Skip to main content

News & Events

GIDS/NRT Seminar Series Presents Margaret Mitchell

February 17, 2017
CSB 601

Friday, February 17, 2017
12:45 PM
CSB 601
Margaret 'Meg' Mitchell

Title:  Algorithmic Bias in Artificial Intelligence: The Seen and Unseen Factors Influencing Machine Perception of Images and Language

Abstract:  The success of machine learning has recently surged, with similar algorithmic approaches effectively solving a variety of human-defined tasks.  Tasks testing how well machines can perceive images and communicate about them have exposed strong effects of different types of bias, such as selection bias and dataset bias.  In this talk, I will unpack some of these biases, and how they affect machine perception today.  I will introduce and detail the first computational model to leverage human Reporting Bias -- what people mention -- in order to learn ground-truth facts about the visual world.

Bio:  (copied from http://m-mitchell.com/)

Meg is a Senior Research Scientist in Google's Research & Machine Intelligence group, working on advancing artificial intelligence towards positive goals, as well as ethics in AI and demographic diversity of researchers.  Her research is on vision-language and grounded language generation, focusing on how to help computers communicate based on what they can process.  Her work combines computer vision, natural language processing, social media, many statistical methods, and insights from cognitive science.

Before Google, Meg was a founding member of Microsoft Research's "Cognition" group, focused on advancing vision-language artificial intelligence. Before MSR, she was a postdoctoral researcher at The Johns Hopkins University Center of Excellence, where she mainly focused on semantic role labeling and sentiment analysis using graphical models, working under Benjamin Van Durme. 

Before that, Meg was a postgraduate (PhD) student in the natural language generation (NLG) group at the University of Aberdeen, where she focused on how to naturally refer to visible, everyday objects. She primarily worked with Kees van Deemter and Ehud Reiter. 

Meg spent a good chunk of 2008 getting a Master's in Computational Linguistics at the University of Washington, studying under Emily Bender and Fei Xia.  Simultaneously (2005 - 2012), she worked on and off at the Center for Spoken Language Understanding, part of OHSU, in Portland, Oregon. Her title changed with time (research assistant/associate/visiting scholar), but throughout, she worked on technology that leverages syntactic and phonetic characteristics to aid those with neurological disorders under Brian Roark.

Meg continues to balance her time between language generation, applications for clinical domains, and core AI research.

Category: Talks

  • Goergen Institute for Data Science
    University of Rochester
    Rochester, NY 14627
    gids-info@rochester.edu

Copyright © 2013–2017. All rights reserved.