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Common regression models are often structurally inconsistent with strategic interaction. We demonstrate that this “strategic
misspecification” is really an issue of structural (or functional form) misspecification. The misspecification can be equivalently
written as a form of omitted variable bias, where the omitted variables are nonlinear terms arising from the players’ expected
utility calculations and often from data aggregation. We characterize the extent of the specification error in terms of model
parameters and the data and show that typical regressions models can at times give exactly the opposite inferences versus
the true strategic data-generating process. Researchers are recommended to pay closer attention to their theoretical models,
the implications of those models concerning their statistical models, and vice versa.

Much of political science research assumes indi-
viduals and groups of individuals (e.g., in the
form of states) behave strategically. Recent re-

search (Signorino 1999, 2000; Smith 1999) suggests that,
when analyzing strategic behavior on the part of individ-
uals or states, failure to reflect that strategic interaction
in one’s statistical model can result in invalid inferences.
Signorino (1999) demonstrates this with a Monte Carlo
example in which the inferences from logit regressions
are far from (at times completely opposite to) the strate-
gic data-generating process. Signorino (1999), however, is
not a complete analysis of the misspecification, but more
a warning and demonstration that the misspecification
exists. As of yet, the form of the misspecification has not
been characterized in a way that most practitioners readily
understand or in a manner that allows us to state when the
effects of strategic misspecification should be mild versus
severe. The primary goal of this article is to do exactly
that.

As we demonstrate in this article, strategic misspecifi-
cation is really an issue of structural (or functional form)
misspecification. Because this type of misspecification is
not well known among political scientists, we begin in
the next section by illustrating the problem of functional
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form misspecification as it applies to the classical linear
regression model. It is easy to show in this case that func-
tional form misspecification is actually a type of omitted
variable bias, where the omitted variables are nonlinear
terms in a Taylor series approximation of the true func-
tional form.

We then move to the strategic setting and construct
what we believe is the simplest model possible: a two-
player deterrence game. We assume the data in this case
represents whether a particular outcome (war) has oc-
curred or not, and we analyze the misspecification of
using logit or probit with the ubiquitous linear X B spec-
ification of the latent variable equation. As in the OLS
case, it is easy to rewrite the strategic misspecification as
a form of omitted variable bias, where the omitted vari-
ables are nonlinear terms in a Taylor series expansion of
the true functional form and where the nonlinearity is
due to the players’ expected utility calculations. Because
of the misspecification, parameter estimates are not only
biased, but inconsistent. Therefore, throwing more data
at the problem does not make it go away.

In the third section, we analyze the misspecification
when the dependent variable is the action taken by the
first player, the attacker. By construction, this choice is
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monotonically related to each independent variable. This
would seem to be an ideal situation for using logit or
probit. In this case, we not only demonstrate that mis-
specification exists, but also mathematically character-
ize the specification error in terms of the model pa-
rameters and data, showing when it will be better or
worse. Interestingly, there are a wide range of very rea-
sonable conditions in which logit or probit will incor-
rectly indicate that variables in the model have no effect
or even the opposite effect of their true values. A Monte
Carlo example is provided to illustrate the analytical
results.

Although we frame our analysis in terms of strategic
interaction and discrete-choice models, our argument is
not limited to either, but applies to all parametric esti-
mation in the social sciences. In general, when the func-
tional form of the statistical model is not consistent with
the data-generating process, misspecification results. Our
analysis therefore emphasizes that more attention should
be paid to the functional relationship of the dependent
and independent variables in one’s theory—and that the
lack of a strongly-specified theory does not absolve one of
this critical step. The theory, the hypotheses to be tested,
and the statistical model all must reflect each other. If they
are not identical functional specifications, they should at
least be consistent with each other in terms of monotonic-
ity conditions, which we discuss at length in the fourth
section.

The Basic Problem Illustrated
with the Classical Linear

Regression Model

The general problem of functional form misspecification
has been well known for quite awhile within the econo-
metrics community, at least in terms of the classical re-
gression model and systems of linear equations. However,
it has received relatively little attention within political
science. Because most political science scholars are now
familiar with the classical linear regression model, we il-
lustrate the basic functional form problem in this sec-
tion using that model and move to the strategic setting
thereafter.1

To begin, let us assume that we are analyzing the re-
lationship of a single regressor X to a dependent variable
Y , and that this relationship satisfies all the assumptions
of the classical linear model concerning Y, X , and error

1The illustration in this section is largely based on Kmenta (1986,
449–50).

term �, with the exception that Y is a nonlinear function
of X and a parameter �:2

Y = f (X, �) + �. (1)

In analyzing this data, the typical political science scholar
might test for heteroskedasticity, autocorrelation, or any
number of other deviations from the classical linear
model. However, invariably she would assume that

Y = B0L + B1L X + �, (2)

i.e., that regression model is a linear function of param-
eters B L , where we use the L subscript to denote the lin-
ear model. More often than not, she would also assume
that the regression model is a first-order function of some
set of substantive explanatory variables X.3 If f (X, �)
is nonlinear, but the analyst instead employs X B L (lin-
ear in parameters B L and first-order in X), then she has
clearly misspecified the functional form of f (X, �). The
question is: Does that matter?

To analyze the misspecification, let us first take the
Taylor series expansion of f (X, �) about X . The result-
ing Taylor series version of the model will approximate the
original nonlinear model, but can be written as linear in
the parameters, which then fits the classical linear frame-
work. To simplify notation, we will denote the pth order
Taylor series expansion of f (X, �) about X as fT (X, �).
The Taylor series expansion is

fT (X, �) = f (X, �) + (X − X) f ′(X, �) + (X − X)2

2!

× f ′′(X, �) + · · · + (X − X)p

p!
f (p)(X, �) + �p+1,

where f (p)(X, �) is the p-th derivative of f (X, �) with
respect to X , evaluated at X . The remainder, �p+1, can
be thought of as the difference between f (X, �) and
fT (X, �), or equivalently as the Taylor series terms from
p + 1 to infinity not incorporated in the p-th order
expansion. Assuming that limp→∞ �p = 0, higher-order

2Throughout this article, single variables will be denoted by itali-
cized, and usually uppercase, letters. Bolded letters will represent
multiple variables or parameters. Additionally, all utilities, proba-
bilities, and variables have an implicit observation index, which for
notational convenience, we will tend to omit.

3First-order terms are those including only a single variable X j

raised to the first power. For example, a typical first-order linear
specification of X B L would be B0 + B1 X1 + B2 X2 + · · · + Bk Xk .
Higher-order terms include quadratic, cubic, and interaction terms.
The classical linear model can accommodate higher-order terms as
regressors, so long as the model remains linear in the parameters
B L . Our general argument does not depend on assuming that X B L

contains only first-order X terms. However, it is by far the most
commonly used, and it is mathematically convenient.
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Taylor series expansions will better approximate the orig-
inal function.

Assume that p is large enough that �p+1 is negligi-
ble. If we replace the true functional form f (X, �) in
the regression model with the p-th order Taylor series
approximation of it fT (X, �), and rearrange terms, we
can write the regression model as a linear function of its
parameters:

Y = B0 + B1 X + B2 X2 + B3 X3 + · · · + B p X p + �,

(3)

where

Bk =
∞∑

m=k

(
m
k

)
(−X)m−k

m!
f (m)(X, �). (4)

In this case, the Taylor series model (Equation 3) is the
true model (Equation 1)—it is just written in a different
way.

So what is the problem if the researcher employs the
typical first-order linear X B L regression in Equation 2?
The true model, Equation 3, shows that the higher-order
terms (X2, X3, etc.) are relevant to the relationship be-
tween Y and X—they capture the nonlinearity in f (X, �).
However, the specification in Equation 2 omits the higher-
order terms. Therefore in this case, functional form mis-
specification is equivalent to omitting relevant variables,
where the omitted variables represent the nonlinearities in
the relationship between the dependent and independent
variables. Based on what we know about omitted vari-
able bias, we can conclude that the estimate of B1L will
be biased to the extent that the higher-order polynomials
of X are correlated with X . In the unlikely event that the
omitted and included variables are uncorrelated, model
fit will still suffer to the extent that the omitted variables
have a larger effect on Y . Clearly, the more nonlinear the
functional form is, the more the higher-order terms will
matter, and thus, the greater the specification error is likely
to be.

We have demonstrated the functional form problem
when Y is a function of only a single variable. The results
are similar (actually worse) when Y is a nonlinear function
of multiple independent variables. In that case, the higher-
order terms in the Taylor series expansion will consist of
higher-order polynomials of the independent variables,
as well as higher-order polynomials of their interactions.

Strategic Misspecification as Omitted
Variable Bias

The problem of strategic misspecification in paramet-
ric models is precisely a problem of functional form

misspecification, and its proof is analogous to that just
demonstrated with the classical linear model. In this ar-
ticle, we address strategic misspecification in the context
of binary choice models, since binary data is so widely
used throughout political science. However, the concepts
are exactly the same for any binomial, multinomial, or
continuous-variable regression model. In this section,
we first describe the general latent variable framework
for binary data and then introduce a simple strategic
model. Using that model, we demonstrate that strate-
gic misspecification is equivalent to omitting relevant
variables.

The Latent Variable Specification

Let us assume there exists a latent (i.e., unobservable)
variable y∗ defined by

y∗ = f (X,�) + �, (5)

where f (X,�) is a function of regressors X and param-
eters �, and � is a random disturbance from some density
h�(�) with mean zero. Examples of such latent variables
might be a state’s utility for war versus peace, a senator’s
utility for a particular bill in Congress, or the extent to
which a shopper prefers apples instead of oranges. Al-
though y∗ is unobservable directly, we often can observe
whether y∗ is above some threshold. For example, we can
observe whether a state chooses to go to war, whether a
senator votes for a bill, or whether a shopper purchases
an apple or an orange. We denote the observable choice
as y, which will be our data, and for simplicity we set the
threshold to zero:

y =
{

1 if y∗ > 0
0 if y∗ ≤ 0.

(6)

A particular probability model results from the specifica-
tion of f (X,�) and �.

Unfortunately, the researcher is not omniscient and
must therefore make an assumption concerning all of
these elements. Of most importance to us is the as-
sumption concerning f (X,�). As with the classical linear
model, the most common practice is to assume that the
functional form is both linear in the parameters and a
first-order function of the substantive variables, which
we will denote as X B L . Hereafter when we refer to the
“typical,” “common,” or “traditional” binary specifica-
tion, it is precisely to this first-order linear latent variable
specification to which we will refer, and we will use an L
subscript to denote parameters and equations associated
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with it.4 � is generally assumed to be distributed logistic
(for logit) or Normal (for probit).

Some mistakenly believe that for logit and probit a
first-order X B L relationship is somehow a “general” or
theory-free specification that “allows the data to speak for
itself.” On the contrary, the first-order X B L specification
is a very specific structural relationship—a straightjacket,
if you will—that constrains our analysis and affects our
inferences. We are not implying that the first-order X B L

specification is alone in this. Indeed, in the context of
parametric models, any assumption concerning f (X, �)
is a structural assumption. Once specified, the assumed
form of f (X, �) imposes a relationship on the regressors,
parameters, and the latent dependent variable y∗. It is
not an empirical relationship that we find through data
analysis, but a theoretical or modeling relationship in the
context of which we conduct our analysis.5 Nevertheless,
for too long the first-order linear X B L relationship has
been taken for granted.

Historically there may not have been valid theoret-
ical reasons for assuming otherwise. However, recent
work (Signorino 1999, 2000) suggests that when the
data-generating process is the result of strategic behav-
ior, f (X, �) will most likely be nonlinear. Moreover, the
structure of each “game” implies a particular “strategic”
functional form. Given that many of our theories in polit-
ical science assume strategic behavior and given the preva-
lence of logit and probit with the X B L specification, we
would like to know how bad the misspecification is.

A Very Simple Strategic Model

To analyze statistical misspecification, we usually start
with the simplest possible model and examine how the
misspecification affects the results in that situation. More
extensive or general results can be derived later if time,
space, and mathematical tractability allow.

Consider the simple strategic situation depicted in
Figure 1(a), which is typical of deterrence situations,
whether in international politics, congress, or market
entry. Here, {A, A, R, R} are actions in the game and
{SQ, Cap, War} are outcomes. Player 1, the attacker, must
choose between attacking A and not attacking A. If she

4Again, quadratic or cubic terms sometimes appear in published
logit or probit regressions. However, the first-order X B specifica-
tion is far more common in political science research, and, because
of its simplicity, it makes the analysis of the specification error much
easier. As in the OLS case of the previous section, our general ar-
gument does not require this exact specification. Indeed, it does
not require any particular specification of f (X, �)—only that it be
misspecified.

5See Dubin and Rivers (1989) for a similar statement concerning
linear regression.

does not attack A, then the game ends with the status quo
(SQ) as the outcome. If she attacks, then player 2, the
defender, must choose between resisting R and not resist-
ing R, leading to outcomes War and capitulation (Cap),
respectively. For each outcome, the observable compo-
nent of the player’s utility is denoted by Ui (k), where i
indexes the player and k refers to the outcome. The game
in Figure 1 is only partially strategic—only player 1 must
condition her behavior on player 2’s expected behavior.
This is reflected in the fact that there is no need to specify
U2(S Q).

Throughout this article, we will assume the source
of uncertainty—i.e., what makes the strategic model
probabilistic—is based on agent error (see McKelvey and
Palfrey 1998; Signorino 1999, 2000). This assumption is
implemented simply for mathematical convenience. The
reader who does not find the behavioral assumptions un-
derlying the agent-error model particularly palatable can
refer to Signorino (2000) for two other types of statisti-
cal (but strictly Nash) strategic models: one based on in-
complete information concerning outcome payoffs; and
another based on variation in the regressors, which is un-
observed only by the analyst. The issues addressed here are
not limited to the agent error variant. Indeed, because the
primary question addresses the extent to which strategic
misspecification affects inferences in binary choice mod-
els, the general conclusions of our analysis in this article
apply to the payoff perturbation and unobserved regres-
sor variation models as well.

In the current context, player i’s true utility for ac-
tion j is denoted by U ∗

i ( j ) and is divided into two compo-
nents: an expected utility component Ui ( j ) that is observ-
able by everyone (including the analyst) and a random
component � j that is observed only by player i. Referring
still to Figure 1(a) above, if player 1 attacks, then player
2’s utilities for not resisting R and resisting R are

U ∗
2 (R) = U2(R) + �r

= U2(Cap) + �r , (7)

U ∗
2 (R) = U2(R) + �r

= U2(War ) + �r . (8)

As we noted before, player 2’s calculations are nonstrategic
because she does not condition on the attacker’s behavior.
In contrast, player 1’s utilities for actions A and A are

U ∗
1 (A) = U1(A) + �a

= U1(S Q) + �a , (9)

U ∗
1 (A) = U1(A) + �a

= pr U1(R) + pr U1(R) + �a

= pr U1(Cap) + pr U1(War ) + �a . (10)
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FIGURE 1 A Very Simple Strategic Model.
The simplest strategic model consists of one actor
conditioning her decision on that of another player. Here,
player 1 must decide whether to attack (A) or not attack (A)
player 2. If player 1 does not attack, then the status quo (S Q)
results. If player 1 attacks, then player 2 must choose between
resisting (R) or not resisting (R), leading to (War ) and
capitulation (Cap), respectively. Figure 1(a) depicts the game
in its more general form. Figure 1(b) shows an example where
the individual choice probabilities are all monotonically
related to the variables that comprise the utilities.

U1(SQ) 

U1(Cap) 

U2(Cap) 

U1(War) 

U2(War) 

1 

 2 

A A 

R R 

(a) Strategic deterrence model

pa 

 pr 

1 

 2 

A A 

R R 

0 

X13 β13 

0 

X14 β14 

X24 β24 

(b) Utilities specified with regressors

Player 1’s calculations are strategic. Player 1’s observable
expected utility for attacking depends on the probability
that player 2 resist or not. Let p j be probability that ac-
tion j is chosen and pk be the probability that outcome
k is realized. Assuming the � j are independent and iden-
tically distributed according to some density f (�) with
finite expectation, then the general form of the equilib-
rium probabilities is6

pa = 1 − pa = pr

[
U ∗

1 (A) > U ∗
1 (A)

]
,

pr = 1 − pr = pr

[
U ∗

2 (R) > U ∗
2 (R)

]
,

ps q = pa ,

pcap = pa pr ,

pwar = pa pr .

With an appropriately specified f (�), the above prob-
abilities can be derived and used in data analysis (e.g.,
MLE). For example, if the � j are i.i.d. N(0, �2), then the
action probabilities will be Normally distributed. If they

6For examples of how to derive such probabilities, see Signorino
(1999, 2000). Derivations of results in this article are also available
upon request from the authors.

are i.i.d. Type 1 Extreme Value, then the resulting action
probabilities will be logistic.

For regression analysis, we must also specify the
utilities of Figure 1(a) in terms of regressors. Consider
Figure 1(b). Here, the utilities—and, hence, all equilib-
rium probabilities—are a function of only three regres-
sors: X13, X14, and X24. We have constructed the utili-
ties (1) to make them as simple as possible and (2) to
try to ensure wherever possible the monotonicity of the
probabilities as a function of the regressors. Although
we will discuss this in more detail in a later section, it
is important to note here that all of the action prob-
abilities ( pa , pa , pr , pr ) are monotonic in each of the
regressors.

Finally, researchers are often constrained to work
with particular forms of dependent variables at their dis-
posal. The best case here would be to have the actual out-
come data available for analysis (i.e., whether S Q, Cap,
or War occurred in a given observation). However, data
might only be available for, say, whether player 1 chose
A vs. A. Using the appropriate equilibrium probabili-
ties in maximum-likelihood estimation would allow for
the analysis of either of these forms of data. Because of
the prevalence of both forms of data in political science
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research, we analyze the specification error for the model
outcomes in this section and for the attacker’s actions in
the third section.

War Data: Aggregating the Strategic
Model’s Outcomes

Assume now that the true data-generating process is the
deterrence model shown in Figure 1(b). Numerous anal-
yses in international relations have employed logit or
probit to analyze data where the dependent variable de-
notes simply “War” vs. “Not War.” Indeed, this type of
data, where at least one of the categories aggregates mul-
tiple outcomes in some “original” model or process, is
actually quite common in political science more broadly.
In the context of the deterrence model, the “Not War” cat-
egory would include both the status quo and capitulation
outcomes (SQ and Cap, respectively).

Notice that we have three outcomes in the strategic
model (SQ, Cap, War), but only two outcomes (War,Not
War) in the available data. Before we can assess the mis-
specification of a typical logit or probit model in this
context, we need to transform the strategic model in
Figure 1 into an equivalent binary model—one where the
probabilities over the aggregated outcomes are consistent
with the strategic model.

We illustrate this transformation using Figure 2.
Figure 2 shows a progression of models in which the
probabilities are consistent with the underlying strate-
gic model in Figure 1, here assuming � is distributed
Type 1 Extreme Value. Figure 2(a) displays the multi-
nomial logit model with the same number of outcomes
and the same outcome probabilities as the strategic
model. In some ways it looks strange — and it should!
We have taken a two-player strategic model and aggre-
gated it into a single decisionmaker model, where the
dyad appears to be the “decisionmaker.” Nevertheless,
the single decisionmaker model in Figure 2(a), with the
accompanying specification of the utilities, is equiva-
lent to the strategic model in terms of the outcome
probabilities.

Now consider a dependent variable yS that is coded
yS = 1 if War occurred and yS = 0 if either SQ or
Cap occurred. If we aggregate the SQ and Cap out-
comes in Figure 2(a), the resulting binary model can
be expressed as in Figure 2(b). Again, even though
Figure 2(b) is a binary model, the probabilities are en-
tirely consistent with (i.e., derived from) the strategic
data-generating process. We will use the binary model in
Figure 2(b) as our referent model for the remainder of this
section.

FIGURE 2 Multinomial and Binomial
Equivalents of the
Strategic Model.
Figure (2a) is a multinomial
logit model that produces
outcome probabilities that are
equivalent to the strategic
model’s. Figure (2b) is the
equivalent binomial model and
will be used as the referent
model for comparison with the
typical logit regression. The Vk

terms are based on the strategic
model’s utilities. Notice that
the resulting binary model
looks nothing like a typical
logit regression.

( )ba VV ee 11ln + V3 V4 

 psq pcap  pwar 

SQ Cap War 

(a) Equivalent MNL Model

0 ( )311ln4
VVV eeeV ba ++−

SQ or Cap War 

 pwar  psqcap 

(b) Equivalent Logit Model

V1a = U1(SQ ) + U2(Cap)

V1b = U1(SQ ) + U2(W a r)

V3 = pr U1(Cap) + pr U1(W a r) + U2(Cap)

V4 = pr U1(Cap) + pr U1(W a r) + U2(W a r)

Before proceeding, we should point out that many
recent studies use multinomial logit or probit to model
the strategic decisions of dyads in crises. These studies as-
sume the dyad makes a “decision” among a number of op-
tions, including war. However, no consideration is given
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in these studies to how one would aggregate an underlying
multiplayer strategic model into a dyad-as-player model.
The above exercise of aggregating the strategic model into
equivalent multinomial and binomial logit models illus-
trates two important points. First, the specific functional
form of the aggregated models depends on the specifi-
cation of the original strategic model (e.g., the number
of players, their sequence of choices, and their utilities)
and on which actions or outcomes are aggregated. Second,
the resulting specifications of the aggregated multinomial
and binomial logit models look nothing like the specifica-
tions in typical multinomial and binomial logit analyses.
In fact, unless the researcher can prove otherwise, one
should generally expect such aggregation of strategic be-
havior to be nonlinear in both the regressors and param-
eters. The fact that past studies using multinomial logit
and probit all employ traditional X B L specifications for
the “utilities” should be a red flag concerning the effects
of strategic misspecification on the conclusions reached
in those studies.

Specification Error

We can now express the model in Figure 2(b) with its
equivalent latent variable representation, and then use
that in our analysis of specification error. Figure 3 dis-
plays three latent variable specifications for y∗. The first,
y∗

S , displays the latent variable equation implied by the ref-
erent strategic model, having substituted the utility spec-
ification of Figure 1(b). At the expense of repeating the
obvious, y∗

S represents the true strategic data generating
process. If one believed the strategic model generated the
data and only had this aggregated binary data on hand,
then y∗

S is the binary model one should employ.
The regression equation for y∗

S is clearly not a typical
logit regression, which is denoted by y∗

L in Figure 3. The
action probabilities pr and pr are nonlinear functions of
X24 and �24. Similarly, the RS term is a nonlinear function
of all of the regressors and coefficients.

To demonstrate the misspecification more clearly, we
replace pr , pr , and RS with Taylor series approximations,
here second-order and taken about zero. The resulting re-
gression equation is denoted by y∗

T in Figure 3.7 The cross-
product and higher-order terms, along with the second-
order Taylor series remainder �3, are collected into the RT

term to help in comparing the models. Note that, as spec-

7We could have also taken the Taylor expansion of the entire equa-
tion y∗

S . However, it was mathematically more convenient to take
the Taylor expansion of only pr and pr . The general result is the
same either way.

ified, the Taylor model y∗
T is equivalent to the strategic

model y∗
S —it is simply written in a different way.

Comparing the Taylor and logit regressions, y∗
T and

y∗
L , respectively, we see that both contain a constant

and first-order terms (i.e., X13, X14, and X24). The most
important difference, however, is that the Taylor regres-
sion contains the RT term, which includes the second-
order and higher effects, whereas the typical logit regres-
sion does not. If the strategic model generated the data,
then the second-order and higher terms in RT are rele-
vant variables—and the logit regression omits these vari-
ables. Hence, the typical logit regression will induce omitted
variable bias in the estimated parameters of the included
variables.

The logit equation y∗
L is essentially a first-order Tay-

lor expansion, minus a Taylor expansion remainder �2.
It is an attempt to capture the linear effects of the
variables. However, if the data is generated by a nonlin-
ear (e.g., strategic) process, then the Taylor remainder �2

becomes a relevant variable, which is omitted from the
equation. The resulting omitted variable bias means that
not even the linear effects are correctly estimated. In gen-
eral, the greater the nonlinearity implied by the strate-
gic model, the larger the Taylor series remainder �2 and
the greater the omitted variable bias in the typical logit
regression.

One might be tempted to look for salvation in a lack
of correlation between the included and excluded regres-
sors. However, the excluded higher-order terms are all
functions of the included first-order terms, and there-
fore some correlation will likely be present. In fact, as
Yatchew and Griliches (1985) demonstrate for probit, al-
though correlation of the included and excluded vari-
ables will exacerbate the omitted variable bias, it is not
necessary for bias to result. It is, therefore, unlikely that
any of the effects will be correctly estimated by logit
even for this simplest of models. Given this, any in-
ferences based on the estimated parameters or on the
predicted probability of War will almost certainly be
invalid.

Characterizing the Specification
Error in the (Almost) Ideal Case

We have just demonstrated that strategic misspecifica-
tion in discrete choice models is equivalent to omitted
variable bias. We did so based on a binary aggregation of
the outcomes. The strategic equation in Figure 3 shows
that the relationship between the dependent variable
and the regressors in that case is nonlinear. In fact, it
is actually nonmonotonic as well. Some might therefore
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FIGURE 3 Strategic, Taylor, and Logit Models of War.
The figure summarizes the three versions of y∗, representing the
likelihood that the attacker and defender will go to war with each
other. The first equation is the strategic model, derived from the
data-generating process. The second equation is the Taylor series
approximation of the strategic model. The third equation is the
model commonly estimated to test hypotheses concerning X13, X14,
and X24. RS is a nonlinear term that results from aggregating the
original strategic model into a binary model. RT is the higher-order
remainder for the Taylor series approximation. Notice that the
commonly estimated Logit model omits these relevant terms.

argue that we have stacked the deck against typical logit
or probit models and that more sophisticated researchers
would only use logit or probit to analyze data where they
believed the dependent and independent variables were
monotonically related.8 Although we would argue (and
have argued) that countless scholars have implicitly con-
ducted analyses where the misspecification is similar to
that in the previous section, in this section we examine
whether the typical logit or probit model is misspecified
in the “ideal” case—when the strategic binary dependent
variable is monotonically related to all regressors.

Specification Error

Consider again the simple strategic model in Figure 1(b).
Suppose now that we do not have data on the defender’s

8Roughly speaking, Y is a monotonically increasing (decreasing)
function of X if, holding all other variables constant, Y always
increases (decreases) as X increases. Y and X have a nonmonotonic
relationship if, holding all other variables constant, as X increases,
Y sometimes increases and sometimes decreases.

actions, but only on whether the potential attacker de-
cided to attack or not (A vs A). We might want to
examine the relationship of deterrence success to sub-
stantive explanatory variables that we believe affect the
incentives of both states to engage in conflict, again rep-
resented by X13, X14, and X24. As already noted, we
constructed the model so that the attacker’s choice prob-
abilities pa and pa are monotonically related to each of
the regressors.

To analyze whether the typical logit or probit model
is misspecified in this situation, we again recast the model
in an equivalent latent variable form. Suppose our ob-
servable dependent variable is coded as y = 1 if player
1 attacks (A) and y = 0 if player 1 does not attack(A).
Recall that player 1 will attack if U ∗

1 (A) > U ∗
1 (A). Let

y∗
S = U ∗

1 (A) − U ∗
1 (A). Then we observe y as

y =
{

1 if y∗
S > 0

0 if y∗
S ≤ 0

, (11)

where the S subscript denotes the strategic latent variable
equation. Substituting Equations 9 and 10 into y∗

S and
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then the utilities from Figure 1(b), the strategic equation
becomes that shown at the top of Figure 4, where � =
�a − �a .

Now consider the typical binary choice regression,
y∗

L , displayed in the third equation in Figure 4. Obviously,
the functional form differs between the two regression
models. However, it is not clear how y∗

L and y∗
S relate to

each other—e.g., how the estimators of �i j and Bi j L re-
late to each other or how the regressions differ in their
predicted probabilities. The traditional y∗

L is linear in the
explanatory variables and coefficients. In contrast, X24�24

enters y∗
S through pr and pr as part of the expected util-

ity calculation. Although it appears that we have a func-
tional form misspecification, it is not obvious how bad
it is. Rather than simply showing that the structural mis-
specification is equivalent to omitted variable bias, we will
instead characterize it in a slightly different way, so we can
assess just how bad the specification error will be under
different conditions.

Since the main problem in comparing the two models
is the nonlinear pr and pr terms in y∗

S , we use a first-order
Taylor series expansion of pr and pr about the mean of
X24. Let mi j be the mean of variable Xi j . Then we can
write Xi j = mi j + ui j , where ui j is the deviation of Xi j

from its mean, with E [ui j ] = 0. Greatly abusing nota-
tion, we denote pr and pr evaluated at m24 by pr and pr ,
respectively.9 With the Taylor expansions of pr and pr ,
we can rewrite the strategic equation as its Taylor series
equivalent, y∗

T . This is displayed as the second equation in
Figure 4, with its coefficients Bi j and error term � rewrit-
ten at the bottom of Figure 4 in terms of the data and
parameters.

To restate the obvious yet again, y∗
T represents the

strategic data-generating process. It also happens to be in
a form that is comparable to the first-order linear model.
Therefore, we can now make a number of statements
concerning the effects of estimating the first-order lin-
ear model y∗

L , when the data has been generated by our
simple strategic model y∗

T .

When will strategic misspecification not be a problem?
Perhaps the first question we should ask is: when will
strategic misspecification not be a problem in our ex-
ample? Consider the Taylor coefficients Bi j and the er-
ror term � at the bottom of Figure 4. Notice that when
�24 = 0, the Taylor model reduces to y∗

T = 1
2 �13 X13 +

1
2 �14 X14 + �. This is simply a linear latent variable model
of the same form as the linear logit model, so there is no
misspecification. In terms of the underlying choice model,
�24 = 0 implies that X24 has no effect on the attacker’s cal-

9In other words, pr = pr |X24=m24 and pr = pr |X24=m24 .

culations. Since X24 enters the attacker’s decision through
its assessment of the probability that the defender will re-
sist, this implies that the attacker does not condition her
choice on the defender’s expected behavior. To put it sim-
ply, there is no strategic misspecification if there is no
strategic interaction.

If, on the other hand, the attacker takes into account
how the defender will respond if attacked, but we estimate
a typical binary choice model, then the statistical model
will be structurally inconsistent with the data-generating
process and some form of misspecification will exist. To
assess this misspecification, we will assume �24 �= 0 for
the remainder of the article.

Distributional misspecification and inconsistent esti-
mates. Consider now the “new” error term, �, in the
Taylor regression. Perhaps one of the more glaring prob-
lems is that � and � cannot have the exact same distri-
bution. As Figure 4 shows, � is composed of two compo-
nents: the original error term �, and some function of the
ui j , determined by the underlying strategic model.

The first potential problem arises if the explanatory
variables are correlated. Recall that correlated explanatory
variables implies the ui j are correlated (by definition of
the ui j ). It is straightforward to show that if the ui j are
correlated with each other, then the Xi j will be correlated
with �. Estimated parameters will therefore be biased and
inconsistent.

Let us now assume the ui j are independent of � and of
each other, then E (�) = 0 and the explanatory variables
will be uncorrelated with �. Denote the variances of �, ui j ,
and � as �2

� , �2
i j , and �2

� , respectively. Then

�2
� = p2

r p2
r

(
�2

13�2
13 + �2

14�2
14

)
�2

24�2
24 + �2

� . (12)

The second potential problem is that � is an additive and
multiplicative function of � and the ui j . Because of this,
there is no reason to expect that � and � will even share
the same density but with different variances. Estimated
parameters will therefore also likely be inconsistent due
to this.

Finally, because � is composed of both � and the ui j

terms, �’s variance will always be larger than �’s. As Equa-
tion 12 displays, the difference between �’s and �’s vari-
ances will depend on the variance in the regressors and
on the magnitude of the �i j parameters. The larger the
variances of the regressors and the greater the magnitude
of the parameters, the greater will be the difference in
the variance of � versus �. In examining omitted variable
bias in probit, Yatchew and Griliches (1985) note that this
form of misspecification can affect hypothesis tests.

Having said this, the distributional misspecification is
a matter of degree. If the ui j are symmetrically distributed
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FIGURE 4 Strategic, Taylor, and Logit Models of Deterrence
Success vs. Failure.
The figure summarizes the three versions of y∗, representing
the attacker’s propensity for attacking. The first equation is
the strategic model, derived from the data-generating
process. The second equation is the Taylor series
approximation of the strategic model. The third equation is
the model commonly estimated to test hypotheses
concerning X13, X14, and X24. The remaining equations give
the values of the Taylor coefficients (B0, B13, B14, B24) and
disturbance � in terms of the original parameters and data.
Here, mi j is the mean of explanatory variable Xi j , p j is the
defender’s probability p j evaluated at m24, and ui j is the
deviation of Xi j from its mean mi j . The Logit
misspecification can be assessed based on assumptions
concerning the parameters and data.

and do not have a large variance relative to �, then � will
tend to be distributed similarly to � and distributional
misspecification will have less effect on inferences.

Consistent estimates, but wrong inferences. Although
the preceding would seem to offer enough indictment
of strategic misspecification, of more interest to us is
how the structural misspecification affects our inferences
when the parameters are estimated consistently—or at
least close to it. For the sake of examining other aspects
of strategic misspecification, we will now give the typical
first-order linear specification the “benefit of the doubt”
and assume that the distributional misspecification is neg-
ligible. In this case, the Taylor regression y∗

T takes the same
functional and distributional form as the logit regression
y∗

L . As usual, the regressor and variance parameters can
only be estimated to scale. When � is logistic, consis-
tent estimation (e.g., MLE) of the logit parameters will

converge to

B0L = B0√
3

�2 �2
�

B13L = B13√
3

�2 �2
�

B14L = B14√
3

�2 �2
�

B24L = B24√
3

�2 �2
�

. (13)

If we now substitute the equations for the Bi j at the bot-
tom of Figure 4 into the above equations, we can de-
termine the effects of using the logit model with the
deterrence data.

Interpreting the sign and magnitude of regression
coefficients are two common practices in political science
research. As B13 and B14 show (Figure 4), the effects of
X13 and X14 will tend to be estimated correctly by the
logit model, at least in terms of the direction of their
effect on the attacker’s decision. In contrast, inferences
concerning X24 will depend on idiosyncracies of the data.
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In particular, the estimate of B24L is a factor of �14m14 −
�13m13. So, for example, if we center our data around
zero, which is not uncommon, traditional logit or probit
would lead us to believe that X24 has no effect on whether
the attacker chooses to attack. By construction, we know
that inference is false. Similarly, if �14m14 < �13m13, then
logit and probit would lead us to believe that X24 has the
opposite effect it actually does.

Finally, because the parameter estimates in any of
these choice models (strategic or nonstrategic) are diffi-
cult to interpret by themselves, analysts typically interpret
the estimated probabilities for a better understanding of
the relationship between the dependent variable and the
regressors—not only for the direction of the relationship
but the relative magnitude. We would, of course, like to
know the extent to which strategic misspecification affects
the estimated probabilities. Although the misspecification
can be expressed in a fairly general form, its mathematical
complexity does not allow for a simple (and useful) ana-
lytical expression. We therefore provide the reader with a
sense of the misspecification in the following example.

Monte Carlo Example

To demonstrate that the simplifying assumptions of the
Taylor series approximation are not unreasonable and
to show how the predicted probabilities can differ be-
tween the strategic and logit models, we present the re-
sults of a simple Monte Carlo analysis. Each replica-
tion of the analysis involved generating N = 2000 ob-
servations based on the behavioral assumptions of the
strategic deterrence model in Figure 1. The explanatory
variables were randomly drawn from a uniform dis-
tribution on the interval [−2, 2], and the coefficients
were set to �13 = �14 = �24 = 1. The � disturbances in
Equations 7–10 were drawn from a Type 1 Extreme Value
distribution with variance �2/6, resulting in a logistic �

with variance �2/3. The strategic and logit regressions
were run and their estimates saved. These steps were
replicated 2000 times to form densities of the parame-
ter estimates.

Parameter estimates. The densities (not shown here) of
the strategic estimates were all approximately normal and
centered around one, indicating that the strategic model
was able to recover the correct estimates on average.10

What are our expectations concerning the logit estimates
using this data? It turns out that �fairly well approximates
a logistic distribution in this case, with approximately the

10Plots of the densities for all parameter estimates in this section
are available upon request from the authors.

same variance as �. Therefore, distributional misspecifi-
cation is not a big concern. Next, note that because the
explanatory variables are uniformly distributed between
−2 and 2, m13 = m14 = m24 = 0. Given the true parame-
ter values and the characteristics of the data, the logit esti-
mators should converge to B0L = 0, B13L = .48, B14L =
.48, and B24L = 0. In fact, our Monte Carlo analysis pro-
duced mean estimates of �̂0L = .000, �̂13L = .49, �̂14L =
.49, and �̂24L = .000. Again, the direction is correct con-
cerning the variables in the attacker’s utilities. However,
researchers would incorrectly infer that X24 has no effect
on the attacker’s decision to attack. Moreover, although
the signs of �̂13L and �̂14L are correct, we will next show
that the picture is more nuanced than the logit model
allows.

Estimated probability of attacking. To understand what
the parameter estimates imply for the estimated probabil-
ities, Figure 5 displays the attacker’s estimated probability
of attacking based on (a) the logit model and (b) the
strategic model, both as a function of X24 and X13.11 In
both cases, the third variable, X14, is held constant at its
mean (zero).

Turning to Figure 5(a), we see that the researcher em-
ploying the logit model would infer from the estimated
probabilities that X24 has no effect on the attacker’s choice.
No matter what X13’s value is, changing X24 has no effect
on the probability of attacking—the probability remains
constant and the first-difference is zero. The researcher
would also conclude that increasing X13 always increases
the probability of attacking, and by the same amount re-
gardless of the value of X24.12

Now consider the estimated probabilities in Figure
5(b). The strategic model paints quite a different pic-
ture. Moreover, how X13 and X24 affect the probability
of attacking is actually quite intuitive. Recall the strategic
model as specified with the regressors in Figure 1(b), and
recall that the graph was produced holding X14 at its mean,
zero. In the context of the strategic model, the observable
utilities for the attacker are U1(SQ) = 0, U1(Cap) = X13,
andU1(War) = 0. For the defender, they areU2(Cap) = 0
and U2(War) = X14.

To interpret the effects of X13 and X14, it may be help-
ful to consider the three regions (A, B, C) in Figure 5(b)

11The graphs are based on exactly the same Monte Carlo as pre-
viously detailed, but with the Xij drawn from U[−10, 10] instead
of U[−2, 2]. All inferences remain the same as before, including
those pertaining to the estimated probabilities. The larger interval
for the Xij simply emphasizes the point made here. Plots for both
sets of Monte Carlos are available upon request from the authors.

12Although not shown here, logit produces similar inferences when
the plot is a function of X14 and X24, holding X13 at zero.
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FIGURE 5 Estimated Probabilities of Attacking.
Figures (a) and (b) display the estimated probability that the attacker will attack, based on the logit
and strategic models, respectively. The probabilities are plotted as a function of X13 and X24,
holding X14 at its mean (zero). As (5a) displays, logit would lead us to believe that X24 has no effect
on the attacker’s decision, which contrasts with the (true) strategic model (5b). Figure (5b) also
shows that the direction of the effect of X24 depends on X13. The magnitude of the logit model’s
error is also fairly high for certain values of (X13, X24): at times off by more than .4.

(a) Logit (b) Strategic

that are “almost flat.” Region A reflects a situation where
the defender’s (observable) utility for war (X24) is much
lower than his utility for capitulation. In this case, he will
likely capitulate. The attacker knows this, and her utility
for capitulation (X13) is much higher than her utility for
the status quo. Therefore, in region A, the attacker will
almost certainly attack. Region B again reflects a situation
where the defender will back down if attacked. However,
here the attacker’s utility for the defender’s capitulation
is actually much lower than her utility for the status quo.
Therefore, there is almost no chance the attacker will at-
tack. Finally, consider region C. In this case, the defender’s
utility for war is very high, and he will likely defend himself
if attacked. Knowing this, the attacker then has a choice
between the status quo and war, both of which have an
observable utility of zero. Because the observable utilities
are so close (relative to the size of the variance), the analyst
is almost completely uncertain as to whether the attacker
will attack or not.

The effects of X13 and X24 can now be thought of
as how they change the equilibrium probabilities as the

utilities move from one extreme to the other. What is the
effect of X24? It depends. When X13 > 0, then increasing
X24 decreases the probability of attack. On the other hand,
when X13 < 0, increasing X24 increases the probability of
attack. What is the effect of X13? Again, it depends. In
general, increasing X13 always increases the probability of
attack. However, when X24 is small, X13 has a large effect
on the probability, whereas when X24 is large, X13 has
very little affect on the probability. Finally, it should be
remembered that, because this is an equilibrium model,
the effect of each variable depends on the values of the
other variables. We have demonstrated how X13 and X24

affect the probability of attack when X14 is held constant
at zero. The relationship may be very different when X14

is held constant at a different value.
To summarize, in contrast to the researcher using a

logit model, a researcher employing the strategic model
would conclude that (1) X24 affects the probability of
attacking, (2) the value of X13 affects the direction of
X24’s effect, (3) X24 affects the magnitude of X13’s ef-
fect. It should also be noted that the difference between
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the logit and strategic estimated probabilities is off at
times by more than .4. Moreover, the researcher em-
ploying the strategic model would be able to interpret
her results in the context of a causal, equilibrium-based
model.

The Monte Carlo examples presented here were in-
tended to provide a concrete demonstration of the analy-
tical results previously derived. They also suggest that the
simplifying assumptions made in characterizing the spec-
ification error may not be especially egregious. In fact, as
we proceeded through our analysis of the specification
error, we repeatedly gave logit the benefit of the doubt.
When those assumptions are violated, the specification
error should only be worse. Finally, the graphs in Figure 5
raise another important issue, one concerning functional
form and hypothesis specification and testing. Although
the topic deserves a separate monograph of its own, it
is relevant to the analysis here, so we provide at least a
cursory discussion of it in the next section.

Theories, Functional Form,
and Hypothesis Testing

Thus far, we have framed the problem under considera-
tion as one of structural or functional form misspecifi-
cation. To most practitioners, this may have previously
seemed to be a rather arcane technicality, since so little at-
tention is generally paid to it in political science methods
training. However, functional form specification is also
intimately related to hypothesis specification and test-
ing. We have argued that greater attention should be paid
to substantive theory and its implications for functional
form. Yet, the converse is true as well: greater attention
should be paid to the implications of our hypotheses con-
cerning the functional form of our statistical model and
its relationship to the theories we think we are testing.

The Functional Form Implied
by Hypotheses

In an ideal world, a researcher would have a well-specified
theory. Hypotheses would naturally follow from the the-
ory. And the theory would suggest the appropriate func-
tional form for the statistical model used to test the hy-
potheses. All three—theory, hypotheses, and statistical
model—would be consistent with each other. When they
are not consistent with each other, it raises a red flag that
a serious problem exists in the research design. After all,
hypotheses are supposed to reflect aspects of a theory to be
tested, and the statistical model must reflect the hypothe-

ses in order to actually test them. Thinking about it this
way—where a well-specified theory provides a functional
form that drives the hypotheses and statistical model—
the role of functional form in hypothesis specification and
in the statistical model seems obvious.

What may not be so obvious are the implications of
the above when a strong theory does not exist to specify
the functional form and hypotheses. Most political sci-
ence research still falls into this category. Often scholars
invest a great amount of time thinking through the logic
of what they are studying—in a very real sense, building
models in their minds. However, it remains that, because
the model is not written formally (e.g., using mathemat-
ical equations or formal logic notation), the paths to the
conclusions reached and the relationships between the
various parts of the model often remain unclear.

Almost invariably in this case, hypotheses are
specified as unconditionally monotonic relationships—
relationships where as one explanatory variable increases,
the dependent variable always increases (or always de-
creases), regardless of the values of the other explanatory
variables. Indeed, often a laundry list of unconditionally
monotonic hypotheses is presented. A simple example re-
lated to international relations might be:

H1: The stronger a nation is, the more likely it is to
enter into war.

H2: The more democratic a nation is, the less likely
it is to enter into war.

Taken together, and in the context of the typical logit
or probit model, hypotheses H1 and H2 imply that the
functional relationship between the regressors and the
dependent variable is unconditionally monotonic. The
implied model is that the stronger a nation is, the more
likely it is to go to war, regardless of how democratic it is;
and, similarly, that the more democratic a nation is, the
less likely it is to go to war, regardless of how strong it is.

If scholars truly believe the theory being tested is
consistent with the jointly unconditionally monotonic
relationships, then the common first-order X B L func-
tional form is exactly what they should use. However,
many if not most theories analyzed in political science
suggest more complicated relationships. The problem is
that many scholars automatically employ a laundry list
of monotonic hypotheses and the first-order X B L func-
tional form, without realizing the implied limitations
concerning the theory being tested and the effects of mis-
specification on their inferences.

Although it is beyond the scope of this article to assess
why this is the case, two rationales are frequently offered.
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The first is the belief that the first-order X B L specifi-
cation is somehow a “general” specification. Apparently
because of its simplicity (and perhaps widespread use?),
many seem to view the first-order X B L functional form as
a more general functional form, where researchers can at
least correctly estimate the first-order effects of variables.
This is incorrect. As we have demonstrated, in the context
of parametric estimation (whether MLE or Bayesian), it is
certainly not a more general specification—it is a specific
structural specification, which is quite restrictive. Indeed,
when the data-generating process is not first-order lin-
ear, then it is a misspecification, and our inferences are
affected.

To further illustrate why unconditional monotonic-
ity is restrictive, consider the following two plausible sit-
uations that violate it. In the first, suppose (1) that war
always decreases as democracy increases, regardless of the
strength of the nation, but (2) that greater strength leads
to less war for democratic regimes and to more war for au-
thoritarian regimes. In this case, war and democracy are
still unconditionally monotonically related, but war and
strength are now conditionally monotonically related—i.e.,
war and strength are monotonically related for any given
level of democracy, but the direction of that relationship
changes depending on the level of democracy. Now con-
sider a second example, where the likelihood of war is
moderate for authoritarian regimes, very high for regimes
that have some moderate level of democratic institutions,
but very low for those nations with the highest level of
democracy. In this case, war is a nonmonotonic function of
democracy. All of these relationships seem plausible, but
are inconsistent with the typical first-order linear model.

The second rationale for the laundry-list approach is
that the researcher lacks a strongly specified theory to pro-
vide a functional form. In many ways, this rationale seems
reasonable. If one lacks a well-specified theory prior to
conducting the empirical analysis, what rationale is there
for specifying a complicated relationship between the de-
pendent variable and regressors? Historically, researchers
without a firm theoretical justification for including in-
teraction and higher-order polynomial terms have risked
accusations of data mining. The lack of a well-specified
theory is then held up as an excuse for the list of mono-
tonic hypotheses.

Ironically, within this category there exists a large
group of positivist scholars who recognize the impor-
tance of competition, incentives, and institutions, and
who use statistical analysis to uncover general explana-
tions (or “processes“) of political behavior. However, the
lack of a well-specified theory is not a “get out of jail
free” card. Because the hypotheses and statistical model
are formally specified, but the theory is left loosely speci-

fied, one can only conclude one of two things: (1) either
the statistical model and hypotheses are inconsistent with
whatever (more complicated) theory the researcher has
in mind, or (2) they are consistent with a theory that only
allows for unconditionally monotonic relationships. In
other words, the researcher in this position must either
accept that the statistical model does not reflect the the-
ory or that her theory is far more simplistic and restrictive
than she might want to admit.

Finally, it is often conjectured that typical logit or pro-
bit techniques should be fine for testing models where one
can show (e.g., via an analysis of comparative statics) that
the relationship being analyzed is monotonic. However,
as we noted previously, the received wisdom requires the
important qualification that the relationship is not just
monotonic, but unconditionally monotonic. When the
data-generating process implies unconditionally mono-
tonic relationships between the regressors and dependent
variable of interest, then the first-order X B L specification
is appropriate. Nevertheless, it is incumbent upon the re-
searcher to determine (i.e., prove) that the theory implies
such a relationship before using that specification.

Is Unconditional Monotonicity Likely
the Rule or the Exception?

If most relationships were unconditionally monotonic,
then, given current practices, researchers would have little
concern about functional form. Unfortunately, in many
areas unconditional monotonicity may be the exception,
rather than the rule.

Consider again our simple model in Figure 1(b). It is
easy to show that, using the least restrictive definition of
monotonicity, all action probabilities ( pa , pa , pr , pr ) are
monotonic in all of the regressors. As we noted before, this
would seem to be an ideal situation for the argument that
monotonic comparative statics are sufficient justification
for the use of traditional logit and probit specifications.
Then why did we find misspecification?

pr and pr are functions only of X24 and are indeed
unconditionally monotonic in X24.pa and pa are also un-
conditionally monotonic in X13 and X14. However, pa

and pa are conditionally monotonic in X24. Assuming our
data consisted of the attacker’s actions, the typical laun-
dry list of unconditionally monotonic hypotheses would
be inconsistent with the data-generating process, and the
first-order X B L regression, as a reflection of the hypothe-
ses, would be misspecified. Indeed, that is exactly what we
saw in the third section; and Figure 5(b) clearly displays
the conditional monotonicity of pa and X24: for X13 < 0,
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the probability of attack monotonically increases in X24,
whereas for X13 > 0, it monotonically decreases in X24.

Now suppose our data represented whether war oc-
curred or not (i.e., War vs. {SQ or Cap}). Again, it is easy to
show that ps q is unconditionally monotonic in X13 and
X14, but conditionally monotonic in X24, and that pcap

and pwar are unconditionally monotonic in X13 and X14,
but nonmonotonic in X24. Even when each player’s indi-
vidual choice probabilities are monotonic in the regres-
sors, the outcome probabilities may be nonmonotonic in
the regressors. Again, this result is inconsistent with the
unconditional monotonicity assumption one often finds
in lists of hypotheses.

The deterrence model in Figure 1 is one of the very
simplest strategic models possible, and, yet, a number
of the relationships described by it are nonmonotonic
or conditionally monotonic. It does not seem unreason-
able to assume that much of the behavior we analyze
in political science is at least as complex, if not more,
resulting in similar nonmonotonic and conditionally
monotonic relationships. This would imply that the tra-
ditional practice of specifying hypotheses as a list of un-
conditionally monotonic relationships may be woefully
inconsistent with much of the political behavior we ana-
lyze, let alone the loosely-specified theories we think we
are testing.

Concluding Remarks

To recap, we have characterized the strategic misspecifi-
cation that arises from using the typical logit or probit
specification—one where the latent dependent variable
is a linear function of the parameters and a first-order
function of the explanatory variables. In the interest of
keeping the analysis as simple as possible and of creat-
ing ideal conditions for those interested in applying logit
to comparative statics, we have constructed the “simplest
strategic model possible” and have ensured that the rela-
tionship between all action probabilities and the regres-
sors is monotonic.

Even under these conditions, the typical first-order
linear specification is problematic. Ultimately, strategic
misspecification is a functional form problem. Strategic
models often imply a nonlinear and possibly nonmono-
tonic relationship between the latent dependent variable
and the independent variables, in contrast to the first-
order X B L specification commonly found in multino-
mial and binomial logit and probit models. We have
shown that as a functional form misspecification, strategic
misspecification is equivalent to omitting relevant vari-

ables, where the omitted variables are nonlinear higher-
order terms associated with expected utility calculations,
and often with data aggregation as well.

So what is a poor researcher to do? Our use of Taylor
series expansions as approximations for the strategic re-
gressions suggests one possible solution to the functional
form problem: run polynomial regressions with interac-
tion terms. Data-mining critiques aside, there are at least
two other problems with this approach. Most problematic
is that increasing the order (and, therefore, the extent to
which the polynomial approximates the true functional
form) combinatorially increases the number of param-
eters that must be estimated, becoming impractical to
implement with only a relatively small number of inde-
pendent variables. For example, a typical first-order spec-
ification with six variables requires that we estimate only
seven parameters—i.e., the coefficients for each indepen-
dent variable, plus the constant. On the other hand, the
full second-order specification for those same six vari-
ables requires that we estimate 28 parameters, and the
third-order specification requires that we estimate 84 pa-
rameters. Secondly, as defined here, a polynomial regres-
sion really is an exercise in curve fitting—i.e., of cor-
rectly approximating the strategic “curve,” in order that
functional form misspecification not bias estimates. As
such, although it may allow us to estimate the functional
form correctly, it does not allow us to say anything about
causality.

One approach would be to develop better theory and
then derive hypotheses and statistical models from that
theory, thereby ensuring consistency of one’s theory and
statistical analysis. Another approach would be to use
“theory-less” statistical techniques that do not impose so
much structure on the analysis. The benefit of the struc-
tural approach is that a particular causal relationship is
analyzed. A problem with it is that, if the structure is
misspecified, then specification error results. The benefit
of the nonstructural approach is that (by definition) it
does not rely on structural specification. The problem is
that it has no theoretical (or causal) purchase. Still an-
other approach would be to use both methods iteratively:
using nonlinear techniques to determine the functional
relationship of dependent and independent variables, and
then developing and estimating structural models that are
informed by the previous stage. In our opinion, the worst
situation would be to continue the current practice of
using the very simplest of structural statistical models—
the first-order X B L specification—to analyze behavior
that we believe a priori cannot be consistent with that
specification, and which we now know produces invalid
inferences.
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