Graduate Program
Term Schedule, Physics
Fall 2019
Number  Title  Instructor  Time 

PHY 401 (OPT 411)
RENNINGER W
TR 11:05AM  12:20PM


Advanced techniques utilizing vector calculus, series expansions, contour integration, integral transforms (Fourier, Laplace and Hilbert) asymptotic estimates, and second order differential equations. BUILDING: GRGEN  ROOM: 108 PREREQUISITES: ME 201, 202 and permission of instructor 

PHY 407
JORDAN A
MW 11:50AM  1:05PM


Quantummechanical axioms. Probability densities and currents. Boson representations of the oscillator. Angular momentum including ClebschGordan coupling, spherical tensors, finite rotations, and applications to atoms and nuclei. Simple gauge transformations. AharonovBohm effect. Bell's theorem. The SO(4) treatment of the hydrogen atom. BUILDING: B&L  ROOM: 269 PREREQUISITES: PHY 246 or permission of instructor 

PHY 411
–
TR 9:40AM  10:55AM


Lagrangian and Hamiltonian dynamics, canonical transformations, HamiltonJacobi equations, chaotic dynamics, periodic orbits, Stable and unstable orbits, Julia and Fatou sets, Convergence of Newton's Iteration, KAM theory. (Offered the first 8 weeks as 311A). BUILDING:  ROOM: PREREQUISITES: PHY 235 

PHY 415
TEITEL S
MW 10:25AM  11:40AM


An advanced treatment of electromagnetic phenomena. Electromagnetic wave propagation, radiation, and waveguides and resonant cavities, diffraction, electrodynamic potentials, multipole expansions, and covariant electrodynamics. BUILDING: B&L  ROOM: 269 PREREQUISITES: PHY 401 or concurrently 

PHY 420
–
TR 12:30PM  1:45PM


An emphasis on the wide variety of phenomena that form the basis for modern solid state devices. Topics include crystals; lattice vibrations; quantum mechanics of electrons in solids; energy band structure; semiconductors; superconductors; dielectrics; and magnets. (same as MSC 420, ECE224, ECE424, PHY420). BUILDING:  ROOM: PREREQUISITES: PHY 217, 227, 237 

PHY 434 (OPT 253)
LUKISHOVA S
–


This laboratory course (3 hours per week) exposes students to cuttingedge photon counting instrumentation and methods with applications ranging from quantum information to nanotechnology,biotechnology and medicine. Major topics include quantum entanglement and Bell’s inequalities, singlephoton interference, singleemitter confocal fluorescence microscopy and spectroscopy, photonic bandgap materials, Hanbury Brown and Twiss interferometer, and photon antibunching. Each lab also includes lecture and discussions of lab materials. BUILDING:  ROOM: 

PHY 437 (OPT 467)
BOYD R
M 2:00PM  5:00PM


Fundamentals and applications of optical systems based on the nonlinear interaction of light with matter. Topics to be treated include mechanisms of optical nonlinearity, secondharmonic and sum and differencefrequency generation, photonics and optical logic, optical selfaction effects including selffocusing and optical soliton formation, optical phase conjugation, stimulated Brillouin and stimulated Raman scattering, and selection criteria of nonlinear optical materials. References: Robert W. Boyd, Nonlinear Optics, Second Edition. BUILDING: GRGEN  ROOM: 102 PREREQUISITES: OPT 461 or OPT 462 

PHY 440 (PHY 254)
DEMINA R
MW 2:00PM  3:15PM


This course is designed for physics majors interested in nuclear and particle physics. The course introduces the Standard Model of particle physics. The unification of electromagnetic and weak interactions is discussed. Higgs mechanism of electroweak symmetry is introduced. Finally, the fundamental interactions of elementary particles and their constituents are reviewed, with emphasis on issues pertaining to the conservation of quantum numbers and symmetries observed in highenergy collisions. (crosslisted with PHY 440). BUILDING: WEGMN  ROOM: 1009 PREREQUISITES: PHY 237 

PHY 453 (ME 492)
COLLINS G
TR 2:00PM  3:15PM


This course will survey the field of highenergydensity science (HEDS), extending from ultradense matter to the radiationdominated regime. Topics include: experimental and computational methods for the productions, manipulation, and diagnosis of HED matter, thermodynamic equationsofstate; dynamic transitions between equilibrium phases; and radiative and other transport properties. Throughout the course, we will make connections with key HEDS applications in astrophysics, laboratory fusion, and new quantum states of matter. BUILDING: GRGEN  ROOM: 102 

PHY 454 (ME 434)
REN C
TR 3:25PM  4:40PM


Basic plasma parameters; quasineutrality, Debye length, plasma frequency, plasma parameter, Charged particle motion: orbit theory. Basic plasma equations; derivation of fluid equations from the Vlasov equation. Waves in plasmas. MHD theory. Energy balance. BUILDING: HYLAN  ROOM: 306 PREREQUISITES: PHY 217 or OPT 262 

PHY 457 (ME 437)
ALUIE H
MW 3:25PM  4:40PM


The study of incompressible flow covers fluid motions which are gentle enough that the density of the fluid changes little or none. Topics: Conservation equations. Bernoulli's equation, the NavierStokes equations. Inviscid flows; vorticity; potential flows; stream functions; complex potentials. Viscosity and Reynolds number; some exact solutions with viscosity; boundary layers; low Reynolds number flows. Waves. BUILDING: HYLAN  ROOM: 206 PREREQUISITES: ME 225, ME 201 or MTH 281 

PHY 457
–
TR 9:40AM  10:55AM


Course Description: The mechanics of continuous media. The basic notations and concepts in applied mechanics will be covered. These concepts are the foundation for both solid and fluid mechanics and applications in both of these areas will be used as examples. The course will include 1) indicial notation and tensor analysis, 2) concepts of stress, 3) both Eulerian and Lagrangian descriptions of deformation and strain, 4) conservation of mass, momentum, energy, and 5) constitutive equations to describe material response. BUILDING:  ROOM: PREREQUISITES: Basic ordinary and partial differential equations, linear algebra, undergraduate fluid mechanics (ME225) and solid mechanics (ME226). 

PHY 459
–
MW 2:00PM  3:15PM


This is an introduction to turbulence theory and modeling for graduate students in engineering and the physical sciences. This course stresses intuitive physical understanding, mathematical analysis techniques,and numerical methodologies. It will highlight applications in various disciplines, including aeronautics,fusion sciences, geophysics and astrophysics. BUILDING:  ROOM: PREREQUISITES: ME 225, ME 201, ME 400 

PHY 462 (ECE 452)
PARKER K
MW 3:25PM  4:40PM


Physics and implementation of Xray, ultrasonic, and MR imaging systems. Fourier transform relations and reconstruction algorithms of Xray and ultrasoniccomputed tomography, and MRI. BUILDING: CSB  ROOM: 601 PREREQUISITES: ECE242 

PHY 467 (BME 253)
MC ALEAVEY S
TR 12:30PM  1:45PM


This course investigates the imaging techniques applied in stateoftheart ultrasound imaging and their theoretical bases. Topics include linear acoustic systems, spatial impulse responses, the kspace formulation, methods of acoustic field calculation, dynamic focusing and apodization, scattering, the statistics of acoustic speckle, speckle correlation, compounding techniques, phase aberration correction, velocity estimation, and flow imaging. A strong emphasis is placed on readings of original sources and student assignments and projects based on realistic acoustic simulations. BUILDING: B&L  ROOM: 269 PREREQUISITES: BME230 or ECE241 

PHY 498
–
–


This course is designed for a student to be Laboratory or Recitation Teaching Assistant (TA). Typically, the student spends the semester teaching two laboratories or up to four recitations during the Fall semester for the introductory physics courses: PHY 113, PHY 122, PHY 141, PHY 142, or introductory astronomy course: AST 111, or teaching one or more recitation(s): AST 111, PHY 113, PHY 122, PHY 141, PHY 142, or a 200 level undergraduate physics or astronomy course. Attendance of the weekly teaching seminars PHY 597Fall, giving feedback to other leaders, and a constructive evaluation process are required. This course is noncredit and may be taken more than once. BUILDING:  ROOM: PREREQUISITES: Students are required two weeks prior to the beginning of the Fall semester, to attend a twoday rigorous training program. Students prepare and present a short model recitation and are video taped for selfevaluation. 

PHY 499
–
–


Continuation of PHY 498. BUILDING:  ROOM: 

PHY 501 (OPT 511)
AGRAWAL G
MW 10:25AM  11:40AM


This course focuses on advanced numerical and analytical techniques that are likely to be useful for PhDlevel Optics students. It will begin with a review of numerical errors and then develop simple algorithms for solving nonlinear algebraic and differential equations. The later half of the course will cover several analytical techniques useful for solving ordinary and partial differential equations encountered in various areas of optics and photonics. Students will be given weekly homework problems based on the material covered each week. Course Textbook: S. Chapra, Applied Numerical Methods with MATLAB, 3rd edition (McGrawHill, 2011). BUILDING: MEL  ROOM: 218 PREREQUISITES: OPT 411 and some knowledge of MATLAB. 

PHY 511
RAJEEV S
TR 9:40AM  10:55AM


Path integral formulation of quantum mechanics, free harmonic oscillator, fermionic oscillator, instantons, free scalar field, Green’s functions, generating functional statistical mechanics as Euclidean field theory, partition function as a path integral, free Bose gas, interacting quanta, Green’s functions and scattering amplitudes at tree level, symmetry, Ward identities, symmetry breaking and Goldstone theorem, effective action at one loop, 1d Ising model, 2d Ising model, duality, high and low temperature expansions, transfer matrix, scaling of coupling with lattice size. BUILDING: MEL  ROOM: 209 

PHY 521
NICHOL J
MW 10:25AM  11:40AM


This course covers the fundamentals of solid state physics, and it answers the question of why solids behave differently than individual atoms. Topics covered include: the freeelectron model of solids, crystal structure, xray diffraction, Bloch's Theorem, band structure, the tightbinding model, crystal vibrations, phonons, magnetism, and superconductivity. BUILDING: B&L  ROOM: 315 PREREQUISITES: PHY 407, PHY 408, or permission of instructor 

PHY 525
SHAPIR Y
TR 12:30PM  1:45PM


As the number of interacting degrees of freedom (or agents) in a given system increases, its behavior often changes qualitatively, and not only quantitatively. Complexity is the emerging field of research, which investigates the shared underlying concepts and principles of such systems. It finds its applications in Physics, Computer Science, Mathematics, Biology, Social Sciences, Economy, and more. In this introductory course we will focus on these common features and their utilization in understanding complex systems. They will include for example: Fractals, nonlinearity and chaos, adaptation and evolution, critical and tipping points, patterns formation, networks modeling, feedback loops, emergence and unpredictability, etc. Students in the course will be given ample opportunities to study farther these systems and/or techniques that are of particular interest to them. Prerequisites include basic knowledge in differential equations, linear algebra, and probability. BUILDING: B&L  ROOM: 407 PREREQUISITES: MTH 165, PHY 403 or equivalent 

PHY 531 (PHY 531)
EBERLY J
MWF 9:00AM  10:15AM


Classical and quantum mechanical theories of the interaction of light with atoms and molecules, with emphasis on near resonance effects, including coherent nonlinear atomic response theory, relaxation and saturation, laser theory, optical pulse propagation, dressed atomradiation states, and multiphoton processes. (same as OPT 551). BUILDING: B&L  ROOM: 269 PREREQUISITES: PHY 401, PHY 402, PHY 407, PHY 408, PHY 415 or permission of instructor 

PHY 591
–
–


Special study or work, arranged individually. BUILDING:  ROOM: 

PHY 594
–
–


No description BUILDING:  ROOM: 

PHY 595
–
–


No description BUILDING:  ROOM: 

PHY 595A
–
–


No description BUILDING:  ROOM: 

PHY 595B
–
–


No description BUILDING:  ROOM: 

PHY 597
MANLY S
F 10:00AM  11:00AM


A (Fall)  Noncredit course given once per week, required of all firstyear graduate students. The seminar consists of lectures and discussions on various aspects of being an effective teaching assistant, including interactions with undergraduate student body and crosscultural issues. B (Spring)  Noncredit course given once per week required of all firstyear graduate students. Members of the faculty discuss topics in their curent area of research interest. BUILDING: B&L  ROOM: 106 PREREQUISITES: None. 

PHY 598
–
–


This course is designed for a student to be a Workshop Leader Teaching Assistant (TA). Typically, the TA attends the weekly Workshop Leader Training meeting that offers specialized support and training in group dynamics, learning theory, and science pedagogy for students facilitating collaborative learning groups for science and social science courses. The TA teaches three to four workshops in one of the fall semester introductory physics courses: PHY 113, PHY 122, PHY 141 or PHY 142. Additional requirements are: Attendance of the weekly Graduate Teaching Seminars PHY 597Fall, giving feedback to other leaders and a constructive evaluation process. This course is noncredit and may be taken more than once. BUILDING:  ROOM: 

PHY 599
–
–


This course is designed as a followup course for an experienced Workshop Leader, titled a lead Workshop Leader Teaching Assistant (TA). Typically, the TA attends the weekly Workshop Leader Training meeting that offers specialized support and training to develop leadership skills, to foster ongoing communication among faculty members and study group leaders, and to provide an environment for review of study group related issues. Students spend the semester teaching three to four workshops during the Spring semester introductory physics courses. BUILDING:  ROOM: 

PHY 895
–
–


No description BUILDING:  ROOM: 

PHY 897
–
–


No description BUILDING:  ROOM: 

PHY 985
–
–


No description BUILDING:  ROOM: 

PHY 986V
–
–


No description BUILDING:  ROOM: 

PHY 995
–
–


No description BUILDING:  ROOM: 

PHY 997
–
–


No description BUILDING:  ROOM: 

PHY 997A
–
–


No description BUILDING:  ROOM: 

PHY 999
–
–


No description BUILDING:  ROOM: 

PHY 999A
–
–


No description BUILDING:  ROOM: 

PHY 999B
–
–


No description BUILDING:  ROOM: 
Fall 2019
Number  Title  Instructor  Time 

Monday  
PHY 437 (OPT 467)
BOYD R
M 2:00PM  5:00PM


Fundamentals and applications of optical systems based on the nonlinear interaction of light with matter. Topics to be treated include mechanisms of optical nonlinearity, secondharmonic and sum and differencefrequency generation, photonics and optical logic, optical selfaction effects including selffocusing and optical soliton formation, optical phase conjugation, stimulated Brillouin and stimulated Raman scattering, and selection criteria of nonlinear optical materials. References: Robert W. Boyd, Nonlinear Optics, Second Edition. BUILDING: GRGEN  ROOM: 102 PREREQUISITES: OPT 461 or OPT 462 

Monday and Wednesday  
PHY 415
TEITEL S
MW 10:25AM  11:40AM


An advanced treatment of electromagnetic phenomena. Electromagnetic wave propagation, radiation, and waveguides and resonant cavities, diffraction, electrodynamic potentials, multipole expansions, and covariant electrodynamics. BUILDING: B&L  ROOM: 269 PREREQUISITES: PHY 401 or concurrently 

PHY 501 (OPT 511)
AGRAWAL G
MW 10:25AM  11:40AM


This course focuses on advanced numerical and analytical techniques that are likely to be useful for PhDlevel Optics students. It will begin with a review of numerical errors and then develop simple algorithms for solving nonlinear algebraic and differential equations. The later half of the course will cover several analytical techniques useful for solving ordinary and partial differential equations encountered in various areas of optics and photonics. Students will be given weekly homework problems based on the material covered each week. Course Textbook: S. Chapra, Applied Numerical Methods with MATLAB, 3rd edition (McGrawHill, 2011). BUILDING: MEL  ROOM: 218 PREREQUISITES: OPT 411 and some knowledge of MATLAB. 

PHY 521
NICHOL J
MW 10:25AM  11:40AM


This course covers the fundamentals of solid state physics, and it answers the question of why solids behave differently than individual atoms. Topics covered include: the freeelectron model of solids, crystal structure, xray diffraction, Bloch's Theorem, band structure, the tightbinding model, crystal vibrations, phonons, magnetism, and superconductivity. BUILDING: B&L  ROOM: 315 PREREQUISITES: PHY 407, PHY 408, or permission of instructor 

PHY 407
JORDAN A
MW 11:50AM  1:05PM


Quantummechanical axioms. Probability densities and currents. Boson representations of the oscillator. Angular momentum including ClebschGordan coupling, spherical tensors, finite rotations, and applications to atoms and nuclei. Simple gauge transformations. AharonovBohm effect. Bell's theorem. The SO(4) treatment of the hydrogen atom. BUILDING: B&L  ROOM: 269 PREREQUISITES: PHY 246 or permission of instructor 

PHY 440 (PHY 254)
DEMINA R
MW 2:00PM  3:15PM


This course is designed for physics majors interested in nuclear and particle physics. The course introduces the Standard Model of particle physics. The unification of electromagnetic and weak interactions is discussed. Higgs mechanism of electroweak symmetry is introduced. Finally, the fundamental interactions of elementary particles and their constituents are reviewed, with emphasis on issues pertaining to the conservation of quantum numbers and symmetries observed in highenergy collisions. (crosslisted with PHY 440). BUILDING: WEGMN  ROOM: 1009 PREREQUISITES: PHY 237 

PHY 459
–
MW 2:00PM  3:15PM


This is an introduction to turbulence theory and modeling for graduate students in engineering and the physical sciences. This course stresses intuitive physical understanding, mathematical analysis techniques,and numerical methodologies. It will highlight applications in various disciplines, including aeronautics,fusion sciences, geophysics and astrophysics. BUILDING:  ROOM: PREREQUISITES: ME 225, ME 201, ME 400 

PHY 457 (ME 437)
ALUIE H
MW 3:25PM  4:40PM


The study of incompressible flow covers fluid motions which are gentle enough that the density of the fluid changes little or none. Topics: Conservation equations. Bernoulli's equation, the NavierStokes equations. Inviscid flows; vorticity; potential flows; stream functions; complex potentials. Viscosity and Reynolds number; some exact solutions with viscosity; boundary layers; low Reynolds number flows. Waves. BUILDING: HYLAN  ROOM: 206 PREREQUISITES: ME 225, ME 201 or MTH 281 

PHY 462 (ECE 452)
PARKER K
MW 3:25PM  4:40PM


Physics and implementation of Xray, ultrasonic, and MR imaging systems. Fourier transform relations and reconstruction algorithms of Xray and ultrasoniccomputed tomography, and MRI. BUILDING: CSB  ROOM: 601 PREREQUISITES: ECE242 

Monday, Wednesday, and Friday  
PHY 531 (PHY 531)
EBERLY J
MWF 9:00AM  10:15AM


Classical and quantum mechanical theories of the interaction of light with atoms and molecules, with emphasis on near resonance effects, including coherent nonlinear atomic response theory, relaxation and saturation, laser theory, optical pulse propagation, dressed atomradiation states, and multiphoton processes. (same as OPT 551). BUILDING: B&L  ROOM: 269 PREREQUISITES: PHY 401, PHY 402, PHY 407, PHY 408, PHY 415 or permission of instructor 

Tuesday and Thursday  
PHY 511
RAJEEV S
TR 9:40AM  10:55AM


Path integral formulation of quantum mechanics, free harmonic oscillator, fermionic oscillator, instantons, free scalar field, Green’s functions, generating functional statistical mechanics as Euclidean field theory, partition function as a path integral, free Bose gas, interacting quanta, Green’s functions and scattering amplitudes at tree level, symmetry, Ward identities, symmetry breaking and Goldstone theorem, effective action at one loop, 1d Ising model, 2d Ising model, duality, high and low temperature expansions, transfer matrix, scaling of coupling with lattice size. BUILDING: MEL  ROOM: 209 

PHY 457
–
TR 9:40AM  10:55AM


Course Description: The mechanics of continuous media. The basic notations and concepts in applied mechanics will be covered. These concepts are the foundation for both solid and fluid mechanics and applications in both of these areas will be used as examples. The course will include 1) indicial notation and tensor analysis, 2) concepts of stress, 3) both Eulerian and Lagrangian descriptions of deformation and strain, 4) conservation of mass, momentum, energy, and 5) constitutive equations to describe material response. BUILDING:  ROOM: PREREQUISITES: Basic ordinary and partial differential equations, linear algebra, undergraduate fluid mechanics (ME225) and solid mechanics (ME226). 

PHY 411
–
TR 9:40AM  10:55AM


Lagrangian and Hamiltonian dynamics, canonical transformations, HamiltonJacobi equations, chaotic dynamics, periodic orbits, Stable and unstable orbits, Julia and Fatou sets, Convergence of Newton's Iteration, KAM theory. (Offered the first 8 weeks as 311A). BUILDING:  ROOM: PREREQUISITES: PHY 235 

PHY 401 (OPT 411)
RENNINGER W
TR 11:05AM  12:20PM


Advanced techniques utilizing vector calculus, series expansions, contour integration, integral transforms (Fourier, Laplace and Hilbert) asymptotic estimates, and second order differential equations. BUILDING: GRGEN  ROOM: 108 PREREQUISITES: ME 201, 202 and permission of instructor 

PHY 467 (BME 253)
MC ALEAVEY S
TR 12:30PM  1:45PM


This course investigates the imaging techniques applied in stateoftheart ultrasound imaging and their theoretical bases. Topics include linear acoustic systems, spatial impulse responses, the kspace formulation, methods of acoustic field calculation, dynamic focusing and apodization, scattering, the statistics of acoustic speckle, speckle correlation, compounding techniques, phase aberration correction, velocity estimation, and flow imaging. A strong emphasis is placed on readings of original sources and student assignments and projects based on realistic acoustic simulations. BUILDING: B&L  ROOM: 269 PREREQUISITES: BME230 or ECE241 

PHY 420
–
TR 12:30PM  1:45PM


An emphasis on the wide variety of phenomena that form the basis for modern solid state devices. Topics include crystals; lattice vibrations; quantum mechanics of electrons in solids; energy band structure; semiconductors; superconductors; dielectrics; and magnets. (same as MSC 420, ECE224, ECE424, PHY420). BUILDING:  ROOM: PREREQUISITES: PHY 217, 227, 237 

PHY 525
SHAPIR Y
TR 12:30PM  1:45PM


As the number of interacting degrees of freedom (or agents) in a given system increases, its behavior often changes qualitatively, and not only quantitatively. Complexity is the emerging field of research, which investigates the shared underlying concepts and principles of such systems. It finds its applications in Physics, Computer Science, Mathematics, Biology, Social Sciences, Economy, and more. In this introductory course we will focus on these common features and their utilization in understanding complex systems. They will include for example: Fractals, nonlinearity and chaos, adaptation and evolution, critical and tipping points, patterns formation, networks modeling, feedback loops, emergence and unpredictability, etc. Students in the course will be given ample opportunities to study farther these systems and/or techniques that are of particular interest to them. Prerequisites include basic knowledge in differential equations, linear algebra, and probability. BUILDING: B&L  ROOM: 407 PREREQUISITES: MTH 165, PHY 403 or equivalent 

PHY 453 (ME 492)
COLLINS G
TR 2:00PM  3:15PM


This course will survey the field of highenergydensity science (HEDS), extending from ultradense matter to the radiationdominated regime. Topics include: experimental and computational methods for the productions, manipulation, and diagnosis of HED matter, thermodynamic equationsofstate; dynamic transitions between equilibrium phases; and radiative and other transport properties. Throughout the course, we will make connections with key HEDS applications in astrophysics, laboratory fusion, and new quantum states of matter. BUILDING: GRGEN  ROOM: 102 

PHY 454 (ME 434)
REN C
TR 3:25PM  4:40PM


Basic plasma parameters; quasineutrality, Debye length, plasma frequency, plasma parameter, Charged particle motion: orbit theory. Basic plasma equations; derivation of fluid equations from the Vlasov equation. Waves in plasmas. MHD theory. Energy balance. BUILDING: HYLAN  ROOM: 306 PREREQUISITES: PHY 217 or OPT 262 

Wednesday  
Friday  
PHY 597
MANLY S
F 10:00AM  11:00AM


A (Fall)  Noncredit course given once per week, required of all firstyear graduate students. The seminar consists of lectures and discussions on various aspects of being an effective teaching assistant, including interactions with undergraduate student body and crosscultural issues. B (Spring)  Noncredit course given once per week required of all firstyear graduate students. Members of the faculty discuss topics in their curent area of research interest. BUILDING: B&L  ROOM: 106 PREREQUISITES: None. 

TBA  
PHY 434 (OPT 253)
LUKISHOVA S
–


This laboratory course (3 hours per week) exposes students to cuttingedge photon counting instrumentation and methods with applications ranging from quantum information to nanotechnology,biotechnology and medicine. Major topics include quantum entanglement and Bell’s inequalities, singlephoton interference, singleemitter confocal fluorescence microscopy and spectroscopy, photonic bandgap materials, Hanbury Brown and Twiss interferometer, and photon antibunching. Each lab also includes lecture and discussions of lab materials. BUILDING:  ROOM: 

PHY 498
–
–


This course is designed for a student to be Laboratory or Recitation Teaching Assistant (TA). Typically, the student spends the semester teaching two laboratories or up to four recitations during the Fall semester for the introductory physics courses: PHY 113, PHY 122, PHY 141, PHY 142, or introductory astronomy course: AST 111, or teaching one or more recitation(s): AST 111, PHY 113, PHY 122, PHY 141, PHY 142, or a 200 level undergraduate physics or astronomy course. Attendance of the weekly teaching seminars PHY 597Fall, giving feedback to other leaders, and a constructive evaluation process are required. This course is noncredit and may be taken more than once. BUILDING:  ROOM: PREREQUISITES: Students are required two weeks prior to the beginning of the Fall semester, to attend a twoday rigorous training program. Students prepare and present a short model recitation and are video taped for selfevaluation. 

PHY 499
–
–


Continuation of PHY 498. BUILDING:  ROOM: 

PHY 591
–
–


Special study or work, arranged individually. BUILDING:  ROOM: 

PHY 594
–
–


No description BUILDING:  ROOM: 

PHY 595
–
–


No description BUILDING:  ROOM: 

PHY 595A
–
–


No description BUILDING:  ROOM: 

PHY 595B
–
–


No description BUILDING:  ROOM: 

PHY 598
–
–


This course is designed for a student to be a Workshop Leader Teaching Assistant (TA). Typically, the TA attends the weekly Workshop Leader Training meeting that offers specialized support and training in group dynamics, learning theory, and science pedagogy for students facilitating collaborative learning groups for science and social science courses. The TA teaches three to four workshops in one of the fall semester introductory physics courses: PHY 113, PHY 122, PHY 141 or PHY 142. Additional requirements are: Attendance of the weekly Graduate Teaching Seminars PHY 597Fall, giving feedback to other leaders and a constructive evaluation process. This course is noncredit and may be taken more than once. BUILDING:  ROOM: 

PHY 599
–
–


This course is designed as a followup course for an experienced Workshop Leader, titled a lead Workshop Leader Teaching Assistant (TA). Typically, the TA attends the weekly Workshop Leader Training meeting that offers specialized support and training to develop leadership skills, to foster ongoing communication among faculty members and study group leaders, and to provide an environment for review of study group related issues. Students spend the semester teaching three to four workshops during the Spring semester introductory physics courses. BUILDING:  ROOM: 

PHY 895
–
–


No description BUILDING:  ROOM: 

PHY 897
–
–


No description BUILDING:  ROOM: 

PHY 985
–
–


No description BUILDING:  ROOM: 

PHY 986V
–
–


No description BUILDING:  ROOM: 

PHY 995
–
–


No description BUILDING:  ROOM: 

PHY 997
–
–


No description BUILDING:  ROOM: 

PHY 997A
–
–


No description BUILDING:  ROOM: 

PHY 999
–
–


No description BUILDING:  ROOM: 

PHY 999A
–
–


No description BUILDING:  ROOM: 

PHY 999B
–
–


No description BUILDING:  ROOM: 