description
|
MATH 595-10
|
Blank Description
|
MATH 595-11
|
Blank Description
|
MATH 595-12
|
Blank Description
|
MATH 595-13
|
Blank Description
|
MATH 595-14
|
Blank Description
|
MATH 595-15
|
Blank Description
|
MATH 595-16
|
Blank Description
|
MATH 595-17
|
Blank Description
|
MATH 595-18
|
Blank Description
|
MATH 595-19
|
Blank Description
|
MATH 595-20
|
Blank Description
|
MATH 595-7
Carl Mueller
|
Blank Description
|
MATH 595A-1
Alex Iosevich
|
Blank Description
|
MATH 895-1
|
Blank Description
|
MATH 897-1
Naomi Jochnowitz
|
Blank Description
|
MATH 899-1
Naomi Jochnowitz
|
Blank Description
|
MATH 995-1
Sevak Mkrtchyan
|
Blank Description
|
MATH 997-01
Sevak Mkrtchyan
|
Blank Description
|
MATH 997A-1
Sevak Mkrtchyan
|
Blank Description
|
MATH 997B-1
Sevak Mkrtchyan
|
No description
|
MATH 999-01
Sevak Mkrtchyan
|
Blank Description
|
MATH 999A-1
Sevak Mkrtchyan
|
Blank Description
|
MATH 999B-1
Sevak Mkrtchyan
|
No description
|