
C MPI Torque Tutorial - Hello World

Introduction

The example shown here demonstrates the use of the Torque Scheduler for the purpose of

running a C/MPI program. Knowledge of C is assumed. Having read the Basic Torque

Tutorial prior to this one is also highly recommended.

Hello World!

MPI is a powerful foundation for your C programs which can enable you to write code

that will run on not just one computer, but on multiple computers. By splitting your code

up into more than one process, you will be able to do more work in a shorter amount of

time. The Aries Cluster (which has OpenMPI installed) has this foundation in place and

is the ideal place for running very complex or long-running programs.

The purpose of this tutorial is to show you the most basic C/MPI program possible -

“Hello World” - and describe how it works and how to run it. Once you have mastered

these basics, you will find more advanced material (such as the TSP program example)

on the Star Lab website as well.

Part One: The Files

hello.tgz

All the files needed to try out this example are available as a .tgz file on the Star Lab

website under the help heading. Under Linux, these files can be extracted with the

following command:

tar xvf hello.tgz

The files, summary

helloworld.c - The C program itself (includes main) which runs multiple processes, then

prints out a “Hello World” message from each of those processes before exiting.

run.sh - A shell script which is designed to run with helloworld.c under the Torque

Scheduler.

Output Files, summary

cluster_nodes - A file generated by run.sh which includes a list of cluster nodes.

run.sh.oXX - This file is generated by Torque and shows the output information, if any.

XX represents the torque job number. May be used for troubleshooting.

run.sh.eXX - This file is generated by Torque and shows the error information, if any.

XX represents the torque job number. May be used for troubleshooting.

mpi.out - Output of the helloworld program generated by run.sh

Part Two: Discussion of MPI in C

Before proceeding, a description of MPI’s basic operation is in order. A C MPI program

progresses through several stages before completion. In short, the stages can be

summarized as follows:

Include mpi.h

Initialize the mpi environment (Parallel Code starts here)

Do the work and pass information between nodes by using MPI calls

Terminate the mpi environment (Parallel Code ends here)

MPI accomplishes this by sorting the available nodes into an object called a group. The

group is referenced by another object which is tied to it - called a communicator.

Although it is possible to use more than one communicator and set up multiple groups,

for most purposes it is acceptable to do what we have done here - used just one

communicator and one group. In particular, the communicator we have used is called

MPI_COMM_WORLD (the predefined communicator) and it is associated with a group

which contains all the MPI processes.

Any given process can be further identified by its rank. Every process within a particular

group/under a particular communicator has a unique integer rank. These ranks are

numbered starting at 0 and are contiguous. For example, if we are dealing with eight

processes, they will be ranked from 0 to 7. In the event that a process is included in more

than one group (this situation does not occur in the example program described here), it

may have more than one rank associated with it. In a case such as this, the context is

important - and it will be up to the programmer to specify exactly which group is being

referred to at any given time (done by specifying the communicator).

In full, here is our example program, helloworld.c.

#include <stdio.h>
#include "mpi.h"

int main(int argc, char **argv)
{

 int rank, size;
 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&size);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 printf("Hello world from process %d of %d\n",rank,size);
 MPI_Finalize();

 return 0;

}

Let us take a look at how the MPI mechanism operates in our example program as we

move through main.

Let’s assume that when helloworld.c was called, it was initialized to run using five

processes. The program will ensure that five total processes have been generated when it

executes the first MPI command - MPI_Init. Each of these processes has its own distinct

set of program variables. For example, each process has its own rank and size variable.

Each process needs to know what its own rank (in this example, a number 0 - 4) and also

needs to know the size of the group it is in (5 in this example since we have 5 processes).

The MPI commands used for getting this information are MPI_Comm_rank and

MPI_Comm_size.

Once a process has obtained this information, it will be able to complete the printf

command that generates the “Hello World” message. As each process does this, it will

also identify itself by rank, also showing the total number of processes when it reports.

The last MPI command called is MPI_Finalize, which terminates the execution

environment.

More details regarding the different commands follow.

#include <mpi.h> - This include statement needs to go into every module that makes an

MPI call.

int MPI_Init(int *argc, char ***argv) - Initializes the MPI execution environment.

MPI_Init needs to be called prior to any other MPI functions, and therefore is required in

every C program that uses MPI. MPI_Init must be called only once. (Note - MPI_Init

obtains its arguments from the mpirun command. In our example, the mpirun command

is included in the run.sh shell script - see Part Four. The mpirun command provides the

number of nodes and a list of hosts to the MPI_Init command - see usage example

below).

int main(int argc, char *argv[])

{

 MPI_Init(&argc,&argv);

}

int MPI_Comm_rank (MPI_Comm comm, int *rank) - Determines the rank of the

calling process (and places it at the address *rank). (A rank can be anywhere from 0 up

to the number of processors). The rank will also vary based upon the communicator used

(in our program, the only communicator used is MPI_COMM_WORLD). A process can

have one rank under one communicator, but a different rank under another

communicator.

int MPI_Comm_size (MPI_Comm comm, int *size) - Determines the number of

processes in the current group of comm and places that integer at the address *size. In

our example, the only communicator used is called MPI_COMM_WORLD.

MPI_Finalize(); - This command terminates the MPI execution environment. Therefore

it needs to be the last MPI command called. This command needs to be included in every

MPI program to ensure that all resources are properly released.

Part Three: Compilation

The executable can be created with a standard compilation command:

mpicc -o helloworld helloworld.c

Note that the mpicc command must be used when compiling a c program which depends

upon mpi.

Execute the command above and generate the executable before continuing to Part Four.

NOTE - hello.tgz also contains an example makefile for this program which can be used

in place of the command line compilation. Makefiles become especially important for

programs that have more than one source file. The text of the example makefile can also

be viewed in the Appendix.

Part Four: Creating the Shell Script

There is a special method which must be used for running a C MPI program - simply

typing the name of the executable is not enough! That is because, upon running the

program, we need to specify additional details about the cluster and also we need to

specify the number of processes we need. When choosing a number of processes,

normally it is a good idea to choose no more than double the number of computers in the

cluster. For a cluster with ten machines in it, the user would want to avoid choosing

more than, say, 20. Performance will suffer if this guideline is not followed.

The format of the mpirun command is as follows:

mpirun -np <number of processes> -machinefile <host_file> <executable> >>

<output_file>

An example would be:

mpirun -np 6 -machinefile ./cluster_nodes ./helloworld >> ./mpi.out

Although it is theoretically possible to write the hostfile by hand as a text file, this should

never be done. It is safer to have this done automatically by use of a shell script (as

shown in run.sh below). This is because any error at all in the hostfile will cause the

RMPI program to crash (for example, in the event that the hostfile refers to a node that is

offline).

The shell script works as a sort of super-executable. Not only does the shell script issue

the mpirun command as described above, but it can also be made to generate the required

host file (cluster_nodes) on the fly.

An example shell script that works with the helloworld.c program is shown below. (Note

that this shell script is designed to work only with Torque - see Part Five for instructions

on how to submit it to the scheduler).

This is run.sh

#!/bin/bash

cd $PBS_O_WORKDIR

#set your machinefile

cat $PBS_NODEFILE > ./cluster_nodes

#run mpi on these nodes

echo "--------- The BEGINNING ---------" >> ./mpi.out

mpirun -np 6 -machinefile ./cluster_nodes ./helloworld >> ./mpi.out

rm run.sh.*

Again, it is worth mentioning that this shell script will only run under Torque (see Part

Five for details on how to submit it to Torque).

Also of note - we are attaching the output of the helloworld program to a file called

“mpi.out.” This file will be created if it does not already exist. This is necessary when

using Torque since the output would otherwise be lost.

Part Five: Submission of the Torque Script

Important Note: The user must be logged into the ariessrv in order to submit a job

successfully to Torque.

In order to ensure job runs in the fastest manner possible, users are encouraged to use the

Torque Scheduler. Torque constantly monitors the nodes on the cluster and is able to

track which nodes have the most resources free and which nodes are overburdened.

Although the smallest programs need not be run on Torque, the method for doing so will

be demonstrated here in anticipation of the more complex programs the user will write in

the future.

Torque accepts a shell script (.sh file) which describes the job we want to run. We can

use the shell script we created in Part Four.

Run your MPI job with the following command (in this example, three nodes are

requested):

qsub –l nodes=3 ./run.sh

Once the command has been issued, you will be given the job number. The qstat

command can be issued at any time after submission in order to see where your job is in

the queue. (See the Basic Torque Tutorial for more details on how to track your job’s

progress, etc).

Once the job has finished, several new files will have been created. The run.sh.oXX file

and run.sh.eXX will provide troubleshooting information in the event that there was a

problem with the execution.

Part Six: Final Considerations

For all long jobs (several hours or more) users are asked to use the Torque Scheduler as

described here out of fairness to other users and also as a way to ensure the most efficient

possible use of Aries cluster resources.

It is also worth noting that when a user occupies more nodes, the program will, in theory,

run faster. However, in practice, because Torque will not start your job until the

requested number of nodes become available, the same user may actually end up having

to wait longer for the program to begin. Because of this trade-off, it is strongly suggested

that users request only a moderate number of nodes when submitting a script. Not only

will your program have the best chance to start running sooner, but some nodes will

remain free for other users as well. Please be a good Star Lab citizen and do your part!

Appendix: Makefile for helloworld

A makefile can make program compilation much easier - especially as the number of

source files grows.

In order to compile the program, the user need only issue the command:

make

In order to clean up (remove the executable) the user need only issue this command:

make clean

This makefile is made to work with helloworld and is provided for reference. (It can also

be found in hello.tgz)

CC = mpicc

CFLAGS = -O3

All: helloworld

helloworld: helloworld.c

 $(CC) -o helloworld $(CFLAGS) helloworld.c

clean:

 rm helloworld

