
Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

University of Notre Dame
MPI Tutorial

Part 3
Advanced Topics

Laboratory for Scientific Computing
Fall 1998

http://www.lam-mpi.org/tutorials/nd/
lam@lam-mpi.org

Fall 1998 1

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Section IX

SGI Origin 2000

Fall 1998 2

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

SGI Origin 2000
� Two parallel SGI machines on campus:

– perseus.spi.nd.edu : front end / interactive.

4 196MHz CPUs. 512 MB real memory.

– medusa.spi.nd.edu : batch jobs

10 196MHz CPUs. 6 GB real memory.

� General SGI support page for Notre Dame:

http://perseus.spi.nd.edu/sgi/

Fall 1998 3

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Interactive
� Compiling:

– cc [-n32 | -64] prog.c -o prog -lmpi

– CC [-n32 | -64] prog.cc -o prog -lmpi

– f77 [-n32 | -64] prog.f -o prog -lmpi

� Executing:

– mpirun -np nprocs executable [arguments]

Fall 1998 4

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Batch
� Complete information: http://perseus.spi.nd.edu/sgi/ –

See the link for “Creating and Submitting Origin2000 Batch Jobs”

� Basic Steps:

– Create a file named .nqshosts in your Public directory. Add

entries for perseus and medusa. This uses the same format as the

.rhosts file. Make a symbolic link from your home directory.

– Put working files in your /usr1/people/afs id directory. This

directory is NFS mounted between perseus and medusa. This

directory is not accessable outside of perseus and medusa. All files

used by your job must be in this directory.

– Create a script that runs your program with either csh or sh . This script

can be as simple as a single mpirun command.

Fall 1998 5

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Batch - continued
� Basic Steps - continued.

– Submit the job using the cqsub command, for example: cqsub

scriptfile .

– Monitor jobs with the qstat command.

– Delete jobs with cqdel .

– Use nqe for a GUI interface for managing jobs.

Fall 1998 6

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Lab – Origin 2000
� Re-compile and re-run the following labs on perseus :

– The ring program (lab from Part 1)

– The manager/worker non-blocking average calculation (from Part 2)

� Remember that you are not using LAM on the Origin!

– Do not lamboot , lamrun , lamclean , or wipe !

– You must recompile your programs for IRIX and SGI’s MPI

– The command line syntax of mpirun is different; see the manual page

for mpirun(1) : do man mpirun to see it

Fall 1998 7

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Section X

Communicators

Fall 1998 8

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Defining Groups
� All MPI communication is based on a communicator which contains a context

and a group.

� Contexts define a safe communication space for message-passing.

� Contexts can be viewed as system-managed tags.

� Contexts allow different libraries to co-exist.

� The group is just a set of processes.

� Processes are always referred to by rank in group.

Fall 1998 9

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Pre-Defined Communicators
� MPI_COMM_WORLD: Contains all processes available at the time the

program was started.

� MPI_COMM_NULL: An invalid communicator. Cannot be used as input to

any operations that expect a communicator.

� MPI_COMM_SELF: Contains only the local process. Not used to

communicate

� MPI_COMM_EMPTY: There is no such thing as MPI_COMM_EMPTY.

(Why not?)

Fall 1998 10

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Communicator Types
� There are 4 types of communicators

– Intercommunicators

– Intracommunicators (further divided into two sub types)

� Cartesian communicators

� Graph communicators

� We will only discuss intracommunicators; inter-, Cartesian, and Graph

communications will not be covered

IntraInter

Comm

CartGraph

Fall 1998 11

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Subdividing a Communicator
� The easiest way to create communicators with new non-overlapping groups is

with MPI_COMM_SPLIT.

� For example, to form groups of rows of processes

1

2

0

0 1 2 3 4
Column

Row

use

MPI_COMM_SPLIT(oldcomm, row, 0, newcomm);

Fall 1998 12

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI COMMSPLIT
� Partitions the group associated with comminto disjoint subgroups.

� Each subgroup contains all processes having the same color.

� Within each subgroup, processes are ranked in the order defined by the value

of the argument key, with ties broken according to their rank in the old group.

int MPI_Comm_split(MPI_Comm comm, int color,

int key, MPI_Comm *newcomm)

Intracomm Intracomm::Split(int color, int key) const

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERR)

INTEGER COMM, COLOR, KEY, NEWCOMM, IERR

Fall 1998 13

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Subdividing a Communicator (cont.)
� To maintain the order by rank, use

MPI_COMM_RANK(oldcomm, rank);

MPI_COMM_SPLIT(oldcomm, row, rank, newcomm);

Fall 1998 14

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Subdividing (cont.)
� Similarly, to form groups of columns,

1

2

0

0 1 2 3 4
Column

Row

use

MPI_COMM_SPLIT(oldcomm, column, 0, newcomm2);

Fall 1998 15

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Subdividing (cont.)
� To maintain the order by rank, use

MPI_COMM_RANK(oldcomm, rank);

MPI_COMM_SPLIT(oldcomm, column, rank, newcomm2);

Fall 1998 16

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI COMMDUP
� It is a collective operation. All processes in the original communicator must

call this function.

� Duplicates the communicator group, allocates a new context, and selectively

duplicates cached attributes.

� Why isn’t there a MPI_GROUP_DUP?

Fall 1998 17

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI COMMDUP
� The resulting communicator is not an exact duplicate. It is a whole new

separate communication universe with similar structure.

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

Intracomm Intracomm::Dup() const

Intercomm Intercomm::Dup() const

Cartcomm Cartcomm::Dup() const

Graphcomm Graphcomm::Dup() const

MPI_COMM_DUP(COMM, NEWCOMM, IERR)

INTEGER COMM, NEWCOMM, IERR

Fall 1998 18

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Simple C Example
#include <stdio.h>

#include <mpi.h>

main(int argc, char **argv)

{

MPI_Comm new_comm;

int myrank, size, even, value;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

/* Are we odd or even? */

even = ((myrank % 2) == 0);

/* Split comm into row and column comms */

MPI_Comm_split(MPI_COMM_WORLD, even, myrank, &new_comm);

value = myrank;

MPI_Bcast(&value, 1, MPI_INT, 0, new_comm);

printf("Rank %d: Got broadcast value of %d\n", myrank, value);

MPI_Finalize();

return 0;

}

Fall 1998 19

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Lab - Hierarchical Communications
� Objective: Use communicators to effect a hierarchy of communications.

� Prompt the user for X and Y (the size of the matrix)

� Create three communicators:

– COMM_MATRIX: A duplicate of MPI COMMWORLD

– COMM_ROW: Will consist of processes in the same row ordered by

column index.

– COMM_COL: Will consist of processes in the same column ordered by

row index.

Fall 1998 20

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Lab - Hierarchical Communications (cont.)
� The row and column that a process belongs to can be determined using the

following formulae:

row = rank / Y

col = rank % Y

� Each processor should print the sum of rank numbers (relative to the matrix

communicator) in its row and column

Fall 1998 21

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Section XI

IBM SP

Fall 1998 22

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

IBMs POWER Architectures
� Multiple chip, CMOS technology processor:

� Up to 4 instructions may be executed per clock cycle

� Combined floating point multiply-add (FMA) instruction which allows a peak

MFLOPS rate equal to two times the MHz rate

� Zero-cycle branches - instruction path determined in advance by the

instruction cache unit

� Simultaneous running of fixed- and floating-point operations.

� 32 general purpose registers (32 bit)

� 32 floating point registers (64 bit - double precision)

� Clusters: first RS6000 based parallel computing

Fall 1998 23

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

IBMs Scalable POWERparallel Architectures
� Improved processor architecture

� High performance inter-processor communications

� System software for managing multiple machines

� Rack configuration - multiple machines in a frame

Fall 1998 24

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

High Performance Switch
� Packet-switched network (versus circuit-switched)

� Bi-directional, any-to-any internode connection - allows all processors to send

messages simultaneously

� Support for multi-user environment - multiple jobs may run simultaneously

over the switch (one user does not monopolize switch)

� Multistage network: on larger systems, additional intermediate switches are

added as the system is scaled upward.

� Path redundancy - multiple routings between any two nodes. Permits routes

to be generated even when there are faulty components in the system.

� Error detection

� Architected for expansion to 1000s of ports

Fall 1998 25

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Protocols
� IP (Internet Protocol) - default; permits shared usage of HPS-2 adapter by

multiple processes.

� US CSS (User Space Communication Subsystem) - intended for parallel

applications that require maximum communications performance. Only one

process per node may use US communications.

Fall 1998 26

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Performance
� 40 MB/sec peak bi-directional bandwidth between any two nodes. Yields 2.5

GB/sec bi-sectional bandwidth for a 128 node system.

� Hardware latency: 500 ns up to 80 nodes, 875 ns for systems with up to 512

nodes

� IBM High Performance Switch performance measurements

Protocol Latency Pt to Pt Bandwidth

MPI IP <300 usec >12 MB/Sec.

MPI user space <45 usec >35 MB/Sec.

Fall 1998 27

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Control Workstation
� Serves as the single point of control for System Support Programs used by

System Administrators for system monitoring, maintenance and control.

� Separate machine - not part of the SP frame

� Must be a RISC System/6000

� Connects to each frame with

– RS-232 control line

– external ethernet LAN

� Acts as boot/install server for other servers in the SP system

� May also act as a file server

Fall 1998 28

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

SP Software
� AIX Operating System

� System Administration

� Parallel Environment

� LoadLeveler

� Application Software

Fall 1998 29

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Parallel Operating Environment (POE)
� Parallel Compiler Scripts

� Environment Variables

� Visualization Tool

� Program Marker Array

� System Status Array

� Parallel Debugging Facility

� Parallel Profiling Capability

� Environment Variables

Fall 1998 30

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

IBM SPs on Campus
� Two parallel SP resources on campus:

Machine names Resource type

spin13.spi.nd.edu thru Interactive development and debugging

spin16.spi.nd.edu

spin17.spi.nd.edu thru Batch submission; production runs

spin30.spi.nd.edu

� Web page information and support of HPCC SP’s:

http://www.nd.edu/ �hpcc/

� Interactive nodes: RS6000 370, 256MB RAM, 512MB swap, 2GB scratch

space

� Batch nodes: RS6000 390, 128MB RAM, 512MB swap, 2GB scratch space

Fall 1998 31

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Interactive Use
� Compiling:

– mpcc prog.c -o prog

– mpCC prog.cc -o prog

– mpxlf prog.f -o prog

� Executing (don’t need to use mpirun):

– source IP css0 hosts

– ./prog

Fall 1998 32

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Setting up for POE
� Download and source the appropriate environment file from the tutorial web

page

– IP en0 hosts : Sets up for IP over ethernet

– IP css0 hosts : Sets up for IP over the switch

– US css0 hosts : Sets up for user space over the switch

– All files setup for 4 nodes, and look for a file named “hosts ” in your

current directory

� Feel free to edit/modify the files; they are commented.

Fall 1998 33

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Running MPI Programs on the SP
� The directory where your program resides must have the AFS permissions

set such that it is system:anyuser readable

– All parent directories must be at least system:anyuser listable.

– Your program will not run with AFS authentication on the remote nodes.

� mpirun is available, but not necessary. Since all the setup is in environment

variables, one can just invoke the program directly.

� For example:

spin13% mpcc foo.c -o foo

spin13% fs sa . system:anyuser read

spin13% ./foo

Fall 1998 34

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Batch Use
� Notre Dame uses IBM’s LoadLeveler package for batch submissions.

� There are three pools to which parallel jobs can be submitted: two 4 node

pools, and one 6 node pool.

� Exact information and examples can be found on:

http://www.nd.edu/ �hpcc/faqs.html

� LoadLeveler can also be used to submit serial jobs to the RS6000 farm in the

HPCC.

Fall 1998 35

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Lab – IBM SP
� Re-compile and re-run the following labs on any of the interactive nodes of

the SP (spin13 through spin16):

– The ring program (lab from Part 1)

– The manager/worker non-blocking average calculation (from Part 2)

� Remember that you are not using LAM on the SP!

– Do not lamboot , lamrun , lamclean , or wipe !

– You must recompile your programs for AIX and IBM’s MPI

– You must source one of the environment files to set all the variables

– The use of the mpirun command is not necessary; you can just execute

the program directly

Fall 1998 36

