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ONLINE APPENDIX

BENJAMIN J. GILLEN, SERGIO MONTERO, HYUNGSIK ROGER MOON AND

MATTHEW SHUM

APPENDIX A: ITERATIVE COMPUTATION OF PENALTY LOADINGS

Our penalized estimators apply data-dependent factor loadings for each of the coefficients included in the
model. The data-dependent factor loadings scale the penalty for each coefficient according to the variability
of the associated coefficient and the model residual. These loadings appear in ϒβ and ϒω in Algorithm 5.1,
ϒθ in Equation (5.5), ϒφ in Equation (5.11), and ϒζ in Equation (5.12). Here, we review the application of
the iterative approach of Belloni et al. (2013) to computing these penalty loadings.

A.1. ITERATIVE COMPUTATION FOR LINEAR MODELS

Recalling the formula for Step I of Algorithm 5.1:

min
β∈RKT +1

1

JT

T∑
t=1

J∑
j=1

(
Sj t −x ′

0t β0j −x ′
1j tβ1−pjtβp

)2+ λβ

T
‖ϒ̂ββ‖1.

We set λβ = 2c
√

JT �−1 (1 − γ /2(KT + 1)), with the Belloni et al. (2013) recommended values being c =
1.1 and γ = 0.05/log (KT + 1∨T). The kth diagonal entry in ϒ̂β scales the penalty according to the variability
in the kth regressor, which we will denote xk, jt, and the residual εjt ≡ Sj t −x ′

0t β0j −x ′
1j tβ1−pjtβp . The

infeasible ideal sets ϒ̂β,{k,k} =
√

E
[
x2

k,j t ε
2
j t

]
. The iterative Algorithm A.1 initializes ϒβ with the expected

squared value of each regressor, fits the LASSO regression, recovers the residuals, and uses these residuals
to compute the sample analog to the ideal value. This algorithm extends immediately to ϒω. Defining
the residual εjt ≡ pjt −x ′

0tω0j −x ′
1j tω1, the infeasible ideal penalty values for this problem are ϒ̂ω,{k,k} =√

E
[
x2

k,j t ε
2
j t

]
. For completeness, the calculation is detailed in Algorithm A.2.

Algorithm A.1 Iterative Algorithm for ϒβ

I. Initialize ϒ0
k,k =

√
1

JT

∑JT
j,t=1 x2

k,j,t , k = 1, . . . , KT .

II. For I = 1, ..., Ī , or until ‖ϒI − ϒI−1‖ < δ:

a)Solve β̂ = arg min
β∈RKT +1

1

JT

T∑
t=1

J∑
j=1

(
Sj t −x ′

0t β0j −x ′
1j tβ1−pjtβp

)2+ λβ

T
‖ϒI−1β‖1.

b)Compute the residuals: ε̂j t ≡ Sj t −x ′
0t β̂0j −x ′

1j t β̂1−pjt β̂p.

c)Update ϒI
k,k =

√
1

JT

∑JT
j,t=1 x2

k,j,t ε̂
2
j t , k = 1, . . . , KT .

III. Set ϒ̂β = ϒI .
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Algorithm A.2 Iterative Algorithm for ϒω

I. Initialize ϒ0
k,k =

√
1

JT

∑JT
j,t=1 x2

k,j,t , k = 1, . . . , KT .

II. For I = 1, ..., Ī , or until ‖ϒI − ϒI−1‖ < δ:

a)Solve ω̂ = min
ω∈RKT

1

JT

T∑
t=1

J∑
j=1

(
pjt −x ′

0tω0j −x ′
1j tω1

)2+ λω

T
‖ϒ̂ωω‖1.

b)Compute the residuals: ε̂j t ≡ pjt −x ′
0t ω̂0j −x ′

1j t ω̂1.

c)Update ϒI
k,k =

√
1

JT

∑JT
j,t=1 x2

k,j,t ε̂
2
j t , k = 1, . . . , KT .

III. Set ϒ̂ω = ϒI .

A.2. ITERATIVE COMPUTATION FOR NONLINEAR MODELS

The selection in nonlinear models requires accounting for the additional estimation error introduced by
selection on a generated regressor. Consequently, the residual with which to scale the regressor’s variability
must be augmented by the variance of the generated selection target. Recall the selection problem in Equation
(5.11):

φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃j t −x ′

0t φ0j −x ′
1j tφ1

)2+ λφ

T
‖ϒ̂φφ‖1.

The ϒφ matrix requires a slight adjustment to account for estimation error in the δ̃j ts. Defining

εδ,j t ≡ δjt − δ̃j t = δ̃j t = x̃ ′
j t

(
β̃j − βj

) + x ′
1j t

(
β̃1 − β1

) + pjt

(
β̃p − βp

) + ξ̃j t − ξjt

and εφ,j t ≡ δ̃j t − x ′
0t φ0j − x ′

1j tφ1, the ideal weight for φ0j, k is equal to

√
Ē

[
x2

0t,k

(
εδ,j t + εφ,j t

)2
]

and to√
Ē

[
x2

1j t,k

(
εδ,j t + εφ,j t

)2
]

for φ1, k.

We can define x̄j t = [
x̃ ′

j t x
′
1j t , pjt

]′
and �j as the rows and columns of the variance-covariance matrix for

β̃ computed using the sandwich covariance matrix from the solution to (5.10):

ε̂2
δ,j t = E

[
ε2
δ,j t

] = x̄ ′
j t�j x̄j t + σ 2

ξ .

For feasible implementation, we again initialize the ϒφ matrix with the diagonal variances of the regressors.
We then recursively solve (5.11) to recover the residuals εφ, jt and update the ϒφ accordingly.

The approach above does not apply as readily to the solution for (5.12), as we cannot easily characterize
the variance of the optimum instruments for the nonlinear features of the model. However, we do not need
to account for the population variance of the asymptotic optimal instruments in our selection of controls.
Importantly, the estimated optimal instruments provide the only source of exogenous variation used to
identify the heterogeneity in voter impressionability. Consequently, performing selection on the utilized
instruments as if they represented the population optimal instruments suffices to control for observable
heterogeneity. Recalling the penalization problem:

ζ̃ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,j t −x ′

0t ζ0j −x ′
1j t ζ1

)2+ λζ

T
‖ϒ̂ζ ζ‖1

and defining the residual εζ = z̃v,j t −x ′
0t ζ0j −x ′

1j t ζ1, the ideal (k, k)th entry in ϒζ = E
[
x2

k,j t ε
2
ζ

]
. We can then

apply the approach from Algorithms A.1 and A.2.
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Algorithm A.3 Iterative Algorithm for ϒφ

I. Initialize ϒ0
k,k =

√
1

JT

∑JT
j,t=1 x2

k,j,t , k = 1, . . . , KT .

II. Compute ε̂2
δ,j t = x̄ ′

j t�j x̄j t + σ 2
ξ from the solution to the feasible GMM problem (5.10).

III. For I = 1, ..., Ī , or until ‖ϒI − ϒI−1‖ < δ:

a)Solve φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃j t −x ′

0tφ0j −x ′
1j tφ1

)2+ λφ

T
‖ϒI−1φ‖1.

b)Compute the residuals: ε̂φ,j t ≡ δ̃j t − x ′
0t φ̂0j − x ′

1j t φ̂1.

c)Update ϒI
k,k =

√
1

JT

∑JT
j,t=1 x2

k,j,t

(
ε̂2
φ,j t + ε̂2

δ,j t

)
, k = 1, . . . , KT .

IV. Set ϒ̂φ = ϒI .

Algorithm A.4 Iterative Algorithm for ϒζ

I. Initialize ϒ0
k,k =

√
1

JT

∑JT
j,t=1 x2

k,j,t , k = 1, . . . , KT .

II. For I = 1, ..., Ī , or until ‖ϒI − ϒI−1‖ < δ:

a)Solve ζ̂ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,j t −x ′

0t ζ0j −x ′
1j t ζ1

)2+ λζ

T
‖ϒ̂ζ ζ‖1.

b)Compute the residuals: ε̂ζ,j t = z̃v,j t −x ′
0t ζ̂0j −x ′

1j t ζ̂1.

c)Update ϒI
k,k =

√
1

JT

∑JT
j,t=1 x2

k,j,t ε̂
2
ζ,j t , k = 1, . . . , KT .

III. Set ϒ̂ζ = ϒI .

A.3. GMM PENALTY FOR VERIFYING FIRST-ORDER CONDITIONS

While we do not directly evaluate the objective function in the global parameter space for Equation (5.5),
we do need to verify the first-order conditions for the local solution based on the selected model in the last
step of Algorithm 5.2:

qk ≡ ∂

∂β0jk

Q
(
θ̃∗, x̃k, z, p, s

)
< λθυk, k = 1, . . . , K0, j = 1, . . . , J.

As discussed in the text, the infeasible ideal value of υk =
√

Ē
[
x2

0t,kξ
2
j t

]
. Here, we are already working from

a (putative) local optimum, so we can take the estimated values ξ
(
θ̃∗, x̃, z, p, s

)
to estimate the empirical

analog to the expectation:

υ̂k =
√√√√ 1

JT

J,T∑
j,t=1

x2
0t,k ξ̃

2
j t .

This calculation has the added benefit of being computable variable-by-variable to mitigate memory and
computational limitations.
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