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missing from much empirical analysis in the field. Typical applications of logit and probit to theories

1 Ithough strategic interaction is at the heart of most international relations theory, it has largely been

of international conflict generally do not capture the structure of the strategic interdependence
implied by those theories. I demonstrate how to derive statistical discrete choice models of international
conflict that directly incorporate the theorized strategic interaction. I show this for a simple crisis interaction
model and then use Monte Carlo analysis to show that logit provides estimates with incorrect substantive
interpretations as well as fitted values that can be far from the true values. Finally, I reanalyze a well-known
game-theoretic model of war, Bueno de Mesquita and Lalman’s (1992) international interaction game. My
results indicate that there is at best modest empirical support for their model.

(1954) to Kissinger (1994) and Kagan (1995) all

detail the machinations of state leaders trying
to achieve their foreign policy goals through sometimes
peaceful but often violent means. Not surprisingly,
most international relations theories—especially those
of international conflict—assume that states behave
strategically. One might go so far as to say that strategic
interaction is the defining characteristic of interna-
tional relations.

In its most general form, strategic choice requires
only that a state (or substate actor) (1) have goals and
(2) in attempting to achieve them condition its behav-
ior on the expected behavior of others. For jointly
strategic interaction between two or more states, there
also must be some intersubjective recognition of each’s
options and goals and subsequent interdependent con-
ditioning of behavior. These goals can be as (not so)
simple as mere survival or as grand as world domina-
tion. The importance of strategic interaction lies in the
interdependence of decisions it creates among the states
in the international system.! States do not act in a
vacuum. Decisions to engage in arms production, enter
into alliances, and go to war are not independent of the
expected behavior of the other states in the system.
Their calculations are based on what they expect other
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nations are currently planning to do or how they may
respond to particular actions.

A wide array of theories falling under the realist,
neorealist, and neoliberal rubrics make the above
general assumptions. In their various manifestations,
theories about power balancing, war, deterrence, alli-
ances, crisis bargaining, and cooperation all assume
that state leaders behave strategically. A large subset of
these have outcomes that can be thought of as resulting
from the strategic interaction of states who make
choices over discrete sets of options. Examples of
strategic discrete choices include whether to use force
against another state; whether to give in to a deterrent;
and whether to balance, bandwagon, or remain neutral
in the face of a rising power.

Whether specified in prose or in math, the purpose
of such theories generally is to make explicit the
structure of the often very complex strategic interac-
tion and to explain the outcomes we observe.? Yet, if
game theory has taught us anything, it is that the likely
outcome of such situations can be greatly affected by
the sequence of players’ moves, the choices and infor-
mation available to them, and the incentives they face.
In short, in strategic interaction, structure matters.
Because of this emphasis on causal explanation and
strategic interaction, we would expect that the statisti-
cal methods used to analyze international relations
theories also account for the structure of the strategic
interdependence. Such is not the case. This article is an
attempt to remedy that—to build a bridge between
international conflict models and our statistical testing
of those models.

In the next section, I address more fully the problem
of traditional methods used to analyze discrete data,
especially binomial logit and probit. I then demon-
strate how to use a game-theoretic solution concept to
derive statistical strategic discrete choice models of
international conflict. To help make the concepts more
concrete, this technique is applied to a simple crisis
game very similar in structure to a number of models in
the international relations literature. Using the crisis
model, I generate Monte Carlo data and examine the
(in)ability of logit to model strategic interaction. Fol-

2 This stands in contrast to models whose primary purpose is to “fit”
the data or forecast well, without regard to causal explanation.
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lowing that, I reanalyze a well-known game-theoretic
model of war, the international interaction game of
Bueno de Mesquita and Lalman (1992). My results
indicate that the international interaction game does
‘not explain the variation in their data as well as
originally claimed. I conclude by identifying a number
of important areas for future research and suggest that
structure may be a double-edged sword for positive
international relations theory.

THE PROBLEM WITH TRADITIONAL
METHODS OF ESTIMATION

Until recently, international relations researchers using
quantitative methods had to make do with highly
aggregated event data on phenomena such as war
occurrence and military disputes. More than two de-
cades ago, the Correlates of War project provided war
occurrence data that was aggregated over all countries
in the international system and over five-year periods.
In the 1980s, the data were disaggregated to annual
counts over the entire system. Because of the type of
data available during this period, quantitative analyses
of war occurrence generally relied on count models,
most commonly the Poisson, but sometimes more
flexible models were used, such as the negative bino-
mial, hurdle Poisson, or generalized event count (King
1989a, 1989b, 1989c; Martin 1992).

More recently, the various event data sets have been
disaggregated to the nation-year, dyad-year, or monad-
dispute level. Typically, the disaggregation increases by
at least an order of magnitude the number of observa-
tions available in a data set. One selling point when
new (i.e., disaggregated) data are used is that infer-
ences made from these data sets are often thought to
be better, if only because of the increased number of
data points. Indeed, more observations generally are
better. For the more recent (primarily binary) event
data, however, most international relations scholars
automatically reach for logit or probit models (see, e.g.,
Bremer 1992; Bueno de Mesquita and Lalman 1988,
1992; Fearon 1994; Hagan 1994; Huth 1990; Huth,
Gelpi, and Bennett 1993; Kim and Bueno de Mesquita
1995; Kim and Morrow 1992; Maoz and Russett 1993;
Morgan and Campbell 1991; Morrow 1991; Raymond
1994; Russett 1993).

Consider the typical use of logit to analyze what is
assumed to be strategic interaction, generally among

more than two states.? The data are organized accord-.

ing to annual dyads of states for a given year. Depend-
ing on the study, the binary dependent variable may
denote whether the two states engaged in war that year
or whether deterrence was a success or failure. The
independent variables may include any mix of the
following: whether one or both states were democra-
cies, whether they were allies, the extent of mutual
trade, the balance of military capabilities, whether one
state was rising in capabilities, whether one or both
were major powers, whether they were geographically

3 Since my argument applies equally to both logit and probit, I
henceforth refer only to logit.
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contiguous, calculated expected utilities for war, or a
calculated probability of war (see previous citations).
With the dependent and independent variables speci-
fied, maximum likelihood estimation is conducted us-
ing logit. The effects of the regressors on the probabil-
ity of war or deterrence are analyzed, and the model
may be compared to others to test which is better at
explaining the outcomes.

We should be wary of such analysis for at least two
reasons.* First, if observed actions are the result of
(perhaps complex) strategic interaction, then it is un-
likely that a simple logit functional form will capture
the structure of that strategic interdependence—that
is, the set of states interacting, their sequence of
decisions, their options at decision points, the factors
that influence their incentives, and the equilibrium
effects of this interdependence on outcomes. Research-
ers have attempted to get around this by testing
observable implications of theories using such variables
as the concentration of military capabilities, indices of
power transition, expected utilities, or expected utility-
based probabilities of war. I will later show that a logit
functional form with such variables is still unlikely to
account for the structure and endogeneity of choices
for even a relatively simple two-nation strategic model.

Second, if the interaction involves N > 2 states at a
time, then not only is the strategic interaction reduced
to a logit functional form, but also the N-nation
interaction is also broken into dyads. In the typical
application of logit to models of conflict, observations
are assumed to be independent, conditional. on the
explanatory variables. Since time-series and cross-sec-
tional interdependence are generally never incorpo-
rated, each dyad is assumed to be completely indepen-
dent of any other.5 In effect, each N-nation interaction
becomes N(N — 1)/2 independent observations,
greatly expanding the size of the data set without
adding any additional information to it.

In sum, logit models of international conflict are
unlikely to capture the real or theorized structure of
strategic interaction. Moreover, as implemented, the
independence assumptions of the statistical models are
often inconsistent with strategic interdependence as-
sumptions of the theories. Indeed, these criticisms
apply not only to analyses of international conflict but
also to logit and probit analyses of any phenomenon
involving strategic interaction in international rela-
tions, comparative politics, or American politics. Be-
cause of this, we should expect, and I will later show,
that logit analysis of strategic interaction can lead to
parameter estimates with wrong substantive interpre-
tations: Fitted values and predictions of outcome prob-
abilities can be grossly incorrect, as can calculations of
the effects of variables on the changes in outcome
probabilities. We might also conjecture that breaking
the data set into dyads, thus possibly expanding it
without adding information, will affect standard errors

4 See also Smith 1997 for similar, independently developed argu-
ments.

5 For recent research on time-series cross-sectional analysis with
binary data, however, see Beck, Katz, and Tucker 1998.
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of estimates. I leave that question to future research. In
the rest of this article, I assume that strategic interac-
tion exists only between dyads, and I analyze solely the
effects of using a logit model when two states behave
strategically. To do this, however, we need a method
for incorporating the structure of strategic interdepen-
dence into statistical models of conflict.

ANALYZING STRATEGIC DISCRETE
CHOICE MODELS OF INTERNATIONAL
CONFLICT

Continuous-variable statistical methods for modeling
strategic interaction have existed for some time and
have been employed by international relations re-
searchers, particularly in analyzing arms races and
superpower reciprocity (see, e.g., Goldstein 1991;
Goldstein and Freeman 1990, 1991; McGinnis and
Williams 1989; Ward and Rajmaira 1992; Williams and
McGinnis 1988). Yet, surprisingly little has been done
in political science or economics to address the prob-
lem of strategic interdependence in discrete choice
models. Two recent works are the only efforts in
political science to address interdependence issues for
this type of data. Beck, Katz, and Tucker (1998) take a
binary time-series cross-sectional approach, using
panel and time-series techniques to account for the
interdependence between nations and over time. Their
approach is primarily data driven, that is, the goal is to
provide a method that is appropriate for binary data
and that allows cross-sectional and time-series interde-
pendence to be captured in the covariance matrix or
lagged dependent variables. Smith (1997) takes a
slightly more theory-driven approach, modeling con-
flict interdependence in militarized interstate disputes
using a “strategically censored” bivariate-ordered pro-
bit model. Indeed, Smith’s strategic data-censoring
mechanism takes us closer to fully modeling the stra-
tegic interaction that a theory might imply. However,
other aspects of the strategic interdependence are
aggregated into the correlation parameter of the biva-
riate-normal distribution. Moreover, although Smith’s
statistical model is consistent with at least one game-
theoretic model, that model would not generally be
used as the basis for a theory of conflict.6 Both Beck,
Katz, and Tucker (1998) and Smith (1997) make
significant advances in their own right, but neither
derives the statistical model directly from a theoretical
model. To differing degrees, both aggregate some
aspect of the strategic interdependence into single
parameters of statistical models—models designed
more for a particular type of data than for a particular
theory that produces a particular type of data. More
satisfactory would be a method that incorporates the
strategic theory directly into the statistical model with-
out any aggregation of the theory’s components.

At first glance, one might think that traditional
game-theoretic solution concepts and refinements such
as Nash and subgame perfection would be useful in
statistically modeling international interaction, espe-

6 Personal communication with Alastair Smith.

cially since they have been increasingly used to formal-
ize the theories of that interaction. Certainly, a number
of statistical tests of model fit can be conducted using
such equilibrium concepts. These are quite limited,
however, and do not allow for the broader range of
hypothesis tests that are generally of more interest
substantively (more on this later). Traditional equilib-
rium concepts prove problematic in statistical analysis
primarily because of the zero-likelihood problem.” As
the name implies, this problem arises during maximum
likelihood estimation, a method for estimating the
effect parameters commonly used in hypothesis tests.
Recall that maximum likelihood estimation attempts to
find the set of parameters, B, that give the maximum
likelihood of having generated the observed outcomes,
y. The likelihood function to be maximized is defined
as

L(Bb’) ch(yl’yZa ,lex, B) :j (1)
= fOilx1, B Walx2, B) - . . fynlxn, B), 2)

where equation 2 follows from equation 1 due to the
conditional independence assumption generally made.

As equation 2 displays, a requirement to conduct
maximum likelihood estimation is a probability distri-
bution f(y;}x, B) over the outcomes.® Yet, standard
game-theoretic solution concepts and refinements pro-
vide little help in assigning a distribution over out-
comes, since equilibria are assumed to be played with
probability one, and nonequilibria are assumed to be
played with probability zero.® And although an equi-
librium in mixed strategies will result in the assignment
of a probability less than one to the predicted out-
comes, unless the equilibrium results in a mixture over
all outcomes, there will still be some outcomes for
which the model assigns zero probability. Since it is
extremely unlikely for a model to predict perfectly
every observed outcome, we can generally expect that
for any value of the Bs—even the maximum likelihood
estimates—at least one observed outcome will have
probability zero assigned to it by the model. Equation
2 shows, however, that if even a single observed
outcome is not the outcome predicted by the model,
then the likelihood equation will be zero. And because
L(Bly) = 0 VB, maximum likelihood estimation will
be impossible. Therefore, what is needed is some way
to incorporate the structure of the strategic interaction
from the game-theoretic model, but one that assigns
nonzero probabilities (however small they may be) to
‘every outcome.

In the econometrics literature, the general approach
to analyzing strategic discrete choice has been to

7 I have not found a documented source for this term, but I am told
it is well known in the econometrics literature. (Personal communi-
cation with Mark Fey, who attributes it to Richard McKelvey, who
attributes it to being well known.)

8 Examples of f(y,x, B) include the normal distribution for tradi-
tional linear regression; the Poisson, negative binomial, or general-
ized event count distributions for event count data; or the Bernoulli
distribution for binary data.

9 In addition, except in evolutionary game theory, most say nothing
about which of multiple equilibria are more likely to be played.
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extend McFadden’s (1974, 1976) random utility model
to a strategic setting. Bjorn and Vuong (1984) and
Bresnahan and Reiss (1991) use simultaneous equa-
tions models with dummy endogenous variables and
assumptions of utility-maximizing behavior. McKelvey
and Palfrey (1995, 1996, 1998) develop a statistical
equilibrium concept for normal form and extensive
form games. Because there has been a distinct move in
the international conflict literature away from normal
form games to extensive form games, and because the
McKelvey and Palfrey agent quantal response equilib-
rium (QRE) is directly applicable to extensive form
games, 1 employ it in deriving statistical strategic
discrete choice models in the rest of this article.
Although my argument to this point has levied no
special requirements upon theories of international
conflict other than an assumption of strategic interac-
tion, hereafter I assume that the structure of the
strategic interdependence embodied in a theory can be
specified through an extensive form game.

At heart, the QRE is a game-theoretic solution
concept, just like Nash or subgame perfection, but it
and similar solution concepts are based on random
utility assumptions. Depending on the implementation,
these assumptions can take one of three forms: (1) part
of each player’s utility is unobserved, (2) players make
errors in implementing their actions, or (3) players are
boundedly rational (Chen, Friedman, and Thisse 1996;
McKelvey and Palfrey 1995, 1996, 1998; Rosenthal
1989).10 The basic idea is that players employ best
responses to each other, conditioned on the knowledge
that each will make mistakes according to some known
(or assumed) distribution of errors. Specification of the
distribution of those “errors” provides a statistical
model of equilibrium, since it allows for nondegenerate
(i.e., nonbinary) choice probabilities to be derived for
the strategies players will choose. Hence, it allows for
the derivation of nondegenerate probabilities for the
outcomes of a game. Using a statistical equilibrium
concept such as the QRE, one can derive the statistical
version of a model of conflict in extensive form that
directly incorporates the structure of the strategic
interaction.

To understand how QRE choice probabilities are
derived, it is useful to consider, first, how choice
probabilities are derived in nonstrategic random utility
models.!? Figure 1 displays a discrete choice model in
which individual i decides among four options (O, O,,
O3, 0O,). The individual’s utility for option O; is
assumed to be U*(0;) = U(0O;) + ¢;, where U*(O;} is
the true utility for choice j, U(O;) is its “indirect”
utility, and ¢€; captures either the error in the decision
making or unobserved variation in attributes or tastes.
As a utility maximizer, the individual is assumed to
choose the option O; such that U*(0;) > U*(Oy) for
all options k # j. However, because we do not observe

10 For a more detailed analysis of the statistical models that result
from different theoretical sources of uncertainty in finite (or discrete)
choice models, see Signorino 1998.

11 See, for example, McFadden 1974, 1976; Maddala 1983, 59-64;
and Pudney 1989, 111-9.
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FIGURE 1. Discrete Choice Model with
Exogenously Determined Choice Probabilities

O, (o)} Os O4

U*(0;) but only U(0O;), we can only make probabilistic
statements concerning which option the individual
chooses. Multinomial logit choice probabilities, p; =
eV©@D/3t | eY(O9 result when the errors are assumed
to be distributed type I extreme-value and multinomial
probit probabilities result when the errors are assumed
to be normally distributed. The widely used binomial
versions of these are the special case when only two
options exist. Since the utilities are assumed to be
functions of exogenous variables, and since individual
i’s probabilities do not depend on anyone else’s, the
choice probabilities are exogenously determined.

The QRE is derived in a similar manner, except now
we have an extensive form game with multiple decision
makers, who each have their own random utilities over
actions at information sets and are engaging in utility-
maximizing behavior. In fact, one can roughly think of
the QRE as applying the random utility model to each
information set (i.e., decision node) of the extensive
form game. At a given information set n, a person’s
utility for action a,,; is again assumed to be U*(a,;) =
U(a,) + ¢,, where U*(a,;) is the true utility for
choice a,,;, U(a,;) is its indirect utility, and ¢,,; captures
the error in the decision making. If a,; leads to a
terminal node (i.e., an outcome), then l’](a,,j) is the
indirect utility associated with that outcome. If a,;
leads to a nonterminal node, then U(a,;) is the ex-
pected utility for taking that action. The player is again
assumed to choose the option a,,; such that U*(a,;) >
U*(a,,;) for all options k # j at information set n.
When a distribution is specified for €, choice probabil-
ity equations can be derived for each action of each
information set in the game tree.

When the errors are assumed distributed type I
extreme-value, then the choice probability equations
take the multinomial logit form

e)\Ui(ﬂnj)
pnj = z e)\Ui(ank)’ (3)
k€A,
where individual i is associated with information set n,
Dy is the probability of action j at information set n,
U,(a,;) is the indirect utility to i of action j, and 4, is
the set of all actions at information set ». The param-
eter \ is inversely related to the variance of the errors.
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Therefore, smaller values of N imply larger amounts of
unobserved variation, agent error, or bounded ration-
ality, while larger values of \ imply less error (Chen,
Friedman, and Thisse 1996; McKelvey and Palfrey
1998).12 From the bounded rationality perspective, N =
0 corresponds to completely bounded rationality, and A
= o corresponds to complete (i.e., Nash) rationality.
For finite games of perfect information, A = o also
corresponds to the subgame perfect equilibrium.

The solution to this system of choice probability
equations, the logit quantal response equilibrium
(LQRE) (McKelvey and Palfrey 1995, 1996, 1998),
identifies the equilibrium probabilities for every action
at every information set in the game. The equilibrium
outcome probabilities are the product of the choice
probabilities along the path from the first node to the
respective outcome. These outcome probabilities can
then be used in maximum likelihood estimation.

Before proceeding with a demonstration, two issues
should be noted. First, the above is not just another
formulation of nested logit. Since nested logit choice
models involve only a single decision maker, they are
nonstrategic, and their choice probabilities are exog-
enously determined. Although the LQRE has its roots
in the same random utility framework as nested logit,
the LORE is a game-theoretic solution concept, and its
choice probabilities are the equilibria of the decision
makers’ best responses to each other.

Second, care should be taken in transformation of
the utilities. Although the LQRE is invariant to posi-
tive affine transformations of the true utilities, the
U*(-)s, it is not invariant to scale transformations of the
indirect utilities, the U(:)s. Affine transformations of
the U*(-) also transform the variance of the error term,
which leads to the same equilibrium choice probabili-
ties as in the untransformed case. Transforming the
indirect utilities leaves the variance untransformed,
which results in different equilibrium choice probabil-
ities. Fortunately, as I will show in the next section, this
issue is generally not a problem during estimation.

A STATISTICAL MODEL OF CRISIS
INTERACTION

To make this concrete and to show how one would
analyze a game-theoretic model of international con-
flict, consider the crisis game in Figure 2, which I will
also use in subsequent Monte Carlo analysis. This
model has the same sequence of moves as the crisis
subgame of Bueno de Mesquita and Lalman (1992, 34)
and is similar in many respects to the crisis game of
Kim and Bueno de Mesquita (1995, 5), the crisis
bargaining game of Fearon (1994, 240), and the alli-
ance model of Smith (1995, 407). The figure shows a
potentially conflictual situation between two states, 1
and 2. State 1 must decide if it wants to fight (F;) or
not fight (F;). State 2 then decides if it wants to fight
(f2, f5) or not fight (f, f5). If state 1 decides not to

12 The type I extreme value distribution has the cumulative distribu-
tion F(e) = e™° , mean E(e) = +/\, and variance V(e) =
w?/(6\?), where v is Euler’s constant (approximately 0.577).

FIGURE 2. A Typical Bilateral Crisis Game

Note: States 1 and 2 alternate moves at decision nodes. Actions by
state 1 are shown in uppercase, those by state 2 in lowercase. A bar
over an action refers to the opposite of the action (e.g., not using force).
The equilibrium choice probabilities used in the statistical model are
denoted p; for state 1 and g, for state 2. Nonterminal nodes are
numbered to simplify the expected utility notation and to index choice
probabilities. .

fight, but state 2 decides to fight, then state 1 must
decide whether to respond by fighting (F,) or not
fighting (F,). If neither fights, then the outcome is the
status quo (SQ). If both fight, then the outcome is war
(W1 and W2). If one does not fight when the other
does, then that side capitulates (C1 and C2). States 1
and 2 have utilities U;(-) and U,(-), respectively, for
‘each of the outcomes. For later notational simplifica-
tion, nonterminal nodes are also indexed. Strategies for

_state 1 are shown in uppercase, those for state 2 in

lowercase.

The LQRE choice probabilities for this model are
obtained by applying equation 3 at each of the infor-
mation sets. Appendix A shows how to derive them
from the first principles of the assumed random utility
model. The resulting strategic choice probabilities are!3

P1=
MNaUIW)+(1-g3)Ui(C2)]

MNBUP)+(1-g)Ui(C2)] e’\{qz[.D4U1(W2)+(1—p4)U1(C1)]+(l—qZ)Ul(SQ)};

)]
e)\[mUz(WZ)+(1—p4)U2(C1)]
92 = NP2+ (-paUACD] § NUA50) ° ®)
e)\Uz(Wl)
qs = MUV . NUAC2) ;and (6)
e)\U}(WZ)
bs= UIPD . N(CD) - )

The LQRE is the set of values for (p;, 43, 93, p4) that
satisfy the above equations. Notice that, in contrast to
traditional multinomial logit probabilities, here the
strategic choice probabilities are often functions of
each other—they are endogenous. Moreover, the prob-
abilities have been derived directly from the strategic

13 We need only specify one of the choice probabilities at each of the
information sets, since each contains only two options.
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theory. They reflect both the sequence of decisions
each side must make as well as the incentives of each
state for taking particular actions. For example, state
1’s probability of initially fighting, p;, depends on its
expected utilities for reaching nodes 2 and 3. These
expected utilities depend on the probability that state 2
will fight at those nodes, g, and g5, respectively.
Similarly, state 2’s probability of fighting at node 2
depends on its utility for the status quo and on its
expected utility for reaching node 4, which in turn
depends on state 1’s probability of fighting p, at node
4, which in turn depends on state 1’s utilities for
capitulating versus war.

The probability of each outcome in the crisis game is
the product of the choice probabilities along the path
from node 1 to that outcome:

s¢ = (1= p)(1 = q2); (8)
Pa = (1 = p1)qa(1 = pa); 9)
Pw2= (1 = p1)qops (10)
P2 =pi(1 = q3); (11)
Pwi = P1g3. (12)

As is evident, the outcome probabilities also reflect
both the sequence of interaction and the endogeneity
of decisions made by the two states.

To date, the LQRE has been used only to analyze
experimental data for which the payoffs are fixed (Fey,
McKelvey, and Palfrey 1996; McKelvey and Palfrey
1995, 1996, 1998). The goal in these studies has been to
explain observed deviations from Nash and subgame
perfect outcomes. In terms of estimation, the focus has
been on the parameter A, which is interpreted as a
measure of the rationality of the subjects. In repeated
experiments, \ is estimated for different periods of the
entire trial and analyzed to see if learning takes place
over the course of the experiments, that is, whether A
increases over time.

A natural extension of this to nonexperimental data
is to specify the utilities in terms of explanatory vari-
ables and then estimate the effects of those variables as
well as the fit of the model. To specify fully the crisis
interaction model, we must specify the nations’ utilities
over the outcomes. In this hypothetical model, the
utilities are based on each state’s level of military
capabilities, M;; other assets, 4; (e.g., land, natural
resources, or other nonmilitary assets that an adversary
may desire); and a dummy indicator of whether both
states are democracies, D;:

U(SQ) = Dy; 13)
Ui(Ci) = —-A4; (14)
UdCj) = A (15)

UW) =PA; + (1 — P)(—4; — M); (16)
P; = L . a7)
M T M
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In words, the status quo yields no change in utility for
a state unless both are democracies, in which case the
utility of the status quo is raised. If i capitulates, then it
loses its assets to j. The utility of war is the same
regardless of who initiates the fighting. It is an expected
utility based on the probability that i will win the war.
If i wins, then it garners j’s assets. If it is defeated, then
it loses both its assets and its military capability.1* The
probability of winning a war (P;) is defined as the ratio
of i’s military capabilities to the sum of i’s and j’s
capabilities.

To estimate such a model, we assume that the
utilities have been specified as above but with param-
eters (to be estimated) attached to each explanatory
variable (e.g., B,niM1, BpaMa, BarA s BazAz, BaD12)-
In its current form, the model is unidentified: Both A
and the B parameters cannot be estimated individually.
To identify the effects parameters, N must be con-
strained to some arbltrary value. Standard binomial
logit models assume X = 1, which is what I use
henceforth.

There are both advantages and limitations to the
model being unidentified with respect to A and B.
Recall that the LORE is not invariant to scale trans-
formations of the indirect utilities. Having set A = 1, we
might be concerned that a transformation of the indi-
rect utilities would lead to different substantive conclu-
sions from our estimation. Interestingly, it is precisely
the unidentification of \ and B that relieves us of this
problem when substantively interpreting our estima-
tion results. Since the model is unidentified, we can
only estimate the joint effect of A and B. In the case of
utilities that are linear in B, either we can reparameter-
ize the statistical model in terms of B* = B and then
estimate * or we can set A = ¢ for some arbitrary
constant ¢ > 0 and estimate 3. The two methods are
equivalent. In the former, the joint effect of B is
estimated directly. In the latter, the estimate B will
compensate for having set A\ to an arbitrary constant,
and f will reflect the joint effect of AB.15

There are two implications of this. First, although we
set A = 1, from an estimation perspective we are not
saying anything about the degree of bounded ration-
ality of the decision makers. In other words, we are not
assuming a level of rationality for them and then
estimating B. As we just noted, the estimated fs reflect
the joint effect of A and B. Second, multiplying all
utilities by a constant ¢ (e.g., by rescaling the data) is
equivalent to using the original utilities and multiplying
A by c. Hence, the estimated {3s in the scaled case will
be 1/c times those in the unscaled case. Although the
values of the parameter estimates may differ, the joint
effect of AR will be the same in both cases, so the
substantive interpretation of the effects of variables

14 The assumption that i lose its military capabilities if defeated is not
necessary to sustain the general results in the specification analysis
section. If so desired, one could drop M; in the (—4; — M;) term
and, instead, add an exogenous cost of war variable to the utility
equation.

15 Assumlng the true parameters are N and B and the utilities are
linear in B, then setting A = c will result in estimates B = (1/c)\B.
Setting A = 1 therefore implies that B = AB.
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and the probabilities of actions and outcomes will be
identical. Therefore, while the equilibrium predictions
of the LORE may not be invariant to scale transfor-
mations of the indirect utilities, our substantive inter-
pretations of estimation results will be.

The above does point out, however, the main limi-
tation imposed by the unidentification of N and PB.
Namely, having conducted our analysis, we can tell
whether the predicted behavior is more or less rational,
but we cannot tell whether that is due to an intrinsic
characteristic of rationality in the decision makers (\)
or to the size of the stakes (as a result of the Bs). For
most questions of interest in international relations,
this is not problematic, since in the LQRE, higher
stakes produce behavior that is more rational (a la
Nash). Moreover, all random utility models, including
binomial logit and probit, face the same problem of
identifying the effects and variance parameters, so this
issue is not unique to using the LQRE solution concept
in estimation.

Given a method for determining the probabilities
over outcomes, the machinery for estimating the pa-
rameters is much the same as in standard random
utility models. In fact, given the LORE choice proba-
bilities, we can analyze any of the actions or outcomes
in the model, depending on the availability of data for
dependent variables. The important point is that we
incorporate the theorized strategic interaction into the
statistical model.

For example, assuming data are available on all
outcomes, we can let y; ; be a dummy that is one when
j € {sq, cl1, w2, c2, wl} is the outcome for observa-
tion i, and zero otherwise. The likelihood function to
be maximized is

n
— 539 Vic Ly Vw2 Vie2 o Viwl
L= H sz]q pﬁl PwaDcaPw -

i=1

(18)

If, instead, data are only available on whether war
occurred, then we let y; be a dummy that is one if war
occurred for observation i, and zero if it did not. Since
the dependent variable represents wars started by
either side (i.e., W1 or W2), the probability of war is p,,,
= p,1 T Pwa and our likelihood function is

L=]Ipia—-p)™ (19)
i=1

Finally, outcome data simply may not be available. Let
us assume in this case that data are available only on
nations’ actions, such as whether state 1 initiated the
use of force (F, in Figure 2).16 We let y; be one if state
1 initiated the use of force, and zero otherwise. The
probability that nation 1 initiates force is p,. Therefore,
the likelihood function to be maximized in this case is

16 ] am indebted to Bruce Bueno de Mesquita for suggesting this
approach. See Bueno de Mesquita, Morrow, and Zorick (1997) for a
method of performing logit on actions at a decision node, using the
subgame perfect equilibria of the subgames following those actions.

L=[]pi1-py' (20)

i=1

In each of these cases, the parameter estimates are
then found by maximizing the likelihood with respect
to those parameters, applying parameter constraints if
necessary.l” In practice, this can be done using any
maximum likelihood estimation or constrained maxi-
mum likelihood estimation software that allows the
user to define a procedure for the log-likelihood func-
tion. Such a procedure would generally take the data
and the current iteration’s parameter values, insert
those into equations 4-17, and calculate the probability
of each observation’s actual action or outcome, de-
pending on the type of dependent variable employed.
The procedure would then either return a vector of the
logarithm of those outcome probabilities or the sum of
that vector, depending on the software used.

SPECIFICATION ANALYSIS: HOW WELL
DOES BINOMIAL LOGIT MODEL
STRATEGIC INTERACTION?

In view of the widespread use of logit to analyze
models of strategic interaction, an important question
concerns how well it actually accounts for strategic
interaction.!® In the current context, analyzing the
misspecification of logit presents some difficulties.
Analysis of omitted variable bias in OLS models is
typically conducted by comparing estimators of the
same parameter in two equations, one in which all
relevant variables are present, and one in which a
relevant variable is missing. Analysis of simultaneous
equations bias employs the same system of equations
and compares parameters estimated using OLS versus
those using 2SLS. In such cases, specification analysis
employs equations of the same functional form and
compares estimators of the same parameter of interest
under different conditions.

An appropriate analogy for our current situation
would be if the “truth” were represented by a simulta-
neous equations model, but instead we regressed a
different set of explanatory variables (or functions of
the true exogenous variables) on one of the system’s
endogenous variables. In the case of comparing a logit
versus strategic specification, the analysis of bias is
made difficult for at least two reasons. First, in a logit
specification, an analyst may be forced to use “aggre-
gate” variables for concepts that could be directly
modeled in the strategic specification, such as the
relationship of a balance of power to the utility for war.
Therefore, a strategic model and a typical binomial
logit test of it may not even include the same set of
regressors. Second, the logit and strategic models have
different functional forms, which makes it difficult to

17 For example, in the crisis model we would need to constrain
BniBmz = 0. Otherwise, we might obtain negative values for
probabilities.

18 To be precise, by “traditional logit” I mean binomial logit with
linear latent utilities. I thank an anonymous reviewer for identifying
this.
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compare coefficients even when they are associated
with the same regressor. For example, if we include a
variable “democracy” in both the logit and strategic
regressions, then we cannot compare their coefficients
directly, since each coefficient must be interpreted in
the context of its model’s functional form. We can
relate the coefficients to a common quantity of interest,
such as the probability of war occurring. When we
move from comparing estimates to comparing estima-
tors, however, the math involved becomes much more
complex than in standard analyses of bias.

Fundamentally, what we really want to know is
whether binomial logit will give us a correct picture of
the world we are analyzing—a world that we assume
involves strategic decision making. To examine this, we
can conduct a simple Monte Carlo analysis. We can
generate the data for our Monte Carlo world using the
statistical version of the two-nation crisis game as the
“truth.” Then, typical logit analyses can be run using
that data. Finally, knowing what generated the data, we
can assess the substantive interpretation of the logit
parameter estimates as well as logit’s ability to model
the true probability of war. It should be noted that, as
specified, the crisis game’s utilities are not complex. In
fact, arguably it is foo simple a model of international
conflict. Therefore, if logit can adequately model stra-
tegic interaction, this should not be a hard test.

To generate Monte Carlo data for the crisis game,
the military capabilities (M;) and assets (A4;) of each
nation are assigned uniformly distributed random
draws between 0 and 100. For the joint democracy
dummy variable, D;;, random draws are made with a
0.2 probability of both being democracies. The param-
eters of each variable are assumed to be B,,,; = B2 =
Bai = Buz = 1 and B, = 20. Since the democracy
variable is a dummy, this puts it in the same range as
the others and provides a substantial (but not over-
whelming) incentive for two democracies to seek the
status quo. The outcomes are determined using the
underlying random utility model of the LQRE, that is,
at each information set, the nation maximizes the
U*(a,;) = U(a,;) + &, over its possible actions, 4,,,
at that information set, where U(a,;) is determined by
the utilities of the outcomes or the expected utilities
based on them, and ¢,,; is drawn from a type I extreme
value distribution with A = 1. For the data to be used
in the strategic random utility model regression, the
dependent variable is set to an index (1-5) that corre-
sponds to one of the outcomes in Figure 2. For the logit
regression data, the dependent variable is set to one if
the outcome is either W1 or W2, zero otherwise. For
each observation, we then have M, M,, A;, A,, and
D,, and the observed outcome. A total of N = 1,000
observations were generated.

With the Monte Carlo data in hand, one strategic
and three logit regressions were run. Using the strate-
gic choice probabilities derived in the last section, a
strategic regression was run to determine whether it
could recover the true parameters. As Table 1 shows,
the “strategic” estimates are very close to the true
parameter values. While this should not surprise us,
since the data were generated using random utility
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TABLE 1. RBResults of Strategic versus Typical
Logit Models
Balance _ Joint
Strategic Naive of Power Utility
Constant .76 —-1.45 —.69
(:29) (13)  (10)
Military, 98 .03
(.06) (.003)
Military, .99 -.03
(.06) (.003)
Assets, .98 .02
(.06) (.003)
Assets, .99 .02
(.06) (.003)
MilCon 3.20
(.27)
U1(W)U2(W) _.22
(.015)
Democracy,, 19.26 —1.15 -1.08 —-1.91
(1.21) (21) (:19) (.30)
InL —140.6 —505.1 —580.8 -—-351.6
Note: The N = 1,000 observations were generated using the simple
crisis game. The Strategic model uses the LQRE probabilities. The
Naive, Balance-of-Power, and Joint Utility models are standard logit
models. Standard errors are in parentheses.

behavior applied to the bilateral crisis game, the results
provide some confidence that the estimation procedure
is working correctly and that the parameters are iden-
tified.

The first binomial logit model analyzed is represen-
tative of a naive analyst who, having obtained a new
data set with variables for war, capabilities, assets, and
democracy, decides to conduct a simple logit regression
of My, M,, A, A,, and D, on war “to see what the
data reveal.” Much to the analyst’s delight, the results
of this regression, denoted as Naive in Table 1, are all
highly statistically significant. Substantively, the esti-
mates imply that an increase in military capabilities
decreases the probability of war, an increase in assets
increases the probability of war, and two democracies
are unlikely to go to war. No doubt the researcher
would note the counterintuitive finding that another
nation’s increase in military power actually decreases
one’s own probability of going to war with that nation.
Since it is unrealistic to suggest that nations divest
themselves of their assets, the analyst’s policy prescrip-
tion would be that nations should increase their mili-
tary capabilities as much as possible: More military
power leads to less war for everyone. One could
probably find justification for this in one of the various
theories in international relations. The question is
whether the substantive inferences are correct, given
the true model that generated the outcomes.

The graph in Figure 3 displays the true (i.e., strate-
gic) and logit probabilities of war, setting M, = 20, 4,
= 40, A, = 40, and D,, = 0 and letting M vary over
its observable range. As the logit estimates indicated,
the logit probability of war decreases as state 1’s
military power increases. Yet, Figure 3 also suggests
that the naive analyst’s policy prescription is a recipe
for disaster, since the logit curve clearly does not reflect



American Political Science Review

Vol. 93, No. 2

FIGURE 3. Strategic versus Logit
Probabilities of War: Naive Model

FIGURE 4. Strategic versus Logit
Probabilities of War: Balance of Power Model
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Note: The solid line shows the “true” strategic probability of war based
on the simple crisis game, which was used to generate the data. The
dashed line shows what the Naive logit model would predict in this
case.

the true probability of war. It is true that at certain
levels of military power, nation 1 will decrease the
probability of war by increasing its military capabilities,
but only up to a point. If, for example, nation 1 is at M,
= 25 (with a high probability of the status quo), then
increasing its military capabilities will lead to an equi-
librium with a high probability of war. Note, too, that
fitted values and calculated effects of M; on the
probability of war will at times be grossly wrong—fitted
values sometimes by more than 0.7 (on a scale of 0 to
1). To be fair, the naive logit model does accurately
capture the effect of democracy on war.

Some may argue that I have stacked the deck with
the preceding example; researchers generally would
not regress the individual variables on war but instead
would attempt to identify observable implications of a
theory and then use indices or (perhaps nonlinear)
functions of the above variables to get at the strategic
interaction. For example, suppose a more sophisticated
analyst were interested in testing hypotheses concern-
ing the effects of balance of power and power prepon-
derance on war. A common way of doing this has been
to use a measure of the concentration of military
capabilities among states. Using the same data as in the
previous analysis, this analyst constructs a variable,
MilCon, for the concentration of the two states’ capa-
bilities and regresses it and the democracy variable on
war.

The logit estimates for the Balance of Power model
were shown in Table 1, and the probability of war is
plotted in Figure 4. The estimates, which are again
highly significant, indicate that an increase in capability
concentration leads to an increased probability of war.
In fact, the figure does show that a decrease in capa-
bility concentration (e.g., when M; = M, = 20) leads
to a decrease in war. It is not always true, however, that
an increase in capability concentration heightens the
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Note: The solid line shows the “true” strategic probability of war based
on the simple crisis game. The dashed line shows what the Balance-
of-Power logit model would predict in this case.

probability of war. At M; = 60, raising capability
concentration by increasing M, decreases the probabil-
ity of war. As in the previous case, the logit curve for
the probability of war is often quite divergent from the
true probability of war. Nevertheless, the effect of
democracy is correct.

Finally, consider one last fairly sophisticated analysis
of the data. Suppose a third analyst hypothesizes that
the more two nations jointly value war, the more likely
they are to go to war. This has quite an intuitive
appeal—in fact, Bueno de Mesquita and Lalman
(1988) conduct an analysis exactly along these lines.*®
Let us assume this third analyst uses the same data as
before and constructs a joint utility of war variable,
U,(W)U,(W), that employs the utility for war equa-
tion (equation 16) used in generating the data.

As seen in Table 1, the results for the Joint Utility
regression are, yet again, highly significant. Moreover,
as in the first analysis, they are also quite counterintui-
tive. The logit estimates imply that the more two states
jointly value war, the less likely war is. Yet, as Figure 5
indicates, as in the two previous cases, the logit curve
does not accurately reflect the true probability of war.
As before, the effect of democracy is correct.

The question posed at the beginning of this section
was: How well does traditional logit model strategic
interaction? At least for the simple crisis interaction
model here, the answer appears to be: Not very well at
all.2® Perhaps more troubling are the highly significant
results in each case, which would be interpreted by the

19 Bueno de Mesquita and Lalman (1988) actually regress their
operationalized “P(War)” on war, but P(War) is defined in terms of
the product of the two sides’ expected utilities for challenging each
other.

20 The one exception is the effect of democracy, which has been
correct in each case. My conjecture is that, since democracy appears
linearly and in only a single outcome utility (i.e., SQ), it has a
monotonic effect on the probability of war, which the logit analyses
accurately capture.

287



Strategic Interaction and the Statistical Analysis of International Conflict

June 1999

FIGURE 5. Strategic versus Logit
Probabilities of War: Joint Utility Model

Theorists (Strotegic)
- == Empiricists (Logit)

Pr(War)
0.0 0.1 0.2 03 04 05 06 0.7 0.8 09 1.0
: T : . : T .

1 . L . !
0 10 20 30 40 50 60 70 80 90 100
Nation 1's Military Power, M,

Note: The solid line shows the “true” strategic probability of war based
on the simple crisis game. The dashed line shows what the Joint Utility
logit model would predict in this case.

typical researcher as supporting one model or another.
Hence, out of a single data set, support could be
“found” for a number of different theories of interna-
tional conflict—all of which are wrong.

REANALYZING THE INTERNATIONAL
INTERACTION GAME

One of the best-known models in the international
conflict literature is Bueno de Mesquita and Lalman’s
(1992) international interaction game. Pedagogically, it
is an excellent candidate for the application of a
strategic statistical model. It is a rare example of a
well-specified game-theoretic model of international
conflict that has been empirically tested, with consid-
erable attention paid to the operationalization of the
expected utilities involved.2! Moreover, the authors
have made their data available for use by other schol-
ars.

The international interaction game is also an excel-
lent candidate because, although Bueno de Mesquita
and Lalman find considerable empirical support for it,
the structure of the strategic interaction is never di-
rectly or completely incorporated into the statistical
models used to test it. Moreover, two limitations to
their tests raise questions concerning the empirical
support. Since we now have the means to do so, we can
join the theory and estimation and provide a better test
of this important model.

This section proceeds as follows. First, the interna-
tional interaction game is presented in a way that is
true to the original specification of Bueno de Mesquita

21 T am not aware of another case in which researchers both formally
specify their model and then test it by operationalizing the utilities
involved. Because of the difficulty in obtaining data representative of
utilities, tests of formal models of conflict (see, e.g., Fearon 1994;
Kim and Morrow 1992) have generally been conducted more indi-
rectly, through tests of the observable implications.
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and Lalman but that allows us to develop LQRE choice
probabilities and to test nested models of the game.
Second, I will identify and attempt to correct (or at
least mitigate) two limitations of the original tests in
Bueno de Mesquita and Lalman, and I will then
reanalyze the data using subgame perfection, as they
did. Finally, because there are limitations to the types
of statistical analysis that can be done using subgame
perfection, I will analyze the international interaction
game using a statistical strategic model based on
LQRE choice probabilities.

The International Interaction Game

The model that I will use here is, for purposes I will
detail later, a generalization of the game specified in
Bueno de Mesquita and Lalman. Figure 6 displays the
perfect information version of the international inter-
action game. Here, two states choose between making
demands of each other and using force if demands are
made. If neither makes a demand on the other, then
the game results in the status quo (SQ). If nation 1
makes a demand and nation 2 concedes to it, then the
result is acquiescence by 2 (Acq,). Similarly, if nation 2
makes a demand and nation 1 concedes, then the result
is acquiescence by 1 (Acq;).

Nodes 5 and 6 of the game identify “crisis subgames”
(Bueno de Mesquita and Lalman 1992, 30—4). Here,
demands have been levied by both players, and each
must decide whether to use force in attempting to
obtain its demands. Negotiation (Nego) results when
both decide not to use force. Capitulation by 2 (Cap,)
results when nation 1 uses force and 2 backs down.
Similarly, capitulation by 1 (Cap,) results when nation
2 uses force and 1 backs down. Finally, when both
states use force, the result is war; it is differentiated by
whether 1 or 2 initiates the use of force (War; and
War,, respectively).

Each state’s utilities over the outcomes are defined
similarly to Bueno de Mesquita and Lalman:

Ui(SQ) = BuU(SQ"); (21)
Ui(Acq)) = BrUi(A); (22)
UiAcq) = BisUi(4)); (23)

U{(Nego) = BuPU{(A) + Bis(1 — PYUL(4)); 24)

U(Cap;) = BoUi(4) + BisdiPs; (25)

U(Cap;) = BsUi(4)) + vi(1 — Py; (26)

U(War,;) = BuPU(A) + Bis(1 — PYUL(4) 27
+ Bisd:Pi + o,(1 — Py);

U(War)) = BuP:U(4) + Bis(1 — P)UK(4) 28)

+ Bigd:P; + (1 — P)).

U/(SQ’) is i’s utility for the status quo, U;(4A,) is i’s
utility for its own demand, U,(4)) is i’s utility for state
j’s demand, P, is i’s subjective probability that it can
win a war against j, ¢, is the domestic political cost of
using force, and v; is the cost of giving in after being
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FIGURE 6. The International Interaction Game of Bueno de Mesquita and Lalman (1992) and
Corresponding Choice Probabilities Used in the Strategic Statistical Model
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Note: States 1 and 2 alternate moves at decision nodes. Actions of state 1 are shown in uppercase, those of state 2 in lowercase. A bar over an action
refers to the opposite of the action (e.g., not making a demand). The equilibrium choice probabilities used in the statistical model are denoted by p; for
state 1 and g; for state 2. Nonterminal nodes are numbered to simplify the expected utility notation and to index choice probabilities.

attacked. The utilities U,(War;) and U/(War;) are
differentiated by the cost terms «; and 7;, which are the
costs of attacking and being a target, respectively. Note
that for the international interaction game, there are
two sets of these utilities: one for nation 1 and one for
nation 2. Finally, the generalization to which I referred
above is the addition of the B, coefficients to each
term. These allow us to specify “nested” versions of the
utilities later. The utilities in Bueno de Mesquita and
Lalman are the special case in which 8;; = B;; = B;s
= Bu = Bis = 1, and B,, = —1. Based on these
utilities, Bueno de Mesquita and Lalman specify in
detail the conditions leading to a subgame perfect
equilibrium (SPE) of the international interaction
game.

Comparing Observed Outcomes to
Subgame Perfect Predictions

To test the international interaction game, Bueno de
Mesquita and Lalman use data on 707 European dyads
from 1815 to 1970. The utilities for demands, the
utilities for the status quo, and the subjective probabil-
ities of winning a war are all operationalized based on
functions of states’ alliance commitments and their
national material capabilities. The outcomes are opera-
tionalized using the militarized interstate disputes data
set. For details concerning these operationalizations,

see Bueno de Mesquita and Lalman (1992, Appendix
1).22

Ideally, for any given European dyad, one should be
able to take the two states’ operationalized utilities
over the outcomes and determine the SPE of the game.
Although that would not be equivalent to developing a
strategic statistical model, one then could at least
compare the expected outcomes to the empirical out-
comes for all the cases in the data set. To their credit,
Bueno de Mesquita and Lalman (1992, 72-92) attempt
to do just that. As alluded to earlier, however, there are
two limitations to their tests. The first concerns how
they determine expected outcomes in the face of
unavailable data. The second concerns how aggregat-
ing outcomes can yield misleading results. I address
these in turn and then reanalyze the international
interaction game on its own terms, that is, using
subgame perfection. Not only does this provide a better
test of the international interaction game in the frame-
work that Bueno de Mesquita and Lalman originally
conceived it, but it also allows us to compare the results
using the SPE solution concept to those using the
LQRE solution concept.

22 T do not address issues concerning operationalizations here, since
my purpose is to reexamine how well their theoretical model fares
using their data when the structure of the strategic interaction is
incorporated into the statistical model.
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Limitation 1: Unavailable Cost Data and
Nonassessable Equilibrium Conditions

In addition to the utilities of states’ demands and of the
status quo, utility equations 21-28 contain a number of
cost terms: domestic costs of using force (¢,), the costs
of giving in after being attacked (vy;), the costs of
attacking another state in war (o;), and the costs of
being attacked (i.e., the target) in a war (7;). Although
Bueno de Mesquita and Lalman operationalize the
domestic costs of using force, they do not have data on
the other costs. Because of that, Bueno de Mesquita
and Lalman (1992, 76 fn 10; 298) acknowledge that
they cannot empirically assess certain conditions nec-
essary to determine the game’s SPE, that is, the
model’s expected outcome. Some conditions involving
the above cost terms, such as U;(Acq;) > U;(Cap,),
can still be evaluated because, by definition, one has to
be less than or equal to the other. Others do not have
such a priori restrictions on the ordering.?? To forge
ahead with their empirical tests, Bueno de Mesquita
and Lalman (1992, 76 fn. 10) are forced to ignore
nonassessable conditions in the calculation of the SPE
expected outcomes. Having said that, their tables of
results appear to test whether the SPE predictions
explain the observed outcomes for War;, Acq,, SQ,
and Nego individually (Bueno de Mesquita and Lal-
man 1992, 77-89). Moreover, it appears that consider-
able support is found for the international interaction
game.

But the question must be raised: What is the effect of
ignoring the equilibrium conditions that cannot be
evaluated due to the lack of cost data? What is really
being tested? Take the case of testing whether the
model’s prediction of War; is related to whether war is
empirically observed (Bueno de Mesquita and Lalman
1992, 77, Table 3.3). The necessary and sufficient
conditions for War; to be a SPE are that U;(Cap;) >
Uy(War,), Uy(Wary) > Uy(dcqy), Uy(Capy) >
U,(Nego), and U,(War;) > U,(Acq,) (Bueno de
Mesquita and Lalman 1992, 72). Yet, because the cost
data are unavailable, only one of these conditions can
be evaluated directly: U,(Cap,) > U,(Nego).?* The
result is that Bueno de Mesquita and Lalman are
forced to drop equilibrium conditions in determining
the expected outcomes, which they label “War,” (War;
in Figure 6). What they do not make clear is that
dropping individual equilibrium conditions creates a
reduced set of conditions that are consistent with the
SPE conditions for multiple outcomes.

For the sake of argument, let us assume that all the
above conditions could be evaluated except for
U(Cap,) > U;(War,). In this case, the reduced set of
conditions from dropping U;(Cap;) > U,(War,) is
consistent not only with War; as the SPE but also with
SQ or Nego as the SPE. Hence, we should expect the
dummy predictor variable of War; (used in the empir-

23 For the a priori ordering restrictions, see Bueno de Mesquita and
Lalman 1992, 47, Table 2.3.

24 In some cases, some (but not all) of the above conditions can be
evaluated indirectly, as implications of the remaining assessable
conditions.
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ical analysis) to contain “1”s not only when War; is the
SPE but also for a subset of the cases in which SQ and
Nego are the SPE. As the number of nonassessable
conditions increases, so does the inclusion of other
outcomes in the predictor variable. It is not clear, then,
what is really being tested by labeling this War; and
regressing it against the observed outcomes for war.
This same argument applies to the other tests con-
ducted in Bueno de Mesquita and Lalman (1992,
77-89).

Limitation 2: Tests Based on Aggregated
Outcomes

The second limitation of these tests concerns how the
expected outcomes are compared to the observed
outcomes. Recall that there are seven observed out-
comes: SQ, Acq;, Acq,, Nego, Cap;, Cap,, and War.?s
Assuming that the first limitation identified above were
not an issue, a correct comparisod of the actual versus
SPE expected outcomes would be to construct a 7 X 7
cross-tabulation. Entries in the table along the main
diagonal would represent observed outcomes that were
correctly predicted. Entries in the off-diagonal cells
would represent observed outcomes that were not
correctly predicted. As long as no marginal counts (or
frequencies) equal zero, a x? statistic can be calculated
to determine whether the expected and observed out-
comes are independent of each other. Since this is not
always an accurate measure of how well the model fits
the data, one might also calculate an indicator of model
fit, such as the percentage of the outcomes correctly
predicted.

Such a table is not presented by Bueno de Mesquita
and Lalman. Instead, the tests are generally conducted
for each individual outcome by aggregating the seven
outcomes into two: whether or not a particular out-
come occurred. The problem with aggregatinga 7 X 7
table into a 2 X 2 table is that the latter can give the
misleading impression that the model has done a good
job of explaining the variation in the outcomes when in
fact it has not. For example, suppose we aggregate the
7 X 7 table into a 2 X 2 table with rows representing
whether the SQ occurred and the columns representing
whether the model predicted the SQ. I will use the
notation “(actual, predicted)” to refer to the cells of
this table. x* and goodness of fit statistics will generally
be favorable when most of the elements fall along the
main diagonal, which is comprised of the (not SQ, not
SQ) and the (SQ, SQ) cells. While the latter cell
represents a real success for the model in terms of
predicting an outcome, the former is more complicat-
ed—and therein lies the problem.

In the 2 X 2 table, the (not SQ, not SQ) cell can hide
a large amount of error. It includes not only the six
other “correctly predicted” cells along the main diag-
onal of the 7 X 7 table but also the 30 other “mispre-
dicted” cells in which SQ did not occur and was not

25 There are eight outcomes in the model, but War; and War, are not
differentiated empirically, so their model predictions are combined
when comparing against observed outcomes.
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Unknown Cost Parameters

TABLE 2. Results of the International Interaction Game, Assuming Subgame Perfection and

Sets of Possible Predicted Outcomes

Acq, SQ
Acq, Acq, Acq,
Actual Acq, Acqa, Nego Acq,
Outcome 0@ SQ Nego Nego Nego War, War,
SQ 21 1 3 57 3 115 0, 38
Acq, 0 0 0 1 0 0,6 - 0,1
Acqa, 4 1 0 0, 21 0 0, 62 0,13
Nego 2 0 3 0,9 0 0, 11 10
Cap, 0 0 1 5 0 18 2
Cap, 6 0 1 17 0 74 12
War 20 1 5 36 0 0, 111 0,16

1% =CP=41%

cases correctly predicted (CP) is between 1% and 41%.

model.

Note: Cells with two entries represent cases in which (1) the actual outcome is included in the set of possible predicted outcomes, but (2) because of
the missing cost data, we cannot state with certainty whether the actual outcome is predicted by the international interaction game. In these cases,
the first and second entries are the minimum and maximum numbers, respectively, of correct predictions possible. Based on this, the percentage of

29 predictions are those cases in which the empirically calculated utilities violated the a priori ordering restrictions, yielding “no prediction” from the

predicted: (Nego, Cap,), (Acq,, War), and so on. By
examining the 7 X 7 contingency table, one can tell
immediately how well the model fares. In a 2 X 2
aggregation of it, we cannot tell whether the (not SQ,
not SQ) elements represent successful predictions of
other outcomes or mispredictions of non-SQ out-
comes. The fact that Bueno de Mesquita and Lalman’s
2 X 2 tables for Acq,, SQ, and Nego have 62%, 63%,
and 84% of their elements, respectively, in the (not,
not) cell, while only successfully predicting 91 cases
(13%), raises the question of how many of the (not,
not) cases are also successful predictions.

Bounds on the International Interaction
Game’s Explanatory Power

I now reanalyze the international interaction game,
controlling for the above limitations. In the previous
section, it was noted that the model’s explanatory
power can be determined by first constructing a 7 X 7
cross-tabulation of the actual versus predicted out-
comes and then calculating the percentage of outcomes
correctly predicted. Traditional statistical models pro-
duce single expected outcomes. The international in-
teraction game also yields a single SPE outcome for
any ordering of the outcomes.2¢ Dropping equilibrium
conditions, however, means that we cannot differenti-
ate between multiple expected outcomes, all of which
are consistent with the available information on out-
come orderings. For example, dropping U,(Cap,) >
U,(War,) from the War; SPE conditions results in a
subset of assessable conditions for which SQ, Nego,
and War, are all consistent as SPE. A consequence is
that we cannot determine whether certain observed
outcomes were “correctly predicted.” For the given
example, if the actual outcome is Acq;, we can defi-
nitely say that the model mispredicted the outcome,

26 T assume that ties do not exist in the ordering of outcomes.

since the actual outcome is not in the set of possible
predicted outcomes: {SQ, Nego, War,}. If the actual
outcome is War,, then we have no way of knowing
whether the model correctly predicted the outcome.
On the one hand, War; could have been predicted by
the model. On the other hand, the nonassessable
conditions may have been such that SQ or Nego is the
true predicted outcome. In this case, if War; is the
actual outcome, all we can say is that the set of possible
predicted outcomes contains the actual outcome.
While this introduces uncertainty concerning the fit
of the model, we can at least put bounds on that fit.
Depending on the actual outcome and the set of
possible predicted outcomes, three situations may
arise. First, regardless of the number of possible pre-
dicted outcomes, if the observed outcome is not con-
tained in the set of possible predicted outcomes, then
we can definitely count that as a model misprediction.
Second, there is also no uncertainty if the model
predicts only a single outcome and it matches the
observed outcome—we can count that as a correct
prediction. Uncertainty arises in the third situation,
when the actual outcome is contained in the set of
possible predicted outcomes and that set contains
multiple outcomes. In this case, since the actual out-
come may or may not have been predicted, we count it

* as a misprediction for the lower bound and as a correct

prediction for the upper bound.

Table 2 displays the cross-tabulation of the actual
outcomes versus the sets of possible SPE predicted
outcomes given the available data.?’” Cells with two
entries represent cases in which the actual outcome is
included in a set of multiple possible predicted out-
comes. In these cases, the first and second entries are
the minimum and maximum numbers, respectively, of

27 In some cases, the empirically calculated utilities violated the a
priori ordering restrictions, yielding “no prediction” from the model.
In Table 2 these are denoted as @ predictions.
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correct predictions possible. As Table 2 shows, without
the cost data, all we can say about the model is that the
percentage of cases correctly predicted (CP) is between
1% and 41%. As a reference, a null model that always
predicted SQ would correctly predict 34% of the
observations. So, if we were to give the international
interaction game the greatest benefit of the doubt
possible, it would predict 21% better than the modal
category.

A STATISTICAL MODEL OF THE
INTERNATIONAL INTERACTION GAME

The preceding analyses allowed us to answer only one
particular question: How well does the model fit the
data? In conducting empirical tests, we are often also
interested in testing hypotheses concerning particular
variables, groups of variables, and alternative models.
The preceding method, while useful for comparing
actual versus predicted outcomes, does not allow us to
address any of these issues. Using a statistical equilib-
rium solution concept does.

Using the extensive form game in Figure 6, the
LQRE outcome probabilities of the international in-
teraction game can be derived in the same manner as
for the bilateral crisis game; they are listed in Appendix
B. The utilities are again given by equations 21-28. As
I mentioned previously, the 8,; parameters in the utility
equations allow us to compare nested models. I analyze
three models based on different parameterizations of
By Vi» ;> and T;.

1. Null Model: All parameters (B, v;, o, T;) of the
utility terms are restricted to zero. This model
corresponds to the decision maker at each node
choosing an option with probability 0.5, for example,
by flipping a coin. The log-likelihood value of this
model is then compared with the log-likelihoods of
the other models.

2. Bueno de Mesquita and Lalman Bounded Rational-
ity (BAM&L-BR) Model: The B; parameters of the
utility terms are restricted to the values in the
Bueno de Mesquita and Lalman model, as prev1-
ously identified: B;; = B, = Biz = By = Bis = 1,
and B, = —1. The cost parameters v;, «;, and T;
are estimated subject to the Bueno de Mesquita and
Lalman constraints: v;, a;, 7, = 0, and 7; =< «;.

3. Unrestricted Model: All parameters are now esti-
mated, allowing us to assess the different effects of
the utility terms in each nation’s utility functions.

The B, parameters are estimated subject to the .

constramts that B;;, By, Bis, Bis» Bis = 0 and B = 0.
The cost parameters, vy;, o; and 7, are estimated
subject to the constraints vy;, a;, 7; =< 0 and 7; = ;.28

28 The constraints are imposed to keep the parameters and utilities
consistent with Bueno de Mesquita and Lalman’s theory. In some
situations, parameters should be left free, for example, to determine
whether effects are in the expected direction, but in this case it does
not make sense to think of costs adding to a nation’s utility or of a
nation’s demands being negatively related to its utility. Maximum
likelihood estimation was also conducted without constraints on the
parameters. A number of the parameter estimates had values
prohibited under Bueno de Mesquita and Lalman’s constraints. In
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. highest probability of occurring: Pr(SQ) =

The exact same data are used for this analysis as for
the analysis under subgame perfection. For the null
model, no real estimation is needed. We simply plug in
the above parameter values and data, calculate the
probabilities of the observed outcomes, and calculate
the log-likelihood and percentage of outcomes cor-
rectly predicted. For the BIM&L-BR and unrestricted
models, constrained maximum likelihood estimation
was conducted similarly to the estimation of the bilat-
eral crisis game. Table 3 displays these results.

The null model represents one null hypothesis: All
coefficients are zero. Again, one interpretation of this is
that decision makers randomly choose their options at
each node with probability 0.5. In this case, the termi-
nal probabilities are: Pr(SQ) = 0.25, Pr(Acq;) = 0.13,
Pr(Acq,) = 0.25, Pr(Nego) = 0.09, Pr(Cap;) = 0.06,
Pr(Cap,) = 0.08, and Pr(War) = 0.14. The log- hkeh-
hood value for choosing actions this way is In L°
—1292.7. This value is of no real interest in itself, but
it will be useful in comparisons to the log-likelihoods of
the other two models.

Since we no longer have a probability zero or one
prediction for each outcome, determining the percent-
age correctly predicted is done slightly differently here
than in the analysis under subgame perfection. The
method most often used in this type of situation is to
identify the outcome with the highest probability as the
“predicted outcome” and then compare those pre-
dicted outcomes to the actual outcomes.?® In the case

* of the null model, this is further complicated by the fact

that both the SQ and Acq, are predicted as having the
Pr(Acqy) =
.25. Therefore, two values are reported in Table 3:
CP = 14% if we take Acq, as the predictor, or CP =
34% if we take SQ as the predictor.

In the BAM&L-BR model, the values of the B;
parameters are restricted to those in Bueno de Mes-
quita and Lalman (1992), but the parameters v;, o;,
and T; are estimated, since the cost data are not
available. This allows us to constrain as many param-
eters as possible to those of Bueno de Mesquita and
Lalman’s theory, while estimating parameters in lieu of
the missing cost data. As Table 3 displays, the estimates
of four of the six cost parameters are at the constraint
boundaries: y, = a; = a, = 7; = 0.30 The BIM&L-BR
model does slightly better than the null model in terms
of the log-likelihood value (In L = —1286.5), but the
percentage correctly predicted (CP = 23%) is slightly
worse than in the null model (assuming SQ is always
predicted). As we saw previously, the percentage cor-
rectly predicted for Bueno de Mesquita and Lalman’s

general, however, the results were not substantively different from
those presented here. Results are available upon request from the
author. ,

2 As a measure of model fit, the log-likelihood value is the better
indicator in this type of situation. Nevertheless, one can think of the
percentage correctly predicted here as using a rule of thumb to
determine a single prediction for each observation. The values of CP
reported in Table 3 should then be interpreted as a measure of
goodness of fit subject to the outcome selection criterion.

30 Because the estimates are at the constraint boundaries, the
standard errors of the estimates cannot be calculated. I denote these
cases with a period.
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TABLE 3. Results of the Strategic Statistical Model of the International Interaction Game
Bueno de Mesquita
and Lalman Bounded o
Rationality Model Unrestricted Model
Term Null Nation 1 Nation 2 Nation 1 Nation 2
uisQ’) Bt 0 1 1 0 .87*
. (:24)
u(a) Bis 0 1 1 29 0
(.18)° .
u@) Bis 0 1 1 2.55* 91*
(.38) (.15)
PUA) Bia 0 1 1 0 0
(1 - PYUQ) Bis 0 1 1 2.68* 1.07*
(.66) (.22)
o.P; Bis 0 -1 -1 0 0
(1-r) Yi 0 -1.50* 0 —.42 0
(.53) . (54) .
o 0 0 0
T 0 0 -.39 0 0
. (.26) . .
InL= —1,292.7 —1,286.5 -1,207.9
2(nL — InL% = 169.5
df = 14
p = 0.000 -
CP = 14%,2 34%° 23% 29%
Note: N_= 707. The null model restricts all coefficients to zero and corresponds to state leaders who make their decisions at each node by flipping
a coin. The BAM&L-BR model restricts the B; coefficients to those assumed in Bueno de Mesquita and Lalman (1992) and estimates the cost
parameters, vy,, o;, and 7, in lieu of the m|ssmg cost data. The unrestricted model allows the terms in each nation’s utility functions to have different
effects. Standard errors are in parentheses. Parameter estimates at their constraint boundary have standard errors denoted by a period. *p < .01.
2Acq, predicted.
bSQ predicted.

model under subgame perfection falls between 1% and
41%.

There are a number of obvious limitations to the null
model and to the BAM&L-BR model. Thus far, we
have made assumptions concerning the B,; coefficients
and compared how well the various models fit the data.
Substantively, we may want to estimate the effect of all
the explanatory variables and identify the extent to
which that improves model fit. In addition, a valid point
of contention would be that the BAM&L-BR model is
not the same as in Bueno de Mesquita and Lalman
(1992). Although the B are restricted at the levels of

those in Bueno de Mesquita and Lalman (1992), a

different equilibrium solution concept is being used
(ie., LQRE versus subgame perfection). Moreover,
the restriction of both the 8;; and N implies some fixed
level of bounded rationality, hence the appellation
here.

The unrestricted model allows us to address all these
issues, since all B,; and cost parameters are estimated.
Recall that subgame perfection is a special case of the
LQRE for finite games of perfect information (i.e.,
when N = o). Therefore, if the model is correctly
specified, and if the states are highly rational in their
decision making, then we should expect to see esti-
mates of B;; and the cost parameters that are very high

in magnitude, representing the joint effect of a high A
and the true parameters.

Table 3 shows mixed results for the unrestricted
model. On the one hand, there are a number of
statistically significant parameters, and we can compare
the relative size of the effects for nation 1 and nation 2.
For example, it appears that the utility of the other
nation’s demand, U(4)), has a larger effect in nation 1’s
utility calculations than in nation 2’s. The same can be
said for the effect of (1 — P,)U(4;). On the other
hand, of the eighteen parameters estlmated eleven are
at the zero boundary, individually closer to the null
model parameters than to the Bueno de Mesquita and
Lalman parameters. Furthermore, the remaining pa-
rameters are not so hlgh in magnitude that we can infer
both that the model is correctly specified and that the
decision makers are highly rational.

We may still ask how well the unrestricted model fits
the data. The log-likelihood ratio test shows that the
amount of variation explained by the unrestricted
model over the null model is highly significant (p =
0.000) and due to systematic variation. Yet, its ability
to explain the variation in outcomes is still fairly weak.
Note that the log-likelihood value (In L = —1207.9) is
still relatively close to that of the null model (In L
—1292.7). Using the aforementioned criterion for
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determining predicted outcomes, the unrestricted
model predicts 29% of the outcomes correctly, which is
better than the BAM&L-BR model and closer to the
upper bound of the Bueno de Mesquita and Lalman
model under subgame perfection. Nevertheless, pre-
dicting the modal category, SQ, would yield a higher
percentage correctly predicted. Thus, even the unre-
stricted model does not fare well.

These results, in combination with those assuming
subgame perfection, suggest there is less support for
the international interaction game than Bueno de
Mesquita and Lalman claim.3! It is difficult to say
where the international interaction game needs the
most improvement, since it has so many “moving
parts.” At least three general areas might be beneficial
for future research: (1) the game structure, (2) the
equilibrium solution concept, and (3) the data. Con-
cerning the first, the game structure simply may not be
appropriate. The outcomes may reflect uncertainty not
captured by the model of perfect information analyzed
here. Moreover, as Bueno de Mesquita and Lalman
(1992, 281) note themselves, it is a dyadic structure,
and more than two parties may be involved in the
strategic interaction, such as alliance partners.

Although the issue is rarely addressed, the solution
concept is also an important part of the model. Tradi-
tional formal specifications of international conflict
assume that states behave perfectly rationally. Yet,

experimental economists have developed alternative’

equilibrium solution concepts (e.g., the LQRE) pre-
cisely because of observed deviations from Nash be-
havior. It may be that a solutions concept such as the
LQRE, which allows for a range of rationality or
“error-proneness” in behavior, is more appropriate for
modeling international interaction, but that remains to
be seen. '

Finally, the data employed here have gone through a
number of thoughtful but complex operationalizations
that must be included under the larger rubric of “the
model.” Data on militarized interstate disputes are
categorized in a particular way to obtain the outcomes
used as the dependent variable. Data on alliance
commitments and national material capabilities are
transformed into measures of risk propensity and
utilities for demands and the status quo. All of these
require modeling assumptions that may or may not be
true.32 Lastly, cost data surely would be an important
addition to any model such as this. The analyses in this
section have attempted to give Bueno de Mesquita and
Lalman the most benefit of the doubt by estimating the
cost parameters that yield the best model fit, but this is
never a substitute for the real data. Unfortunately, this
type of cost data is difficult, if not impossible, to obtain.

31 See also Smith 1997 for a similar assessment but using a different
model.

32 For example, all the explanatory variables rely on the use of 7, as
a measure of alliance policy similarity. Signorino and Ritter (1997)
identify a number of problems with using 7, for this purpose and
suggest an alternative measure of policy portfolio similarity.
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CONCLUSION

Although strategic interaction is at the heart of most
international relations theory, it has largely been miss-
ing from much empirical analysis in the field. This
article attempts to bridge the gap between the theory
and estimation of a large class of models of interna-
tional conflict. The LQRE solution concept applied
here is a promising approach for incorporating the
structure of theorized strategic interdependence into
statistical models. Using this method, I showed that
failure to incorporate the strategic interaction in sta-
tistical models can lead to parameter estimates with
incorrect substantive interpretations as well as fitted
values that are at times wildly wrong. The method was
also used to reanalyze Bueno de Mesquita and Lal-
man’s (1992) international interaction game.

The techniques applied here are relatively new, and
much remains to be done in applying, refining, and
extending them. One area of considérable importance
is the analysis of misspecification. I have shown cases in
which logit produces dramatically incorrect results. It
would be interesting to know whether there are plau-
sible general conditions in which the logit parameter
estimates have the correct substantive interpretation
and the logit probabilities closely approximate the
strategic choice probabilities. In short, when does
structure really matter in statistical analysis? Under
what conditions can we make do with logit?

In addition, throughout the analyses here, we have
not had to worry about multiple equilibria. The games
employed are games of perfect information, which
resulted in a single subgame perfect equilibrium or
logit quantal response equilibrium for any value of the
utilities (but assuming no ties). To determine probabil-
ities over outcomes for the likelihood function of our
statistical model, there was only one set of equilibrium
probabilities to consider. For games of imperfect infor-
mation, however, multiple equilibria will often arise.
An important question then is: Given multiple equilib-
ria, how are we to assign probabilities over outcomes?
This is a surprisingly little-studied area in political
science or in econometrics, but it must be addressed if
we are to conduct similar statistical analyses of more
realistic models of international interaction.

Finally, the main point of this article has been that
structure matters not only in our theories of strategic
interaction but also in our statistical tests of those
theories. This, however, may present a double-edged
sword for positive international relations theory more
broadly. On the one hand, it implies that we must
ensure that our statistical models are consistent with
our theories. We know that small changes to a theory
(e.g., the number of players, the sequence of their
moves, the choices and information available to them,
and their incentives) can have large consequences in
what the theory predicts. If a theory is vague, then it is
unclear what statistical model would be consistent with
that theory. Therefore, if we want to ensure consistency
between a theory and a statistical model, we must be as
precise as possible in the specification of the theory.
Given the requirement for theoretical precision, how
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are we to specify and test strategic theories without
doing so formally? The statistical analyses conducted
here required that the interaction be specified as an
extensive form game. Although this may not be the
only way to formalize and test strategic interaction,
even methods using simultaneous systems with dummy
variables (Bjorn and Vuong 1984; Bresnahan and Reiss
1991) require a high degree of mathematical specificity.

On the other hand, although the call for increased
formalization of theories may be welcomed by many
(but certainly not all) positivists, the importance of
structure also seems to cut the other way. Consider the
typical derivation and analysis of a positive theory. One
major assumption generally held—indeed, held
throughout this article—is that the structure of the
model remains constant across all observations in the
data. In other words, although the utilities may vary
from case to case, it is assumed that the same “game”
structure is being played in every situation across time.
It does not seem unreasonable to suspect, however,
that the true game structure changes over time and
place. If even small changes in structure can make a
large difference in likely outcomes, and if the true
structure of the strategic interaction changes from
observation to observation in our data, then what are
we to make of any statistical results predicated on the
assumption of a fixed game? The reaction to this
should not be to use more poorly specified theories and
statistical tests, which suffer from all the maladies
mentioned so far. Rather, the problem of a changing
structure would seem to be an even more difficult
version of the specification problem identified previ-
ously. Nevertheless, it is an issue that those interested
in positive international relations theory must address
if ultimately we are to make progress in this general
endeavor.

APPENDIX A: DERIVATION OF THE
STRATEGIC CHOICE PROBABILITIES FOR
THE CRISIS GAME

Derivation of the LQRE choice probabilities for the crisis
game shown in Figure 2 is similar to the derivation of
multinomial logit probabilities when assuming random utility.
The random utility assumptions were identified previously in
this article. See McFadden (1974) and Maddala (1983, 60-1)
for similar derivations but of multinomial logit probabilities.
I provide a derivation from first principles of only two of the
choice probabilities, since the other two follow in the exact
same manner. In the following, although it is an abuse of
notation, I will refer to the (expected) utility of nodes rather
than strategies. For example, U,(4) will refer to the utility to
state 2 of reaching node 4 or, equivalently, of choosing to
fight at node 2. This greatly simplifies the notation.

The probability p, that state 1 will choose to fight at node
4 is

ps = Pr{UT(W2) > U7i(C1)]
= Pi[U,(W2) + ¢,, > U;(C1) + g,]
= Prle,, < U,(W2) — Uy(C1) + g,,].

Let f(¢,,,, €.;) and F(g,,,, €.,) be the joint pdf and cdf of
(&2 €01)> and let F, (€, €.1) = dF (g, £.,1)/dg,, . Then

(A-1)

= U1(W2)-U1(C) +ew2
P4 = f(€w29 E':cl) decl d£w2

= J Fol€n, Ui(W2) — Ui(C1) + g,,] de,n.

(A-2)

This holds for any joint density f(g,,,, €.,). Here, we now
assume ¢ is independently and identically distributed accord-
ing to a type I extreme value density: f(€) = \ exp (—\e —
e~ ), and F(g) = exp (—e ), with E[e] = y/\, and V[e]
= m?/(6A\?), where vy is Euler’s constant, approximately
equal to 0.577.

With that assumption, equation A-2 becomes

ps= J fle)FLU(W2) — U\(C1) + g,,] de,n

= J‘ exp {—\g,, — e %}
exp {_e—x[ul(Wz)—Ul(Cl)ﬂwz]} dng
= J‘ exp {—\g,, — e 71

+ e—x[Ul(M)—Ul(Cl)]]} de,,

= J exp {_ )\€w2

e e}\Ul(WZ) + e)\Ul(ClJ
—e T ) de,.

Now, let z = In [(e*V' P2 + AVIED)[AUIVD)] Then

Ds= J‘ exp {—\g,, — e %7} de,,

= f exp {—\g,, — e ™%} de,,.
Letting €* = \g,,, — 2,

Ps= j (e7%¢%) exp {—\g,, — e ™2} de,,
e f exp {—(\g,, —2) — e ** 7} de,,
=e"J exp {—¢* — e ®} de*

=e’? Jx fle*) de*

=e?
e)\Ul(WZ)

= ST TieT A-3
2 UIW2) . gAUIC) (A-3)
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To derive the probability that state 2 chooses to fight (f,)
if it is at node 2, we now have to consider not only the utilities
of outcomes but also the expected utility of reaching the
nonterminal node 4. A slightly condensed derivation of the
probability that state 2 chooses to fight is given as follows:

q. = Pr{U3(4) > U3(SQ)]
=Pr[U,(4) + &, > Ux(SQ) + 8sq]
= Prle,, < U,(4) — Ux(SQ) + &4]

® U2(4)-U(SQ)+es4
= f(€4’ 8sq) dssq d84

= f Fle4, Uy(4) — UxSQ) + &,] dey

= J' f(e)F[Ux(4) — Uy(SQ) + &,] de,

e\U24)
= ) { NG0) (a-4)

The expected utility to 2 of reaching node 4 depends on
whether state 1 will fight: U,(4) = p,U,(W2) + (1 —
p4)U,(C1). Hence, the probability that state 2 will choose to
fight at node 2 is

ex[p«aUz(W?H(l —pa)U2(C1)]

92 = Npa0avD+(-pdUalCl] 1 U250 ° (A-5)

The probability that state 2 chooses to fight at node 3 and
the probability that state 1 decides to fight at node 1 are
derived in exactly the same manner as above, giving

e \U2(W1)

q3 = 2 02D { NUACD) (A-6)

e)\[an1(W1)+(1—q3)U1(C2)]

1= eNasU1W)+(1-g3)U1(C2)] | o MaalpalUs(W2)+(1-pa)Ur(CH]+ (1-q2)U1(SQ)} ©

(A-7)

APPENDIX B: UTILITIES AND STRATEGIC
CHOICE PROBABILITIES FOR THE
INTERNATIONAL INTERACTION GAME

This appendix provides the nations’ utilities for the nodes
associated with the international interaction game shown in
Figure 6 and the resulting LORE choice probabilities. With
some abuse of notation, let U;(n) be the utility of nation i for
the outcome at node ». When 7 is a nonterminal node, U,(n)
represents the expected utility for node n over the actions

available at that node. The terminal node utilities were *

previously given in the specification of the international
interaction game. The expected utilities over the nonterminal
nodes are

Ui2) = q:U(4) + (1 — q,)UL(SQ);
Ui(3) = q3ULS) + (1 — g3)UiAcqn);
Ui(4) = psU6) + (1 — p))UiAcqy);
U(5) = psU(10) + (1 = p5)U(9);
Ui(6) = qsUi(8) + (1 — qo)UL7);
U(7) = p;U(11) + (1 — p;)U(Nego);
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U«(8) = psUiWar) + (1 — p))U(Capy);

Ui9) = qU(12) + (1 — go)U(Nego);
Ui(10) = g1 U(War) + (1 — q19) U(Cap,);
U(11) = guUiWar) + (1 = q)U{Capy);
Ui(12) = p,U(War) + (1 — p1,)U(Cap,).

All choice probabilities are with respect to the positive
action (versus “not” action), as in Figure 6. Let p, be the
probability that nation 1 chooses the positive action at node
i. Similarly, g; represents the probability that nation 2
chooses the positive action at node j. Finally, \ is set to one
for identification of the coefficients during estimation. Nation
1’s LQRE choice probabilities are then

JRITE)
b= U0 | Ui

£U16)

Ps= 201 1 eUl(Acql); )
N
£V100)
Ds 2U100) . U100 >

eUl(ll)

b= 201D 1 eUl(Nega);
e ULtWan)
ps= 2U10Wan - GUL(CapD) »
— 8.
Pu=p7
- and nation 2’s LQRE choice probabilities are

el2@®

92 = 0@ 1 GU250)°

U206

q: = eUz(S) + eUz(Acqz);

eV2®
96 = 0@ 1 g0 >

V212

99 = ST eUz(Nego);
eUz(War)
910 = JTaWan) 1 gUaCap) >

911 = q1o0-

Again, the probability of each terminal node is then given by
the product of the probabilities of actions leading to it:

Pr(SQ) = (1 — p(1 — q2);
Pr(Acq,) = (1 — p1)qa(1 — pa);
Pr(Acq,) = pi(1 — q5);
Pr(Nego) = (1 — p1)gapa(l — go)(1 — p7) + pigs(1 — ps)(1 — go);
Pr(Cap,) = (1 — p1)q2p4qs(1 — ps)
+ p1g5(1 — ps)gs(1 — p1o);
Pr(Capy) = (1 — p1)qops(1 — qe)p+(1 — q11)
+ p1g3ps(1 — q10);
Pr(Wary) = (1 — p1)qapa(1 — q6)pq11 + P193P 59105
Pr(War;) = (1 = p1)qzpqeps + pgs(1 = ps)qopra-
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