Derivation of p_4 in Appendix A (p.259) of

Curtis S. Signorino. 1999. "Strategic Interaction and the Statistical Analysis of International Conflict." APSR.

Curtis S. Signorino

July 10, 1999

The probability p_4 that state 1 will choose to fight at node 4 is

$$p_4 = \Pr[U_1^*(W_2) > U_1^*(C_1)]$$
 (1)

$$= \Pr[U_1(W_2) + \epsilon_{w_2} > U_1(C_1) + \epsilon_{c_1}]$$
(2)

$$= \Pr[\epsilon_{c1} < U_1(W2) - U_1(C1) + \epsilon_{w2}]$$
(3)

Let $f(\epsilon_{w2}, \epsilon_{c1})$ and $F(\epsilon_{w2}, \epsilon_{c1})$ be the joint pdf and cdf of $(\epsilon_{w2}, \epsilon_{c1})$ and let $F_{w2}(\epsilon_{w2}, \epsilon_{c1}) = dF(\epsilon_{w2}, \epsilon_{c1})/d\epsilon_{w2}$. Then

$$p_4 = \int_{-\infty}^{\infty} \int_{-\infty}^{U_1(W_2) - U_1(C_1) + \epsilon_{w_2}} f(\epsilon_{w_2}, \epsilon_{c_1}) d\epsilon_{c_1} d\epsilon_{w_2}$$
(4)

$$= \int_{-\infty}^{\infty} F_{w2}[\epsilon_{w2}, U_1(W2) - U_1(C1) + \epsilon_{w2}] d\epsilon_{w2}$$
(5)

This holds for any joint density $f(\epsilon_{w2}, \epsilon_{c1})$. Here, we now assume ϵ is distributed iid according to a type I extreme value density: $f(\epsilon) = \lambda \exp(-\lambda \epsilon - e^{-\lambda \epsilon})$ and $F(\epsilon) = \exp(-e^{-\lambda \epsilon})$, with $E[\epsilon] = \gamma/\lambda$ and $V[\epsilon] = \pi^2/(6\lambda^2)$, where γ is Euler's constant, approximately equal to 0.577.

With that assumption, Equation 5 becomes

$$p_4 = \int_{-\infty}^{\infty} f(\epsilon_{w2}) F[U_1(W2) - U_1(C1) + \epsilon_{w2}] d\epsilon_{w2}$$
(6)

$$= \int_{-\infty}^{\infty} \lambda \exp\left\{-\lambda \epsilon_{w2} - e^{-\lambda \epsilon_{w2}}\right\} \exp\left\{-e^{-\lambda [U_1(W_2) - U_1(C_1) + \epsilon_{w2}]}\right\} d\epsilon_{w2}$$
(7)

$$= \int_{-\infty}^{\infty} \lambda \exp\left\{-\lambda \epsilon_{w2} - e^{-\lambda \epsilon_{w2}} \left[1 + e^{-\lambda [U_1(W_2) - U_1(C_1)]}\right]\right\} d\epsilon_{w2}$$
(8)

$$= \int_{-\infty}^{\infty} \lambda \exp\left\{-\lambda \epsilon_{w2} - e^{-\lambda \epsilon_{w2}} \left[\frac{e^{\lambda U_1(W2)} + e^{\lambda U_1(C1)}}{e^{\lambda U_1(W2)}}\right]\right\} d\epsilon_{w2}$$
(9)

Now, let $z = \frac{1}{\lambda} \ln \left[\frac{e^{\lambda U_1(W2)} + e^{\lambda U_1(C1)}}{e^{\lambda U_1(W2)}} \right]$. Then

$$p_4 = \int_{-\infty}^{\infty} \lambda \exp\left\{-\lambda \epsilon_{w2} - e^{-\lambda \epsilon_{w2}} e^{\lambda z}\right\} d\epsilon_{w2}$$
(10)

$$= \int_{-\infty}^{\infty} \lambda \exp\left\{-\lambda \epsilon_{w2} - e^{-\lambda(\epsilon_{w2}-z)}\right\} d\epsilon_{w2}$$
(11)

$$= \int_{-\infty}^{\infty} \left(e^{-\lambda z} e^{\lambda z} \right) \lambda \exp\left\{ -\lambda \epsilon_{w2} - e^{-\lambda(\epsilon_{w2} - z)} \right\} d\epsilon_{w2}$$
(12)

$$= e^{-\lambda z} \int_{-\infty}^{\infty} \lambda \exp\left\{-\lambda(\epsilon_{w2} - z) - e^{-\lambda(\epsilon_{w2} - z)}\right\} d\epsilon_{w2}$$
(13)

Letting $\epsilon^* = \epsilon_{w2} - z$,

$$p_4 = e^{-\lambda z} \int_{-\infty}^{\infty} \lambda \exp\left\{-\lambda \epsilon^* - e^{-\lambda \epsilon^*}\right\} d\epsilon^*$$
(14)

$$= e^{-\lambda z} \int_{-\infty}^{\infty} f(\epsilon^*) d\epsilon^*$$
(15)

$$= e^{-\lambda z} \tag{16}$$
$$e^{\lambda U_1(W2)}$$

$$= \frac{e^{-\lambda V}}{e^{\lambda U_1(W2)} + e^{\lambda U_1(C1)}}$$
(17)