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A Additional Figures and Tables

Region 1 Region 2 Region 3 Region 4 Region 5

Figure A1: Mexican Electoral Regions and Districts (delimited)

Figure A2: Composition of Votes in Support of PRI-PVEM Coalition Candidates

Notes. The top panels show the distribution across districts—by party affiliation of the coalition candidate—of

the percentage of coalition supporters who gave their PR vote entirely to PRI (left) or PVEM (right). The

bottom panel corresponds to a 50-50 split of the PR vote between the two partners.
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Table A1: District Characteristics

Districts with Distinct Districts with Joint Districts with Joint
PRI, PVEM Candidates PRI Candidate PVEM Candidate

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Female Head of Household (%) 23.8 3.1 24.7 4.3 26.8 5.1

Pop. over 60 (% Voting-Age Pop.) 15.0 3.1 13.8 3.5 14.7 3.1

Rural Neighborhoods (%) 36.4 25.9 23.7 25.3 18.3 25.3

Table A2: Campaign Expenditures (Thousands of USD)

Districts with Distinct Districts with Joint Districts with Joint
PRI, PVEM Candidates PRI Candidate PVEM Candidate

Party Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

MP 56.4 19.7 55.1 11.7 56.6 14.3

NA 19.7 8.5 16.7 4.4 19.1 8.5

PVEM 18.3 7.6
80.6 27.3 94.3 40.9

PRI 54.9 11.0

PAN 38.0 10.4 41.4 12.7 44.6 14.2
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(a) MP (b) NA

(c) PVEM (alone) (d) PRI (alone)

(e) PRI+PVEM (f) PAN

0-20th percentile 20-40th 40-60th 60-80th 80-100th

Figure A3: Geographic Distribution of Campaign Spending by Party
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Table A3: Prior Electoral Experience of 2012 Chamber of Deputies Candidates

Ran in 2009 Ran in 2006 Ran in 2003 Ran in 2003–2009
(%) (%) (%) (%)

MP (FPTP) 7.7 8.0 4.7 17.7

MP (PR) 6.7 3.8 4.0 12.5

NA (FPTP) 3.7 4.7 1.0 9.3

NA (PR) 6.0 7.5 2.0 14.0

PVEM (FPTP Independent) 4.0 2.0 3.0 6.9

PVEM (FPTP Coalition) 0.0 9.3 2.3 11.6

PVEM (PR) 8.0 3.5 4.5 14.6

PRI (FPTP Independent) 2.0 5.9 5.0 12.9

PRI (FPTP Coalition) 3.2 4.5 8.3 14.7

PRI (PR) 4.5 9.0 2.5 14.5

PAN (FPTP) 2.3 7.0 3.7 10.7

PAN (PR) 4.0 9.5 9.0 17.5

Notes. This table summarizes, by party and election tier (i.e., first-past-the-post or proportional-

representation), prior experience in federal legislative elections of 2012 Chamber of Deputies candidates. The

first column reports the percentage of 2012 candidates who also ran (in any tier) in the 2009 Chamber of

Deputies election. The second column corresponds to 2012 candidates who ran (in any tier) in 2006 for the

Chamber of Deputies or the Senate. The third column corresponds to 2012 candidates who ran (in any tier)

in the 2003 Chamber of Deputies election. The last column corresponds to 2012 candidates who participated

in at least one federal legislative election between 2003 and 2009.

Table A4: Proportional-Representation Party-Choice Coefficient Estimates

(I) (II)

Log-Lagged Vote Share 0.463 0.469
(0.055) (0.067)

PVEM×Female -1.348 -1.141
(1.283) (1.468)

PVEM×Over 60 0.882 0.888
(1.311) (1.242)

PVEM×Rural 0.518 0.320
(0.248) (0.206)

PRI×Female -2.108 -1.239
(0.760) (0.836)

PRI×Over 60 3.208 2.703
(0.751) (0.689)

PRI×Rural 0.147 0.091
(0.118) (0.103)

Menu-Party F.E. Yes Yes

Region F.E. No Yes

Observations 398 398

Notes. OLS estimates of βST, which drives second-tier choice for PRI-PVEM coalition supporters of how to

allocate their PR vote according to Equation (3), with robust standard errors in parentheses. Outside option

is 50-50 vote split between the two partners.
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(a) MP (b) NA

(c) PVEM (alone) (d) PRI (alone)

(e) PRI+PVEM (f) PAN

Figure A4: Electoral Impact of Campaign Expenditures

Notes. The horizontal axis of each panel is centered at the party’s observed average spending and ranges by

plus/minus two standard deviations. The vertical axes measure FPTP district vote shares as a percentage

of registered voters. Solid lines plot averages, and dashed lines delimit 90% confidence intervals, taking into

account the empirical distribution of district characteristics and observed spending by competing parties.
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B Campaign-Stage Details

Equivalence between alternative formulations of campaign stage. Since there is no

evidence in Table 4 of heterogeneous voter responsiveness to campaign efforts, candidate j’s

vote share in Equation (4), given menu Md, can be written simply as

sMd
jd (cjd, c−j,d) =

exp
(
α1cjd + α2c

2
jd + (xMd

jd )′β + ξMd
jd

)
1 +

∑
j′∈Md

exp
(
α1cj′d + α2c2j′d + (xmj′d)

′β + ξMd

j′d

) , (B1)

where c−j,d denotes the profile of spending in district d by j’s rivals. Party or coalition j’s

payoff in district d—up to a constant in cjd—is given by

πMd
jd (cjd, c−j,d) = γ̃Md

j log
(
sMd
jd (cjd, c−j,d)

)
− cjd,

with

γ̃Md
j =


γPRI + γPVEM if Md ∈ {MPRI,MPVEM} and j ∈ {PRI,PVEM},

γj otherwise.

As discussed in the paper, I assume parties face a flexible national budget constraint, which

implies that they effectively play independent complete-information campaign spending games

across districts. A (pure-strategy) Nash equilibrium in district d is a profile of spending, c∗d,

such that c∗jd ∈ argmaxcjd∈[0,∞) π
Md
jd (cjd, c

∗
−j,d) for all j ∈Md. In equilibrium, assuming positive

spending by all parties as observed in the data, j’s spending satisfies the first-order condition

∂πMd
jd (c∗jd, c

∗
−j,d)

∂cjd
= γ̃Md

j

[
1− sMd

jd (c∗jd, c
∗
−j,d)

]
(α1 + 2α2c

∗
jd)− 1 = 0. (B2)

The term γ̃Md
j

[
1− sMd

jd (c∗jd, c
∗
−j,d)

]
(α1 +2α2c

∗
jd) represents the marginal value for j of an addi-

tional dollar of spending, which is thus equalized across districts.

With a hard national budget constraint, consider an alternative formulation of j’s problem

wherein it seeks to maximize its aggregate electoral payoff,
∑

d γ̃
Md
j log

(
sMd
jd (cjd, c

∗
−j,d)

)
, subject

to
∑

d cjd ≤ cj, where cj denotes j’s budget. Equation (B2) in this case would be replaced with
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the corresponding first-order condition for the Lagrangian, Lj, of j’s constrained optimization

problem:
∂Lj(c

∗
j , c

∗
−j)

∂cjd
= γ̃Md

j

[
1− sMd

jd (c∗jd, c
∗
−j,d)

]
(α1 + 2α2c

∗
jd)− λj = 0. (B3)

Assuming a binding budget constraint, j’s Lagrange multiplier λj > 0. Dividing Equation

(B3) by λj then yields

γ̃Md
j

λj

[
1− sMd

jd (c∗jd, c
∗
−j,d)

]
(α1 + 2α2c

∗
jd)− 1 = 0,

which is identical to Equation (B2) up to a renormalization of j’s payoff. The two versions

of the campaign stage are in this sense observationally equivalent. For computational con-

venience, I adopt the independent-games version of the model, but the estimates of parties’

campaign-stage payoffs in Table 5 can be interpreted as capturing all relevant opportunity

costs of campaign expenditures.

Games with strategic complementarities. While I refer the reader to Echenique and

Edlin (2004) for a formal definition of games with strict strategic complementarities (GSSC),

I discuss here properties of the parties’ payoff functions, satisfied at the estimated parameter

values in Tables 4 and 5, which imply that the district spending games belong to this class.

First, since α1 > 0 > α2, the effect of cjd on candidate j’s vote share in Equation (B1) is

maximized at c = −α1/(2α2). It then follows that spending more than c̄ is a strictly dominated

strategy for all players in the spending games. Thus, the effective strategy space for each party

is [0, c], a compact interval, which satisfies condition 1 of the definition of GSSC in Echenique

and Edlin (2004). Second, given any (c̃jd, c̃−j,d) ∈ [0, c)|Md| and j′ ̸= j,

∂2πMd
jd (c̃jd, c̃−j,d)

∂cj′d∂cjd
= γ̃Md

j sMd
jd (c̃jd, c̃−j,d)s

Md

j′d (c̃jd, c̃−j,d)(α1 + 2α2c̃jd)(α1 + 2α2c̃jd) > 0.

That is, j’s incentive to raise its spending is strictly increasing in its rivals’ spending. This

implies the remaining conditions of the definition of GSSC.
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As noted in the paper, GSSC have three useful properties. First, existence of equilibrium

is guaranteed (Vives, 1990). Second, mixed-strategy equilibria are unstable, so their omission

is justified (Echenique and Edlin, 2004). Lastly, Echenique (2007) provides a simple and fast

algorithm for computing the set of all pure-strategy equilibria. This set has an additional key

property. It has a largest and a smallest equilibrium, providing a simple test of uniqueness:

if the largest and smallest equilibria coincide, the resulting strategy profile is the unique

equilibrium of the game. These extremal equilibria can be easily computed through best-

response iteration. The smallest (largest) equilibrium is obtained by iterating best responses

until convergence starting from the strategy profile with cjd = 0 (cjd = c) for all j ∈ Md. At

the estimated parameter values, the largest and smallest equilibria of the campaign spending

games always coincide.

C Estimation Details

As summarized in the paper, the estimation strategy mirrors the model’s three-stage structure.

Step 1 recovers the voting-stage parameters in Equations (1) and (3). Step 2 obtains payoff

coefficient γp for each party p by matching the spending levels observed in the data with the

model’s predictions from the campaign stage. Finally, ex-ante coalition surplus maximization

is exploited in Step 3 to recover θ, which characterizes the partners’ (dis)utility from not

fielding a candidate.

Step 1. With heterogenous voter impressionability (σ ̸= 0), the simple linear regression

estimator of voters’ preferences described in the paper is no longer feasible. However, Berry,

Levinsohn and Pakes (BLP, 1995) show that predicted vote shares can still be implicitly

“inverted” in this case after matching observed vote shares exactly. That is, given Equation

(4) and any value of σ, there exists a unique vector of mean utilities, δMd
d (σ) =

(
δMd
jd (σ)

)
j∈Md

,

such that ŝMd
jd = sMd

jd (δMd
d (σ), σ) for all j ∈ Md.

1 Unobserved candidate valence consistent

1To compute predicted vote shares given Equation (4), I use sparse-grid integration as implemented by
Heiss and Winschel (2008).
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with δMd
jd (σ) can then be computed using Equation (2), for any trial value of φ = (α, β, σ), as

ξMd
jd (φ) = δMd

jd (σ)− α1cjd − α2c
2
jd − (xMd

jd )′β.

Given a vector zjd of valid instruments—i.e.,

E[zjdξ
Md
jd (φ)] = 0 if and only if φ = φ0, (C1)

where φ0 denotes the true value of the parameters—a Generalized Method of Moments (GMM)

estimator can be obtained by minimizing the quadratic formQN(φ) = [ 1
N
Z ′ξ(φ)]′WN [

1
N
Z ′ξ(φ)].

Here, Z and ξ(φ) are vertical stackings of z′jd and ξMd
jd (φ) across candidates and districts, N

denotes the total number of observations, and 1
N
Z ′ξ(φ) is the sample analog of moment con-

dition (C1).

Under standard regularity conditions (Hansen, 1982; Berry, Levinsohn and Pakes, 1995),

this GMM estimator, φ̂, satisfies

√
N(φ̂− φ0)

d→ N (0, (G′WG)−1G′WΩW ′G(G′W ′G)−1)

as the sample size N → ∞, where

G = E[zjd∇φξ
Md
jd (φ0)] and Ω = E[zjdξ

Md
jd (φ0)ξ

Md
jd (φ0)

′z′jd]

are the gradient and variance, respectively, of the moment conditions defined by Equation

(C1), and WN
p→ W . Notice that the optimal weighting matrix W ∗ = Ω−1 minimizes the

asymptotic variance of the estimator, which then simplifies to (G′Ω−1G)−1. This suggests a

two-step estimation approach, which I follow. In a first step, a consistent but inefficient esti-

mate φ̂I can be obtained by minimizing QN(φ) using any positive-definite weighting matrix.2

Then, allowing for arbitrary heteroskedasticity, the optimal weighting matrix can be consis-

2I employ an approximation of Ω−1 using residuals from the homogeneous version of the model with σ = 0.

ix



tently estimated as Ŵ ∗ = Ω̂−1 =
(

1
N
Z ′Vξ(φ̂I)

′Z
)−1

, where (Vξ(φ̂I))jj′ = ξj(φ̂I)ξj′(φ̂I)1j=j′ . In

a second step, reestimating the model using Ŵ ∗ delivers a consistent and efficient estimate φ̂.

For robust inference, again allowing for arbitrary heteroskedasticity, a consistent estimate of

the asymptotic variance of φ̂ can be obtained simply as (Ĝ′Ω̂−1Ĝ)−1, where Ĝ = Z ′∇φξ(φ̂)

and Ω̂ = Z ′Vξ(φ̂)Z.
3

BLP propose an estimation algorithm that proceeds by iterating over two nested loops.

This algorithm, however, can be computationally inefficient and sensitive to convergence crite-

ria. Instead, I follow the Mathematical Programming with Equilibrium Constraints (MPEC)

approach of Dubé, Fox and Su (2012). The key idea is to impose the “equilibrium conditions”

of the model, ŝMd
jd = sMd

jd (δMd
d (σ), σ), as explicit constraints on the GMM program, relying on

recent advances in constrained optimization algorithms for improved numerical performance.

Specifically, I compute φ̂ by solving the following mathematical program with equilibrium

constraints:

min
φ,ξ,ψ

ψ′Wψ subject to

ψ = Z ′ξ and (C2)

sMd
jd (δMd

d , σ) = ŝMd
jd for all j, d, where (C3)

δMd
jd = α1cjd + α2c

2
jd + (xMd

jd )′β + ξMd
jd . (C4)

Dubé, Fox and Su (2012) show that this MPEC and the traditional BLP algorithm yield

theoretically identical estimates, but the MPEC approach delivers superior numerical perfor-

mance. While the computational cost of estimation may seem to increase by treating ξ and

the moment conditions, ψ, as auxiliary variables—and thus expanding the size of the opti-

mization problem—note that (C2) and (C4) are linear constraints, and (φ, ξ) no longer enter

the objective function directly. This, together with the sparsity that results from ξMd
jd having

no effect on vote shares outside of j’s district, adds to the computational advantage over the

3This can also easily accommodate clustering by district, letting (Vξ(φ̂))jj′ = ξj(φ̂)ξj′(φ̂) if j and j′

compete in the same district, and (Vξ(φ̂))jj′ = 0 otherwise. Results are nearly identical.
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traditional BLP approach.4

A necessary order condition for the instrument vector, zjd, is that it must include at least

as many variables as there are parameters to be estimated. The choice of instruments to

identify (α, β) follows standard intuition from linear models: the exogenous covariates in xMd
jd

constitute valid—in fact, optimal—instruments to identify β, and the lagged-spending instru-

ments, as described in the paper, identify α. On the other hand, the impressionability variance

parameters, σ, determine nonlinear features of the model and are, in many applications, hard

to estimate precisely (Gordon and Hartmann, 2013; Gillen et al., 2019; Gandhi and Houde,

2023). Part of the difficulty stems from finding the right source of variation to pin down the

effects of these parameters on model predictions. The standard approach has been to heuris-

tically construct nonlinear transformations of other available instruments in an attempt to

match the nonlinear features of the model. Recent work by Gandhi and Houde (2023) shows

that this approach, while well-intended, can produce very weak instruments if the transforma-

tions don’t involve the right ingredients. In particular, the coefficients in σ shape patterns of

substitutability across candidates, relaxing the Independence of Irrelevant Alternatives prop-

erty that is otherwise imposed on the homogeneous-voters version of the model by the TIEV

distribution. Since substitutability is determined, empirically, by how close alternatives are in

terms of their relevant attributes, Gandhi and Houde argue that a flexible function of attribute

differences across candidates provides the right source of variation to identify σ. Accordingly,

I use a second-degree polynomial of observed differences across candidates in xMd
jd and the

(two-stage least squares) fitted value of cjd (using the lagged-spending instruments).

Step 2. The GMM estimator of the campaign-stage parameters is analogous to that in Step

1, with ĉjd − cjd(γ, φ̂) playing the role of ξMd
jd (φ) above. The only difference is that inference

in this case must account for estimation uncertainty in φ̂. I rely on standard results for

4Realizing these gains, however, requires state-of-the-art optimization software, capable of
handling large problems with nonlinear constraints. I rely on the industry-leading Knitro’s
(https://www.artelys.com/en/optimization-tools/knitro) Interior-Point/Direct algorithm, to which I provide
exact first and second derivatives of the objective and constraints.
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two-step GMM estimation (Newey and McFadden, 1994). Specifically, a consistent estimate

of the joint asymptotic variance of (φ̂, γ̂) is given by (Ĝ′Ω̂−1Ĝ)−1, as above, where Ĝ and Ω̂

correspond in this case to estimates of the gradient and variance, respectively, of the joint

moment restrictions

E


zjd(ĉjd − cjd(γ0, φ0)

)
zjdξ

Md
jd (φ0)


 = 0.

Step 3. Lastly, as described in the paper, θ can be estimated by maximizing the log-

likelihood ∑
d

log
(
Ld(Md; θ, γ̂, φ̂)

)
.

Again, standard errors must be adjusted to account for estimation uncertainty in (γ̂, φ̂). I

rely once more on two-step GMM inference noting that Maximum Likelihood estimation here

is equivalent to GMM estimation based on the moment (first-order) conditions

E
[
∇θ log

(
Ld(Md; θ, γ0, φ0)

)]
= 0 if and only if θ = θ0,

where θ0 denotes the true value of the parameters.

The coalition formation stage of the model can be alternatively formulated without intro-

ducing idiosyncratic bargaining shocks. In this case, only an average (dis)utility of not fielding

a candidate can be identified for each party, with Equation (7) simplifying to

π̄mpd(θ, γ, φ) = θp1j ̸=p + E[πmpd(γ, φ)].

Analogous to nonnegative-profit market entry conditions, joint surplus maximization by PRI

and PVEM implies the following moment inequalities:

π̄Md
PRI,d(θ, γ, φ) + π̄Md

PVEM,d(θ, γ, φ) ≥ π̄mPRI,d(θ, γ, φ) + π̄mPVEM,d(θ, γ, φ) (C5)

for all m ∈ {MPRI,MPVEM,M IND}.
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Shi and Shum (2015) propose a simple inference procedure for models with such a

structure—i.e., models where a subset of parameters (γ and φ) are point identified and esti-

mated in a preliminary stage (Steps 1 and 2), and the remaining parameters are related to

the point-identified parameters via inequality/equality restrictions. To implement their pro-

cedure, which requires both equalities and inequalities, I introduce slackness parameters: for

each m, condition (C5) becomes an equality restriction,

π̄Md
PRI,d(θ, γ, φ) + π̄Md

PVEM,d(θ, γ, φ)−
[
π̄mPRI,d(θ, γ, φ) + π̄mPVEM,d(θ, γ, φ)

]
+ κm = 0,

and the slackness parameters must satisfy κm ≥ 0. A criterion function is constructed as

follows. With a slight abuse of notation, let β be a vector collecting the output of Steps 1 and 2,

and let θ = (θPRI, θPVEM, κIND, κPRI, κPVEM). Define g
e(θ, β) = (gem(θ, β))m∈{MPRI,MPVEM,M IND}

by

gem(θ, β) = π̄Md
PRI,d(θ, γ, φ) + π̄Md

PVEM,d(θ, γ, φ)−
[
π̄mPRI,d(θ, γ, φ) + π̄mPVEM,d(θ, γ, φ)

]
+ κm,

and let gie(θ) = (giem(θ))m∈{MPRI,MPVEM,M IND} = (κm)m∈{MPRI,MPVEM,M IND}. Thus, ge summa-

rizes the equality restrictions involving all parameters of the model, and gie summarizes the

inequality restrictions involving only θ. Letting β0 denote the true value of β, the identified

set of θ—i.e., the set of parameter values consistent with (or not rejected by) the data—is

Θ0 = {θ : ge(θ, β0) = 0 and gie(θ) ≥ 0}.

Given Q(θ, β;W ) = ge(θ, β)′Wge(θ, β), where W is a positive definite matrix, it follows that

Θ0 = argminθQ(θ, β0;W ) subject to gie(θ) ≥ 0.

Shi and Shum show that the following is a confidence set of level α ∈ (0, 1) for Θ0:

CS = {θ : gie(θ) ≥ 0 and Q(θ, β̂, Ŵ ) ≤ χ2
(3)(α)/N},
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where χ2
(3)(α) is the α-th quantile of the χ2 distribution with 3 degrees of freedom (the number

of restrictions in ge), β̂ a consistent estimator of β0 (obtained from Steps 1 and 2), N is the

number of observations used to estimate β̂, and

Ŵ =
[
G(θ, β̂)V̂βG(θ, β̂)

′
]−1

,

with G(θ, β̂) = ∇βg
e(θ, β̂) and V̂β a consistent estimate of the asymptotic variance of β̂.

Figure C1 shows the projection of this confidence set, focusing on (θPRI, θPVEM). As ge(θ, β)

and gie(θ) are in fact linear in θ, Q(θ, β̂; Ŵ ) has a unique minimizer subject to gie(θ) ≥ 0,

which provides a useful “point estimate,” highlighted in Figure C1. As discussed by Shi and

Shum, the slackness parameters, κm, are nuisance parameters, which may lead to conservative

confidence sets for the parameters of interest. This does not seem to be a problem in this

application, however, given that the depicted confidence set is fairly tight. Furthermore, the

identified values of θp broadly agree with the mean of w′
pdθ from the version of the coalition

formation stage in the paper, although the former naturally miss considerable heterogeneity.

Figure C1: Confidence Set for Parameters from Alternative Formulation of Coalition Forma-
tion Stage with No Idiosyncratic Bargaining Shocks
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D Alternative Specifications

Tables D1 (voting-stage candidate choice), D2 (voting-stage party choice), and D3 (coalition

stage) present coefficient estimates from alternative specifications aimed at addressing several

potential concerns. For easy reference, all tables reproduce the baseline estimates in the paper

or Online Appendix A.

Governors. As discussed in the paper, related research has found that Mexican governors

can be very influential with regard to federal legislators. Columns (II) and (VII) of Table D1,

and columns (II) and (VI) of Tables D2 and D3, report coefficient estimates from alternative

model specifications that allow for potential effects of incumbent governors on voting behavior

and coalition formation incentives. Although Tables D1 and D2 suggest governors may have

some impact on same-party candidates’ vote shares and on voters’ PR party choice, these

results are not robust to controlling for electoral region fixed effects. Moreover, Table D3

indicates governors have no substantively or statistically significant influence on coalition

formation considerations.

Measurement error in campaign expenditures. In 2012, the Chamber of Deputies

election took place concurrently with the Senate and presidential contests. The victorious

PRI-PVEM presidential candidate was accused of using Chamber of Deputies campaign ex-

penditures as a way of skirting presidential campaign spending limits.5 This raises serious

concerns about the reliability of reported spending in each FPTP district as a measure of cam-

paign efforts in direct support of the corresponding candidate for the Chamber of Deputies.

To address this, I conduct two related analyses. Since 2009 was a mid-term election year,

cross-election contamination concerns surrounding campaign expenditures do not apply. To

identify the districts where cross-election contamination is most likely to have occurred in

2012, I calculate the percentage increase from 2009 to 2012 in joint PRI-PVEM spending for

5https://www.animalpolitico.com/analisis/invitades/para-entender-el-prorrateo-de-los-gastos-de-
campana (in Spanish).
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each district. I then drop from the sample all districts in the top 5%. Columns (III) and (VIII)

of Table D1, and columns (III) and (VII) of Tables D2 and D3, report coefficient estimates

using this restricted sample. Similarly, columns (IV) and (IX) of Table D1, and columns (IV)

and (VIII) of Tables D2 and D3, report coefficient estimates after dropping districts in the

top 10%. Throughout, results are virtually identical to their baseline counterparts.

Campaign spending instruments. Finally, to address concerns about the validity of 2009

spending as an instrument for expenditures in 2012, columns (V) and (X) of Table D1 report

coefficient estimates using an alternative set of instruments. First, since Table 4 rules out

meaningful spillovers across districts in campaign efforts, I use 2009 spending in neighboring

districts rather than in the district itself to instrument for spending in 2012. This should alle-

viate concerns about any unobservables affecting 2009 spending and 2012 election outcomes in

a district not already captured by lagged vote shares. Second, 2012 was the first electoral cycle

in Mexico in which the Internet seemed to play an important role because it enabled direct

communication between candidates and voters, lowering campaign costs (Dı́az Cayeros et al.,

2012). Assuming parties anticipated this and tailored campaign expenditures accordingly, the

share of households in a district with Internet access (available from the 2010 census) should

provide another valid instrument for 2012 spending after controlling for other observed district

characteristics. I similarly use a measure, computed by the electoral authority, of the average

travel time it takes to visit all election precincts in a district. Reassuringly, point estimates in

columns (V) and (X) of Table D1 are consistent with their baseline counterparts. Estimates

of α1 (first row) and α2 (third row) are less precise, however, which is unsurprising given that

the alternative instruments are weaker as they are less directly related to variation in spending

by each party in each particular district.
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Table D1: Candidate-Choice Coefficient Estimates

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X)

Spending 0.412 0.406 0.434 0.412 0.281 0.561 0.455 0.605 0.413 0.557
(0.240) (0.428) (0.253) (0.246) (0.274) (0.363) (0.534) (0.375) (0.320) (0.352)

Spending Variance (σ1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(737.6) (6101) (857.6) (910.7) (481.5) (143.3) (5967) (142.2) (317.6) (137.4)

Spending2 -0.017 -0.018 -0.018 -0.017 -0.012 -0.025 -0.019 -0.027 -0.018 -0.024
(0.019) (0.046) (0.020) (0.020) (0.024) (0.028) (0.051) (0.029) (0.026) (0.028)

Spending2 Variance (σ2) 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(265.4) (0.046) (313.5) (325.9) (240.1) (23.14) (205.6) (27.11) (68.92) (22.93)

Log-Lagged Vote Share 0.514 0.397 0.503 0.503 0.515 0.461 0.431 0.453 0.473 0.477
(0.031) (0.050) (0.031) (0.029) (0.031) (0.038) (0.045) (0.039) (0.035) (0.038)

Incumbent Governor 0.716 0.263
(0.377) (0.528)

MP×Female 2.310 0.364 2.408 2.519 3.091 1.347 1.018 1.460 1.834 0.751
(1.211) (1.267) (1.250) (1.305) (1.078) (1.283) (1.212) (1.332) (1.158) (1.180)

MP×Over 60 0.652 0.344 0.418 0.255 0.158 0.861 0.535 0.392 0.129 1.346
(1.265) (1.248) (1.261) (1.280) (1.069) (1.269) (1.175) (1.247) (1.085) (1.179)

MP×Rural -0.417 -0.447 -0.404 -0.365 -0.243 -0.575 -0.506 -0.590 -0.500 -0.677
(0.238) (0.249) (0.256) (0.264) (0.193) (0.243) (0.250) (0.260) (0.220) (0.208)

NA×Female -1.630 -1.927 -1.610 -1.397 -1.392 -3.261 -3.161 -3.281 -2.582 -3.107
(1.011) (1.097) (1.019) (1.037) (0.963) (1.133) (1.172) (1.155) (1.052) (1.147)

NA×Over 60 0.374 0.416 0.568 0.790 0.273 0.914 0.874 1.026 1.020 0.874
(0.993) (0.932) (1.060) (1.073) (0.947) (1.038) (0.991) (1.130) (1.035) (1.025)

NA×Rural 0.104 -0.010 0.106 0.101 0.080 -0.094 -0.109 -0.099 -0.123 -0.030
(0.152) (0.156) (0.155) (0.166) (0.142) (0.152) (0.152) (0.158) (0.158) (0.150)

PVEM×Female -0.857 -0.087 -0.511 -0.204 1.049 -0.290 -0.340 -0.101 -0.286 -0.766
(1.788) (2.816) (1.823) (1.896) 2.938 (1.678) (2.006) (1.748) (1.729) (2.090)

PVEM×Over 60 -0.220 -0.875 0.005 0.015 0.611 0.097 -0.222 0.202 0.204 0.190
(1.522) (1.992) (1.566) (1.569) 1.958 (1.578) (1.920) (1.659) (1.556) (1.672)

PVEM×Rural 1.043 1.005 1.044 1.045 0.827 0.818 0.765 0.840 0.716 0.848
(0.267) (0.328) (0.275) (0.274) (0.220) (0.268) (0.292) (0.279) (0.237) (0.247)

PRI×Female -1.690 -0.007 -1.455 -1.133 -1.393 -1.757 -0.890 -1.616 -1.305 -2.208
(1.065) (2.384) (1.105) (1.057) (1.335) (1.074) (2.654) (1.128) (1.005) (1.219)

PRI×Over 60 0.661 0.545 0.199 0.069 0.713 1.385 1.060 0.832 0.569 1.378
(1.066) (1.501) (0.908) (0.882) (0.837) (1.122) (1.453) (0.988) (0.826) (1.022)

PRI×Rural 0.424 0.666 0.434 0.444 0.385 0.380 0.506 0.375 0.376 0.352
(0.132) (0.311) (0.138) (0.142) (0.117) (0.151) (0.410) (0.157) (0.142) (0.147)

PAN×Female -1.110 -2.550 -1.206 -1.198 -1.339 -1.311 -2.294 -1.290 -1.186 -1.647
(1.127) (1.309) (1.143) (1.141) (1.111) (1.137) (1.296) (1.164) (1.037) (1.097)

PAN×Over 60 1.202 2.771 1.321 1.279 1.865 1.555 2.555 1.617 2.325 1.653
(1.205) (1.584) (1.179) (1.164) (0.969) (1.248) (1.916) (1.278) (1.109) (1.183)

PAN×Rural 0.404 0.217 0.414 0.370 0.151 0.426 0.162 0.478 0.202 0.388
(0.373) (0.394) (0.404) (0.385) (0.281) (0.375) (0.437) (0.411) (0.334) (0.320)

Menu-Party F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Region F.E. No No No No No Yes Yes Yes Yes Yes

Observations 1,301 1,301 1,241 1,181 1,301 1,301 1,301 1,241 1,181 1,301

Notes. BLP estimates of coefficients driving candidate choice, with robust standard errors in parentheses. The

first four rows correspond to (α, σ), which determine the effectiveness of campaign expenditures according to

Equation (1). The remaining rows correspond to β, which characterizes baseline partisanship in Equation (1).

For reference, columns (I) and (VI) reproduce the baseline estimates in Table 4. Columns (II) and (VII) add

as a control a binary indicator of whether the incumbent governor was from the corresponding party. Columns

(III) and (VIII) report estimates after dropping from the sample districts in the top 5% of joint PRI-PVEM

spending increases relative to 2009. Columns (IV) and (IX) do the same after dropping the top 10%. Columns

(V) and (X) use lagged spending in neighboring districts, Internet availability, and average travel time as

alternative instruments.
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Table D2: Proportional-Representation Party-Choice Coefficient Estimates

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Log-Lagged Vote Share 0.463 0.502 0.468 0.491 0.469 0.510 0.479 0.508
(0.055) (0.062) (0.056) (0.057) (0.067) (0.078) (0.068) (0.071)

Incumbent Governor -0.123 -0.123
(0.061) 0.075

PVEM×Female -1.348 -1.348 -1.619 -1.851 -1.141 -1.224 -1.409 -1.986
(1.283) (1.284) (1.298) (1.326) (1.468) (1.476) (1.490) (1.562)

PVEM×Over 60 0.882 0.895 0.783 -0.018 0.888 0.961 0.728 0.312
(1.311) (1.311) (1.409) (1.493) (1.242) (1.247) (1.326) (1.397)

PVEM×Rural 0.518 0.546 0.488 0.549 0.320 0.335 0.302 0.369
(0.248) (0.247) (0.250) (0.257) (0.206) (0.206) (0.211) (0.229)

PRI×Female -2.108 -2.395 -2.218 -2.247 -1.239 -1.715 -1.302 -1.449
(0.760) (0.786) (0.752) (0.751) (0.836) (0.891) (0.837) (0.858)

PRI×Over 60 3.208 3.159 2.967 2.261 2.703 2.798 2.468 2.043
(0.751) (0.746) (0.799) (0.807) (0.689) (0.678) (0.726) (0.766)

PRI×Rural 0.147 0.126 0.102 0.092 0.091 0.031 0.059 0.062
(0.118) (0.117) (0.118) (0.120) (0.103) (0.108) (0.104) (0.119)

Menu-Party F.E. Yes Yes Yes Yes Yes Yes Yes Yes

Region F.E. No No No No Yes Yes Yes Yes

Observations 398 398 368 338 398 398 368 338

Notes. OLS estimates of βST, which drives second-tier choice for PRI-PVEM coalition supporters of how to

allocate their PR vote according to Equation (3), with robust standard errors in parentheses. Outside option is

50-50 vote split between the two partners. For reference, columns (I) and (V) reproduce the baseline estimates

in Table A4. Columns (II) and (VI) add as a control a binary indicator of whether the incumbent governor

was from the corresponding party. Columns (III) and (VII) report estimates after dropping from the sample

districts in the top 5% of joint PRI-PVEM spending increases relative to 2009. Columns (IV) and (VIII) do

the same after dropping the top 10%.
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Table D3: Estimates of Parties’ Coalition-Stage Payoffs

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Prob. of Winning FPTP Race Alone -4.919 -4.870 -4.728 -4.851 -4.563 -4.519 -4.473 -4.960
(2.734) (2.660) (2.586) (2.583) (2.674) (2.645) (2.583) (2.746)

Incumbent Governor -0.076 -0.068
(0.370) (0.457)

PVEM×Female -1.370 -1.387 -0.960 -0.181
(4.946) (4.951) (4.826) (4.759)

PVEM×Over 60 -6.841 -6.825 -6.304 -4.262
(5.484) (5.496) (5.465) (5.451)

PVEM×Rural -1.048 -1.049 -0.898 -0.829
(0.678) (0.678) (0.672) (0.701)

PRI×Female -1.826 -1.895 -1.431 -4.005
(7.495) (7.558) (7.414) (7.406)

PRI×Over 60 0.837 0.930 1.389 4.912
(7.300) (7.386) (7.483) (7.735)

PRI×Rural -3.626 -3.662 -3.486 -4.298
(1.140) (1.188) (1.145) (1.023)

Party F.E. Yes Yes Yes Yes No No No No

Party-Region F.E. No No No No Yes Yes Yes Yes

Log-Likelihood -285.8 -285.8 -275.3 -264.0 -258.1 -258.1 -250.1 -238.3

Observations 300 300 285 270 300 300 285 270

Notes. ML estimates of θ, which characterizes PRI and PVEM’s (dis)utility from standing down in a district

to support their partner’s candidate as defined by Equation (7), with standard errors in parentheses. For

reference, columns (I) and (V) reproduce the baseline estimates in Table 6. Columns (II) and (VI) add as

a control a binary indicator of whether the incumbent governor was from the corresponding party. Columns

(III) and (VII) report estimates after dropping from the sample districts in the top 5% of joint PRI-PVEM

spending increases relative to 2009. Columns (IV) and (VIII) do the same after dropping the top 10%.
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