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Abstract

We present a simple method for estimating regressions b@sextensive-form
games. Our procedure, which can be implemented in mostatrstatistical pack-
ages, involves sequentially estimating standard logitgKobits) in a manner analo-
gous to backwards induction. We demonstrate that the teabmroduces consistent
parameter estimates and show how to calculate consistertastd errors. To illustrate
the method, we replicate Leblang’s (2003) study of speimgaittacks by financial
markets and government responses to these attacks.



1 INTRODUCTION

Strategic interaction is a fundamental consideration enstudy of political choice. The
choices of members of Congress to seek reelection or retiedmost certainly related
to the decisions of potential challengers (Carson 2003gcktves must decide whether
or not to veto legislation in light of the potential for a Islgtive override (Carson and
Marshall 2004). In international politics, Signorino arardr (2006) examine the strategic
sources of extended deterrence and Leblang (2003) showshthatrategic interaction
between governments and markets is a critical element iemstahding currency crises.
All of the aforementioned theoretical insights require @mpl tests that roughly conform

to the important structural elements of the decision makimgronment.

Despite the increased use of choice (or game) theoreti@eapbns in modern po-
litical science research, there is often a subtle discanpetveen theories and the em-
pirical tests of these theories. “Indirect” statisticadteeof formal models generally fail
to properly characterize the hypothesized relationshipstatistical testing. Techniques
for ameliorating this problem have been previously presgi®ignorino 1999, Signorino
2003, Signorino 2002, Lewis and Schultz 2003, Signorinokardr 2006). However, these
methods generally require researchers to program and fitenipe a frequently complex,

problem-specific model.

In this paper, we simplify the estimation of statisticabstgic models in an effort to
bridge the disconnect between theory and empirical argly®ur motivation is primar-
ily practical with respect to most contemporary researcpadlitical science. Signorino
(1999, 2002, 2003) provides a general framework for estingagtatistical strategic mod-

els, along with different ways of conceptualizing the utaiety that can make strategic

1Signorino and Yilmaz (2003) focus on this problem.



models “statistical.” Based on this, the program STRAT weagetbped, allowing scholars
to estimate strategic models relevant to their substaméisearclf. The types of games
that can be estimated in STRAT, however, are limited to sigemen relatively simple —
though quite common — decision structures. Scholars desio estimate parameters in a
strategic model that is not included in STRAT must therefmestruct and estimate their

own maximum likelihood models.

In the following sections, we first demonstrate a useful siiicption that allows recur-
sive statistical strategic models to be estimated with Bnagriants of logit and probit —
and in a way that is consistent with the underlying theorye Tethod is very similar to
the game-theoretic notion of backwards induction. We disovshow to correctly estimate
the standard errors using this simplified technique. RmaBing the proposed method, we

replicate Leblang’s (2003) study of currency crises.

2 REFERENTEXAMPLE

It will be helpful to employ an example throughout our anaysFigure 1 displays the
structure of our referent model. In this game, player A masiose between playing Right
(R) or Left (L). If A chooses Right, player B must then choose whether tg pédt () or
left (¢). Playing left results in Outcom&/. If B chooses right, k) is the outcome. The
players utilities are shown at the terminal nodes — é/g(,L) is state A's utility for theL

outcome, and/z (L) is state B’s utility for thel./ outcome.

Structurally, the model is quite simple. The fact that pfay# not make their decisions

simultaneously (or without knowledge of other players’ meymakes this a fullgecursive

2“STRAT: A Program for Estimating Statistical Strategic Mds' is available at
www.rochester.edu/College/PSC/signorino.
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Figure 1: Two-Player GameRlayer A must choose whether to play Left (L) or Right (R).
If Player A plays R, Player B must then choose whether to pédy(l) or Right (r).

model. Assuming the players and we as analysts have conmpi@tenation concerning the
utilities, then for any specification of the utilities, theodel can be solved via backwards

induction for the subgame perfect equilibrium.

The logic of backwards induction is relatively straightf@rd. We start at the end nodes
of the game and then ask what choice the player will make airheeding decision node.
With perfect and complete information we can determine Wwihuption will be selected.
Given that knowledge, we can step back to the next precediagidn node and determine
what that player will do. For example, consider Figure 1. ueffirst suppose that A's
preferences ar&r - L = R( and B's areRr = R(.2 If we start with B’s decision, we
can see that, if A chooséds, B will chooser, leading toRr. Player A knows this, so her
decision betweerl, and R is really a decision between outcomesand Rr. Given As

preferences above, A will chooge leading to the subgame perfect equilibrium outcome

3z = y = z means that option is preferred tay, thaty is preferred taz, and that (via transitivity): is
preferred to:. We omitL in B's preferences because it is not relevant for this game.

3



Rr. Now suppose As preferences are as stated above, but Bexartly the opposite:
Rl¢ > Rr. In this case, if A chooseg, then B will choose/. Because A preferd to

R¢, the equilibrium outcome will bé.. It is important to note that it is this ability to work
from the end of the game back towards its beginning that allas\to employ the statistical

technique we will later present.

In its present form, the model is not statistical. To corsteustatistical strategic model,
we need to assume some form of uncertainty on the part of dyegd and/or analyst. There
are a number of ways we might do so: agent error, private nmigion by the players,
or complete information by the players but imperfect measwent (or specification of
regressors) by the analyst (Signorino 2003). Of the thie® ohe that is consistent with
our simplified estimation technique is the agent error gjpation? We now give Figure 1

an agent error representation.

2.1 The Statistical Strategic Model

To fully specify the statistical model, we assume there iback to the players’ expected

utilities for their actions. Consider B’s decision. B’slities will be specified as

Up(l) = Up(l) +ap=Up(Rl) + oy 1)

Ug(r) = Up(r)+ o, =Up(Rr) + a, (2)

whereU}(-) is considered the “true” utilityl/5(-) is the component of the utility that is

observable to the other players and to the analyst,carsda random private component,

“Fortunately, for those who do not like the Non-Nash intetagtien of the agent error specification, Sig-
norino (2003) shows that, for simple models such as thatgarei 1, it will yield similar results as the (strictly
Nash) private information version.



observable only to player B. We assume B maximizes her (trilg).

Because we as the analysts do not observe tteems, we can only make probabilistic
statements about whether B is likely to play right or left. ®®ra density is assumed for
«, derivation of the choice probabilities is straightfordiafollowing traditional random

utility models, as demonstrated in a strategic context gm&iino (1999, 2003).

We will assume throughout this paper that thare distributed Type | Extreme Value,

leading to logit probabilities.B’s probabilities p, andp,, of playing right and left, respec-

tively, are
eUB(Rr)
Pr = Us(RO 1 oUs(RY) (3)
eUn(RL)
Pt = “Us(RD 1 cUs(RN) (4)

Now consider A's choice between playing Right and Left. If ays Left, the game
ends. However, A's decision to pick Right depends on whatisim&s B will do. Because
thea’s are private information, A is uncertain of B’s action atlggrefore, must estimate
the probability that B will play right or left. Therefore, #\utility for playing Right is an
expected utility over the lottery consisting of B’s choiggth probabilities as abovep,,

andp,. Player As utilities are thus

UA(L) = Ua(l)+ oy (5)
US(R) = EU(R)+ an (6)
= pUa(RL) + p,Us(Rr) + ag, (7)

>The techniques demonstrated here can be implemented itlyetkecsame fashion if one assumes the
are Normally distributed, resulting in probit probabéti



We will assume that the analyst shares the same uncertarteglayers. With the
same assumptions as before, the probabilities of A playiigihtR/ersus Left are logit
probabilities. The twist here is that they are based on aeaed utility calculation and do
not take the same form as logit probabilities in typicalistatal analyses. A's probabilities,

pr andpy, of picking Right and Left, respectively, are

eUa(L) eUa(l)

L = eUa(L) 4 ¢EUA(R) - eUa(L) 4 epeUa(RO+prUa(Rr) (8)
cEUA(R) ePeUa(RO+prUa(Rr)

Pr = eUa(L) 4 ¢EUA(R) - eUa(L)  epeUa(RO+prUa(Rr)) ©)

For any specification of the utilitiesp{, p., pr,, pr) are the equilibrium probabilities
of the statistical strategic model. Since we have assumedthle uncertainty enters as
Type | extreme value perturbations to the action utilit{es,p., pr, pr) is a Logit Quantal
Response Equilibrium (see McKelvey and Palfrey (1998) agd@ino (1999)). Because
the a terms are assumed to be independently distributed, thél@gqun probabilities for

the outcomes are just the product of the choice probalsiltieng each outcome’s path:

PrlL] = pgr (10)
Pr[Rl] = pr-pe (11)
Pr[Rr] = pgr-pr (12)

Having specified the statistical strategic model, a natqualstion concerns how the
equilibria of the statistical model compare to the subgasréept equilibria of the model
with complete information — i.e., without the shocks to meg/ expected utilities. The

intuition for this is best explained with reference to theamace of the error terms, assuming



the observed utilities are held constant. As the variandbeferror terms goes to zero,
the model becomes one of players with perfect and complé&ten@ation, who maximize
their utility at each decision point. Therefore, in the linthe equilibria are subgame
perfect. When the variance of the error terms is non-zeroektremely small relative
to the observed utilities, the statistical equilibria afteesemble a smoothed version of
the subgame perfect equilibria. As the variance of the déenons increase, the equilibria
may at times resemble smoothed versions of the subgamecpedeilibria, but may at
other times look very different from the subgame perfectildaria because the choice

probabilities affect expected utility calculations.

The last step in specifying the model is to assign regredsotise utilities and then
estimate the parameters accompanying those regressastdatfstical strategic model is
just a strategic, random utility model. Therefore, the &lgaum choice and outcome prob-
abilities provide a probability model that can be used in imaxn likelihood estimation.
The method of estimation — and, specifically, a new, simplethod for doing so — is the

subject to which we now turn.

3 STATISTICAL BACKWARDS INDUCTION

We provide a technique in this section that allows pracigis to estimate recursive strate-
gic models (of any depth or breadth) requiring only variasiof logit or probit in standard
statistical packages. This technique has a number of naggepties in relation to the sys-
tem estimator currently used. Before turning to the new @dace, we first specify the

system estimator.
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Figure 2: Two-Player Model with Binary Choices.

3.1 The System Estimator

To date, empirical analyses employing statistical stiategpdels have employed a “sys-
tem” approach to estimation — where all parameters are atuirsimultaneously for the
entire model (see, for example, Signorino (1999, 2003, pMignorino and Tarar (2006);
Signorino and Yilmaz (2003); Guo (2002); Carter (2005); €kembush (2005); Carson
(2003, 2005), Carson and Marshall (200%)Jo compare the system estimator to Statisti-

cal Backwards Induction [SBI], it will be helpful to changarahotation slightly.

Consider the game in Figure 2, which is a more fully specifiesion of the model in

Figure 1. Let us now assume that our data is coded as

e 1 if U (R) > U%(L) 13
0 if U%(L) > U%(R)

6STRAT currently implements a systems approach to maximketitiood estimation of the parameters.
This is also referred to as a “full information maximum likedod” estimator.



and

1 if Us(r) > Uji(4

b B() 2 Up(0) ”
0 if U5(0) > Ujy(r)

wherey, = 1 andyg = 1 correspond to A and B choosing andr, respectively. The

equilibrium action probabilities are the same as beforecobding to the new coding, they

arepr = Pr(ya = 1) andp, = Pr(yg = 1).

Figure 2 also displays a very simple specification of regnesstor the utilities. Here,
we have normalized/4(y4 = 0) = 0 andUg(ya = 1,y = 0) = 0. The remaining

utilities are specified with a single regressor and paramete

UA(yA = 17yB = 0) = Xalﬁal
UA(yA = 17yB = 1) = Xa2ﬁa2

Us(ya=lyp=1) = Xyl

Assuming we have data for all outcomes and regressors, teesyistem estimator

would maximize the log of the following likelihood with resgt to the regression coeffi-

Cientsﬁal ’ ﬁaQa andﬁbZ:

I — Hp(Ll—yA) - (pr pz)yA(l—yB) - (pr pr)yA YB

where the observation indexhas been dropped. In sum, for the system estimator, we
construct a probability model for all of the actions and omes, and then use that to form
the likelihood to be maximized. All parameters for all of thlayers are then estimated

simultaneously.



3.2 Statistical Backwards Induction Estimator

In order to illustrate estimation by Statistical Backwatdduction (SBI), it is helpful to

think of the strategic model as a recursive system of equsijsee also Signorino (2002)
and Signorino and Yilmaz (2003)). The main insight is thaaursive system of equations
can be estimated equation-by-equation. Therefore, asweustatistical strategic model

can be estimated by univariate analogs of backwards irmucti

3.2.1 The Strategic Model as a Recursive System of Equations

Consider the strategic model from the previous section lh@data coding in equations 13

and 14. These imply the following system of latent varialojaaions:

ya = Ua(R) = UL(L) (15)

yp = Up(r) =Ugp(0) (16)

where the data are codedgs= 1if y; > 0, andy; = 0if y; <0, for j € {A, B}. Given

the regressor specification in Figure 2, the system can litewias

Ya = D¢ Xal ﬁal + Dr Xa2 ﬁa2 +€a (17)

Yyp = Xl tep (18)

If we assume thex perturbations to the expected utilities are distributedely Extreme

Value, then the; terms are distributed logistic (McFadden (1974)). The ltesychoice
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probabilitiesp, = Pr[ys > 0] andpr = Pr[y% > 0] will be logit probabilities’

It bears reiterating that this system of latent variableagigus is completely consistent
with the statistical game with agent error — it is just a diffiet way of writing the same
model. Moreover, the probabilities are all logit probai®k, but, again, where the expected

utility calculations are explicitly modeled.

Because thex shocks are assumed independent, diterms are also independent.
Therefore, Equations 17—-18 are not “linked” through theioeterms. Moreover, the sys-
tem of equations is recursive, which, in theory, would imghigt we can “start from the
bottom and work up,” estimating first the equation §¢y, and then using that information
in the estimation ofy%. Indeed, it is not coincidental that the game-theoretic @hadn
be solved via backwards induction and that this statistitadlel can be estimated in an
analogous fashion. The only problem with this setup so fénas, although the equations
for y3; andy? result in logit probabilities, the systematic component/pfdoes not take
the same functional form as in typical logit models. Thisisgourse, due to the expected
utility calculation. If Figure 2 generated the data and weente use logit with the typical
first-order linearX 8 specification for each equation, then our parameter essnabuld
be biased and inconsistent (see Signorino and Yilmaz (306®)wever, as we will show,

this problem can be easily overcome.

3.2.2 The Basic SBI Procedure

Statistical Backwards Induction requires three compa@eammon to empirical political
science: (1) standard logit or probit regression (e.g.,taté§ SPSS, etc), (2) the ability
to calculate predicted probabilities from the aforemearg regression, and (3) the ability

to generate new variables by multiplying two existing valés. The basic idea for the

"Probit probabilities result from an assumption of Normatlgtributed error terms.
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SBI is to estimate the system equation-by-equation usegdstrd logit, but transforming
regressors in expected utility calculations into “new”nesgsors that can be used in standard
logit estimation. Consider our strategic system of equatia Equations 17—-18 describing

Figure 2. For our referent example, the basic SBI estimatronedure is the following:

1. B's Choice. Sinceyy; = X + €5 does not require information concerning,

logit may be used to estimatk,. Oncef,, is obtained, calculatg. andp, = 1 — p,..

2. A's Choice. Substitutep, andp, into A's equation, giving

yjl = ﬁZXalﬁal + ﬁrXaZﬁaZ + €a

To use standard statistical packages, we must first creatieathsformed regressors
Za = peXa1 @andZ,, = p.X,.. LOgit may then be used to estimate the parameters

in the equation

yz = Zalﬁal + Za?ﬁa? + €4

Itis important to note that in each stage, the transformieshtarariable regression equa-
tion is exactly the same as the original, just written in &edént way. Therefore, although
the parameters in the transformed equations are assoeidtedransformed regressors,
the interpretation of the parameters is the same as in tgenaliequation. For example,
3.5 is still the estimated effect ak,, on A's utility for outcome(y, = 1,y5 = 1). The
transformation of the regressors is only done to allow foinestion in standard computer

packages, and it does not affect the interpretation of th@peter estimates.

Statistical Backwards Induction implies a number of niceperties above and beyond
the ease of implementation. Logit estimation in each staje/ild consistent estimates

of the parameters and functions of the parameter estingielk,as the equilibrium choice

12



and outcome probabilities. The consistency of the paranestanates derives from their

status as maximum likelihood estimators. Obviously, systéstimators would also yield

consistent estimates. Indeed, because the equationscarsive and because the error
terms are uncorrelated, we would expect both methods (ayatel SBI) to yield virtually

identical results. However, they may not — and there aretadil benefits to using SBI.

First, SBI often provides a feasible estimator, when théssg®stimator might be much
more difficult to estimate. The likelihood function for thgssem estimator is not guaran-
teed to be globally concave. That is not to say that there aitgpie extremum, but rather
that the likelihood function may only be quasi-concavesléasy to show just from plot-
ting the likelihood that as the number of observations bexosmall and as the variance of
the error term becomes small, the likelihood function beesmcreasingly “step-like,” re-
flecting the fact that the equilibrium probabilities closapproximate the subgame perfect
step response. The effect of this is that system estimatanhmave problems with weak
(or fragile) identification. In contrast, logit and probiave globally concave likelihood

functions, resulting in much easier and more rapid numkoisaémization®

Second, SBl is fast. Optimized algorithms exist for impletrgy logit (or probit and
their variants) in a host of software packages, while mazimgj a user-specified likelihood
is often a slow and painstaking process that heavily dependthe quality of starting
values. Across a host of tests and implementations, the ®&kegic model iterates and

converges more rapidly and requires fewer iterations tinadentical systems approach.

Finally, SBI retains more data for estimation. In practittes system method requires
all of the data appearing anywhere in the game to be senttsinedusly to a procedure that

calculates the log-likelihood of each observation. Althlowa number of techniques exist

8Monte carlo simulations suggest a rather rapid decay indheergence properties of system estimators
(in Stata) that posed no problem for SBI.
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for dealing with missing data, listwise deletion is stilteri the default method. In this
case, if any observation contains a missing data point,itieeeow is generally deleted.
So for example, if a variable in A's decision contains miggilata, then the entire row will
be deleted, even if that variable does not appear in B’s mecig his produces a needless
loss of data in estimating B’s parameters. Because themaysteecursive, and because the
SBI approach estimates each equation individually, mgsdata outside a given subgame
will not affect the sample for the equation associated whtt subgame. Therefore, the

iterative approach is able to use as much data as possildénma¢ing the parameters.

Finally, we show in the appendix that the SBI estimator poeduconsistent estimates
of G.1, Ba2, @nd[,. It also produces consistent estimates of the standard eir6,,.
However, becausg andp, are substituted into A's equation and the resultifjg = p, X,
and Z,, = p, X, variables are treated as data (without estimation unogy}aiSBI will
yield biased estimates of the standard errorggfand G,.. Fortunately, this is easily

remedied by a nonparametric bootstrap.

3.3 SBI with Bootstrapped Standard Errors

To retain the simplicity of Statistical Backwards Inductjeve rely on a simulation method
for calculating the standard errors — one that adds only glesistep to the procedure
outlined in the previous section. The approach we use isma fufrthe nonparametric
bootstrap. The bootstrap procedure is quite simpfeiterations of the bootstrap are run.
During each iteratiomn = 1,2, ..., M of the bootstrap, a sample is randomly drawn with
replacement from the original data. SBI is then used to ed@rparameters governing B’s
choice, generate new regressors, and estimate A's pamnanfetach are saved). After the
M iterations of the bootstrap procedure, the standard eofoks parameter estimates are

calculated by simply taking the standard deviations of Hwed estimates.

14



As mentioned previously, the bootstrap correction is omlgassary for the estimation
of A’s parameters. Becaud&'s actions do not depend on any auxiliary parameters, the
first-stage maximum likelihood standard errors are coeststlt is only when we turn to
choices that depend on the expected choices of others tbategtion for the presence of a
random action probability is necessary. With this need &rextion in mind, we compare
the system and SBI approaches for estimating statistickgtic models in a Monte Carlo

experiment.

3.4 Monte Carlo Analysis

For the Monte Carlo analysis, we assumed a similar regregsmification as in Figure 2.
We have normalized/4(ya = 0) = 0 andUg(ya = 1,y = 0) = 0. The remaining

utilities are specified as follows:

Uslya=1l,yp =0) = X2l

UA(yA = lvyB = ]-) = Xa3ﬁa3 + Xcﬁa?)c

Us(ya=1lyp=1) = By + Xp3Bs + XcFsse-

wherefS.e = 6u3 = Baze = oz = 1, Brze = —1 and g = 7. X, iS @ common regressor
that appears in both players’ utilities. Data were gendratesed on the behavioral as-
sumptions of the game, with uniformly distributed ovef—2r, 2], € distributed logistic,
with V' (e) = «2/3. Simulations were run for sample sizes N=500 and N=5000 e@ata
were generated, the parameters were estimated using leodyskem and SBI methods,
and correct standard errors for SBI are calculated usingdoéstrap with 1000 bootstrap

iterations. Simulations were repeated 5000 times for N=25@02000 times for N=5000 to

15



form the densities of the estimators.

N=500 N=5000
Parameter Estimates (.3 Bze Bas Buze
System 1.096  1.090 1.037 1.034

(224)  (223) (.061)  (.058)

SBI 1.047 1.043  1.024  1.021
(227)  (226) (.065)  (.063)

—_—

Standard Errors se(Bas)  s€(Base)  se(Bas)  s€(Base)

System 215 211 .062 061
(054)  (.055)  (.004)  (.004)

Bootstrapped SBI .255 .252 .067 .067
(.083) (.084) (.006) (.006)

Table 1: Monte Carlo ResultS.he first number in each cell is the mean of the monte carlo
density. The number in parentheses is the standard dewiatio

Table 1 summarizes the results of the Monte Carlo analysis foand5,s.. The first
number in each cell is the mean of the monte carlo density.nlingber in parentheses is
the standard deviation. As we previously noted, the SBhesttir will produce consistent
estimates for the parameters (i.e., thig) for all players in the game, as well as for the
standard errors for B. The upper section of Table 1 displagsrionte carlo sampling dis-
tributions ofﬁa?, and Bagc for the system and SBI estimators. First, note that both Ble S
and system estimators are consistent; they both recovénh@arameter values on aver-

age? Second, although the SBI estimator uses less informatiam e system estimator,

9Although not shown here, the results fay, are similar to those reported in Table 1.
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it is nearly as efficient for samples of at least 500. Indeed,also useful to note that the
standard deviation of the system estimator’s density igythid standard for the standard
error estimators. So, for samples of 500, we would like theraye estimated standard

error to be close to .22, while for N=5000, it should be clas®86.

For the monte carloAd’s estimated standard errors were calculated in two wayg Th
“system” standard errors are based on the (estimated) dastimpariance from systems
estimation. The “bootstrapped SBI” standard errors arelywed by running the boot-
strap procedure on the SBI estimator and then taking thelatdrdeviation of the saved

parameter estimates.

The lower section of Table 1 displays the average estimdtadlard error based on
system and bootstrapped SBI estimation. The system staedanrs are obviously very
close to the standard deviations of the sampling distidimgtin the upper section. More
importantly for our purposes here, the bootstrapped SBUOstal errors are also quite close.
As is to be expected, the bootstrapped SBI standard ersdightly larger than the system
standard errors. This is because the SBI method is itsedfdé&cient than the system
method. Moreover, the bootstap method will induce somdimeficy. Nevertheless, the
sampling properties of the SBI method and of bootstappiryirtinat the boostrapped SBI
standard errors will be consistent. In fact, we can see thte@asample increases to 5000,

the difference in the standard errors is quite small.

Although not reported here, the SBI standard errors for Blgias will be larger than
the corresponding system standard errors. SBI uses a srsaifgle to estimate the co-
efficients at “lower” nodes, so this again comes as littlgpsse. Because the system is
recursive, SBI standard errors for this step are consistdotvever, SBI is less efficient

than the systems estimator, which simultaneously utiliiegvailable information.

With a theoretical model and its statistical counterpatiand, we illustrate the power

17



of this technique with real data in the next section.

4 DATA ANALYSIS

For most countries, exchange rate policy is the single nmygbrtant macroeconomic pol-
icy decision to be made (Cooper 1999). Because there aretoastchange rate variability,
many states choose to fix their currencies to some externhbare.g. the US dollar or the
Euro. When fixed exchange rates are chosen governments omisildiscal and monetary
policy to maintain a par with a low inflation currency. As tiieeffects of fiscal and mon-
etary excess compound, arbitrage opportunities arisenthgitiead individual investors to
take financial positions that combine to “attack” the desdigpar value of a currency (in
terms of some other currency). Governments now confronffewt choice, to expend
resources in defense of the par value or to allow the curremdgvalue, with all the con-
comitant distributional issues accompanying devaluatiBngame theoretic rendition is
presented in Figure 3. It is this basic decision structurearket decisions to engage in
speculative attacks and governmental responses to thasksat that we use to compare

system estimation to Statistical Backwards Induction.

Leblang (2003) analyzes the strategic aspect of specalathacks on currencies in
international political economy using the model in Figure Bsing Signorino’s (1999)
("system”) method, he estimates a model of strategic iotema between speculators in
currency markets and policymakers in governments. To bar,che analyzes a sample
of monthly data from states that are nominally democtatidth pegged exchange rates.
Because we are merely interested in demonstrating theasitias among the estimation

methods, we necessarily give short shrift to the substairtiplications of the results.

10Countries with Polity scores greater than 5.

18



Dev Def Bmo Brm1
BgO Xng

(a) Speculative Attack Game (b) With Regressors

Figure 3: Leblang’s Model of Speculative Attacks on Curieac

The variables that measure market utilitiéS() for the status quo, defense, and deval-
uation, and government utilityi;) for defense and devaluation are listed in Table 2. In
general terms, markets are argued to attack currencies tbenis a disconnect between
the fixed exchange rate and the equilibrium rate of exchapgeied by Reserves, Real
Exchange Rate Overvaluation, Credit Growth], a history eésjionable fixes [proxied
by Prior Attacks], and/or greater structural incentivesthallenge a government’s resolve
[proxied by Contagion, US Interest Rates, and Debt Servighilarly, Governments are
argued to defend pegged exchange rates when it is poltieghiedient [proxied by Unified
Government, Campaign/Election. Right Government, ExBexttor, and Post Election].
At the same time, Governments must consider the resourdasiatdisposal with which
to combat speculative attacks [proxied by Interest Ratapjt@l Controls, and Reserves].

With general concepts and measured factors determininmérket’s utility for specula-
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tive attack and government responses in mind, we provideatas of statistical strategic

models in Table 3.

Variables Utility Sign Measures

Unified Government G + Binary: Party that controls the exigelalso
controls the lower house of the legislattire

Export Sector ; G - Log(%)t_l: Size of the export sector
relative to GDP

Campaign/Election G +  Binary: Three month campaigns and
the month of electiorfs

Post Election G - Binary: Three months postdating every
election month

Right Government G + Binary: Governments classified Lefijt€e

and Right according to Left-Right positions on
state control of the econorfiy
Interest Rates ; G + Deflated discount rates, money market rates,
or deposit rates depending on availabflity
Capital Controls_ G,M +,+ Binary: Controls on the capital accofint

Reserves GM ++ Lq%zf;y)t_l: Total reserves minus gold to
base money [MO]

RER Overvaluation M - Hodrick-Prescott residuals of the thiyn
real exchange rate

Credit Growth_; M - Rate of growth in domestic credit

US Interest Ratgs; M - Interest rate on 90 day US deposits

Debt Service_; M - Total interest and debt repayment in foreign

currencie$ — IMF, short, and long term
loans — as a percentage of expbrts

Contagion M - Number of speculative attacks outside
countrys in montht.
Prior Attacks M - Number of speculative attacks for

countrys in all months preceding.

@ Database of Political Institutions, Beck, Clarke, Grofeeder and Walsh (2001)
updated by Leblang (2003).

b World Development Indicators, (World Bank N. d.).

¢ International Financial Statistics, (International Mtarg Fund N. cb).

d Annual Report on Exchange Arrangements and Exchange &sts,

International Monetary Fund (N. &.

Table 2: Variables and Measures from Leblang (2003)
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4.1 Results

The replication results using system and SBI estimatorpr@sented in Table 3. The table

is divided into an upper and lower section. In the upper sacthe parameter estimates for
the constant terms3f,o, 5,0, 5,1) are presented. In the lower section, the estimates asso-
ciated with regressors i, and X, are presented. The column labelegstenreplicates

the system estimator results in Leblang’s (2003) Table 2 ddlumns labele&BlI repli-

cate Leblang’s results, but using Statistical Backwardsittion. Bootstrapping is used to
correct the bias in standard errors for Markets for reasessribed in Section A.2. The

far left column presents the name of the variables while ¢éimeaining columns reflect the
estimation method and the estimated coefficient relatiagthriable to the utility for the

outcome described by the column heading.

The most prominent result is that reported statisticaliigance does not differ across
the estimation techniques. Put simply, Statistical Backiwénduction results in inferences
that do not at all diverge from the systems estimator. Thembades and signs of the
estimates also do not substantially differ between theegystand SBI estimators providing
further evidence of the equation-by-equation techniquedige. The standard errors are also
quite similar. This replication exercise demonstratesrplified technique for the analysis

of currency crises that is both useful and closely mirr@system equivalent.

Assessing the fit of the general model, the bottom row of T8ldbows a very small
difference between the log-likelihoods of the system ante®PBroaches to estimating this
statistical strategic model. Comparing the sum of the ikglihoods from the SBI estima-
tor to the system log-likelihood, the resulting differerise0466'* The tiny differences
in realized values confirm that this simplified method is vsiryilar to the full systems

estimator. With these similarities in mind, we turn to thédewce regarding government

This result is obtained by subtracting the sunfd@ I log-likelihoods from the system log-likelihood.
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System SBI

Constants Market Government Market Government
Byo -.43 .20
(.78) (.78)
Bmo -3.66* -4.05*
(.30) (.47)
Bm1 -3.14* -3.41*
(.29) (.50)
System SBI
Market Government Market Government
Variable Bm By Bm B
Unified Government -.35 -.07
(.35) (.45)
Export Sectar 4 -.20 -.29
(.17) (.23)
Campaign/Election 1.66* 2.23*
(.75) (.93)
Post Election 1.06 1.10
(.59) (.74)
Right Government -.94* -1.55*
(.45) (.65)
Interest Rates | 1.93* 1.33*
(.64) (.69)
Capital Controls_ -.45 .07 -.42 .67
(.25) (.75) (.47) (.79)
Reserves ; .23* .31* .29* .59*
(.06) (.17) (.07) (.21)
RER Overvaluation  -.44* -.46*
(.09) (.18)
Credit Growth_; -.06* -.07*
(.03) (.04)
US Interest Ratges; -.05 -.05
(.06) (.06)
Debt Service_; -.03 -.03
(.05) (.05)
Contagion -.12* -.13*
(.05) (.05)
Prior Attacks -.12* -.12*
(.05) (.05)
N 7240 7240 7240 88
Log-likelihood -482.02 -432.27 -49.79

Table 3: Replication of Leblang’s Results.
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decisions to defend or devalue before assessing the detartaiof speculative attacks.

4.1.1 To Defend or Devalue? (G)

We first assess government decisions to defend or devdhied Governmentils to re-
ject the null hypothesis using both systems and StatidBiaekwards Induction estimation.
Furthermore, the astute reader will note that the estintadgs overlapping 95% confi-
dence intervals. Similarly, thExport Sections statistically insignificant without regard to
the estimation technique and the 95% confidence intervatsathe two estimation meth-
ods contain both estimates. The same holds foPt# Electiorperiod. The two estimates
are very similar numerically and the confidence intervaleh@nsiderable overlajCap-
ital Controlsfail to reject the null hypothesis of no effect and the paramnis sufficiently
variable that the 95% confidence intervals overlap. Withstiygport for the null hypothesis

explored, we now complete the results for Government datssi

Systems and SBI techniques provide identical inferencdssanilar estimates of the
effects of exogenous factors on Government (G) utilities.dxampleCampaign/Election
periods increase the likelihood of defenses of par valuéisowt regard to the estimation
technique. Furthermore, the systems and SBI estimategpaeaged by less than a single
standard deviationRight Governmentare less likely to defend pegged exchange rates,
all other things equal and this result does not depend ondti@ation strategy. Though
it might appear that the two estimates are quite differeatheestimate is contained in
the 95% confidence interval of the other. Aderest Ratesncrease, defenses become
more likely and the 95% confidence intervals of both estishat®w considerable overlap.
Lastly, foreign exchangBeservesre liquid assets with which to defend an exchange rate;
it is not surprising thaReservesncrease the likelihood of defenses. Government utilities

showcase minimal differences between systems estimatidrS8l. We now turn to the
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determinants of market decisions.

4.1.2 Speculative Attacks and the Status Quo (M)

Just as before, there is a strong congruence between tHts resthe two approaches to
estimating statistical strategic models. For exam@lpital Controlshave no discernible
effect on the utility of speculative attacks and the systamd SBI estimates are nearly
numerically identical. SimilarlyReservesas expected, deter speculation and the result
does not depend on the estimator used. The estimated edfettheir associated standard
errors differ ever so slightly, but each estimate is withime gtandard deviation of the other
suggesting significant overlap. Market utility for the sgatjuo is increasing in the size of

foreign exchange reserves.

Real Exchange Rate OvervaluatiandCredit Growthboth decrease market utility for
the status quo with estimates that are nearly numericadigtidal. Without regard to the
estimation technique employed, overvalued real exchaatgs and high levels of domestic
credit growth encourage speculative attacks. Turning ¢oeffects ofUS Interest Rates
we see that the estimates are statistically insignificanhbmerically identical. Similarly,
Debt Servicénas no statistically discernible influence on market iggifor the status quo,
but the results to two decimal places are identical for blo¢heffect and its standard error.
Continuing the theme of identical estimat€gntagionand Prior Attacksboth decrease
the utility that markets derive from the status quo; thenesated effects are almost identical
while the associated standard errors are identical. Toledache discussion of results, we

briefly turn our attention to the remaining parameters.

There is no statistically significant difference betweem itimarket utilities for defense
and devaluation in either the systems or SBI estimates assepted by the constant. Sub-

stantively, this implies that there is no evidence that raerkecessarily prefer devaluations
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to defenses given a speculative attack.

Two general themes emerge from this reanalysis of Lebld@8083) work on currency
crises. First, there are no important differences betweaatisBcal Backwards Induction
and systems methods of estimating statistical strategidetso Second, there is strong
evidence of strategic interaction between states and itsankanteractions that lead to

non-events, currency crises and devaluations, and defefi@xchange rate pegs.

5 CONCLUSION

Our objective in this paper has been to provide a simple ntefibioestimating recursive,

statistical strategic models. Researchers can now use oarnammands (e.g., logit, pro-
bit, bootstrap) in their favorite statistical package ttoreate these models. Moreover, the
technique is flexible, allowing researchers to estimateatsatbrresponding to a wide array

of strategic situations.

As we have shown, this user-friendliness does come with # sost: the SBI estimator
is less efficient than the full information system estimaktowever, for most data sets, the
difference should be negligible. Indeed, we found no suttsta differences between the

system and SBI replications of the Leblang (2003) analysis.

The above cost, we believe, is well offset by the introductd a large tool set for
political science scholars. Deriving statistical modélattare consistent with theoretical
models is difficult enough. The programming requirementegaly associated with these
specialized models are often a roadblock to their impleatent. By removing that road-
block, researchers can get on with the business of substartearch concerning strategic

political behavior.
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A  PROPERTIES OF THESBI ESTIMATOR

The general problem of multi-step estimation is considémesibroad econometric litera-

ture. Consistency is almost certain, because maximumhiket estimators are consistent,
as are functions of them. That said, it is instructive to stigate the equation-by-equation
technique and to provide a general analysis of its proggertMe first ask, is SBI estimation

consistent?

A.1 Consistency

The SBI strategic estimator is a special case of the twost@gamum likelihood estima-
tors described in Murphy and Topel (1985). Thus, consistehthe SBI estimator follows
from the consistency of two step maximum likelihood estioraprocedures. For sim-
plicity, consider a simple case with two models, in which omedel is embedded in the
other:

yi = fi(z1,6h) (19)
Yo = fa(w1,22,01,0) (20)

Two-step maximum likelihood first estimates the paramegastar§; by maximum like-
lihood. 6, is then estimated by maximum likelihood with inserted in place of; as
if it were known (Greene 2000). The consistency of the firgpgbllows from the con-
sistency of MLE estimators. Murphy and Topel (1985) showt #stimatingd, from
fo(ya | 1, 22, 91, 0,) is asymptotically equivalent to estimating it frofs(ys | z1, 2, 61, 65),
therefore the second step is also consistent (Murphy anel T@&5).

In our equation-by-equation strategic method, the firgh stnsists of estimating B’s
choice probabilities by logit (or probit), and then usingdk estimates as if they were
known in estimating A's choice probabilities with logit (probit). Thus, it follows that
both steps of the SBI estimator provide consistent estisradtglayers’ choice probabilities.

A.2 Efficiency

Our analysis of efficiency is based on the considerable aunetr literature on multi-step
maximum likelihood estimators, see Murphy and Topel (198%) Newey and McFadden
(1994). We first examine the properties of multi-step estimsa

Newey and McFadden (1994, Theorem 6.2, p. 2180) charaetdrezgeneral condi-
tions where the presence of a first-step estimator influesmgsptotic inferenc& Subject

12Their analysis is of the general class of method of mometitnators.
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to certain regularity conditions, the key to valid asymtatference relies on the conse-
guences of consistency in the first-stage estimates. Ifist@mey of the first-stage esti-
mates is critical for the consistency of subsequent estismtewey and McFadden (1994)
prove that the (estimated asymptotic) standard errorqyosécond stage are inconsistent.
With reference to SBI estimation, Newey and McFadden shaivttie standard errors are
generally incorrect because consistency of the estimatgdnaprobabilities “below” is
critical for consistency of the parameters. Upon reflecttbis may not be critical. Given
the common practice of testing zero null hypotheses, we are itoncerned with falsely
rejecting true null hypotheses, indeed the power of tessldom if ever discussed in ap-
plied research. Unfortunately, a further difficulty for tbguation-by-equation technique is
suggested by Newey (1984).

Newey (1984) argues that second stage standard errorsati@uby-equation estima-
tors will be incorrect and too small (in a positive semi-digfirsense). An intuition arises
from Karaca-Mandic and Train’s (2003, p. 401) remark thae“tovariance matrix of
the second-stage estimator includes noise introducedebijrgt-stage estimates.” Newey
(1984) demonstrates that sequential generalized methowbofents estimators will have
undersized asymptotic standard errors when the covasdmeveen the stages are zero
and the (estimated) quantities are assumed to be known.|l Resiathe SBI estimation
technigue begins by calculating’s action probabilities and employing predicted values
pr as the expected actions Bfto form new regressor8, = [p, Xu2, peXa1]. Employing
the theory of the partitioned inverse, Newey partitionsdbgmation problem into first and
second stages to demonstrate that a zero covariance anmostates (which we assume
to be true because the players choices are independenteatahént of the predictions as
data requires that the estimated (asymptotic) standaodsasill be too small because they
fail to account for the sampling variance of the predicteabpbilities. We first turn to an
analytic characterization of the problem.

A.2.1 Efficiency: Analytics

For a two-player model as in Figure 2, we can derive the stanelaor correction for the
second stage of the SBI estimatdrAs a special case of maximum likelihood estima-
tion, the first step of the equation-by-equation estimatuisi?; that solves the moment
conditiongz(65) = 0 and then the second stage finglsthat satisfies/(, 54, 65) = 0,
where

3The derivation follows closely Karaca-Mandic and Train@3p
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1 & 0L (yp BB)

g8(BB) = NB T (21)
i=1
oalfads) = 53 DLl ) 22)

Taking a first order Taylor's expansion of first and secon@etaoment conditions
around the true parameter valygis and3’; we get

93(52) - RI(BAB - ﬁg)
ga(B4, By) — Ra(Bs — B) — Rs(Ba — B3)

0 (23)
0 (24)

[

where2 denotes asymptotic equality and

. . 593(53)
Ry = —plim 555
B = 050
5 * *
Ry = —plimigA(fﬂAA’ O5)

Let us further assume th&, R,, andR3; are nonsingular square matrices.

A.2.2 B’s Decisions

We can use (23) to construct

I~ P | 0Lg(ysi Br)
NB(ﬁB_ﬁB) - \/N—B;Rl T
Np
VNs(0p — ) = \/JlV—BZ@B
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where©p = R‘l‘%’%ﬁB Using© g as defined and the information matrix equality, we
can write

Bs A N(B,,Var(©5)/Ns)

to characterize the asymptotic distribution/®f, a standard MLE. Of particular interest,
the “bottom” of the tree contains all of the relevant infotroa with which to assess the
final node of a recursive decision problem. As a result, egi@sobtained from the terminal
node of an extensive form set of choices have all of the dasifaroperties of a univariate
maximum likelihood estimatoiThe SBI estimator is consistent and efficient at the terminal
node of a recursive decision problem.

A.2.3 A’s Decisions

Unfortunately, the same cannot be said for “upper” decsiprecisely because of the
sampling distribution of the parametefg and the associated sampling distributions of
functions of these parametersis p,.. Turning our attention to (24) and the parameters
governing A's choices, we have

(Ba=B3) = By'(9a(B4,B5) — Ro(Os — B3)
A Rf(%é(SLA(ygngﬁB) RoR;! M Z(SLB;JBBBZ ) )
A %R?(é 5LA(3J13@'6§5A7BB) B R2R1_1N_B éyAiéLBgng ﬁB))
VN(@—m) & o é O
where
O = RglaLA(ygng’BB) - RgleRl—lNﬁByAi%B;@.

This allows us to write the asymptotic distribution®f as
Ba & N(B3, Var(©4)/N).

In implementationP 4, R,,Rs, Rs are calculated using the estimated parameters, and
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the plim evaluations are replaced with their sample approximafibriéwe assume that
N/Ng isfinite, Var(©,) is given by

N
1 A A
Var(©4) = N E ©4,0 4; (25)
i=1

The standard error correction described above appliesfontiie two-stage SBI estimator,
or when there are only two decision nodes to estimate. Asuh#er of decision nodes in-
creases, the number of iterations of the SBI estimator alseases, and deriving the exact
standard error correction becomes practically impossidlenore practical approach that
goes well with the ease of the SBI estimator is bootstrap@nmpnparametric method for
correctly estimating upper stage standard errors. Thigagp uses simulation methods to
recover the sampling distribution of the probabilities.

YReaders familiar with Murphy and Topel (1985) and Madda®8@) will note the similarities.
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B R AND STATA CODE FOR THESBI ESTIMATOR AND
BOOTSTRAPPINGSTANDARD ERRORS

In this section, we present example R and Stata codes foimginine SBI estimator for
the model in Figure 2 that we used for our Monte Carlo expemimés we describe in
Section 3 in more detail/4(y4 = 0) andUg(y4 = 1,y = 0) are normalized to zero. The
remaining utilities are specified as follows:

UA(yA = 17yB = 0) = Xa2ﬁa2
UA(yA = ]-7yB = ]-) = Xa3ﬁa3 + Xcﬁa?)c

Usg(lya=Llyp=1) = By + Xp3ls + XcFose-

In the following R code, we define a simple functi®Bl that runs two consecutive
logit regressions to estimate A and B’s utilities. We thee &8s canned bootstrapping
functionboot from theboot library to calculate the bootstrapped standard errors.
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SBlI «—function(Data, i){

BS «— Datali,] # Draw t he bootstrap sanple
IVB «— BY[, 3:4][B9[, 1] ==1, ] # B s regressors

# Step 1: Run a logit to estimate B's utilities and cal cul ate pp

| ogitB « gl m(BS[, 2] [BS[, 1] ==1] ~ | VB,
fani | y=bi nomi al (1ink="10git"))

bB — | ogitB$coefficients
pB «— exp(cbind(BS[, 3:4],1) %% b2)/(1+exp(chi nd(BS[, 3: 4],
1) % % b2))
# Step 2. TransformA' s regressors with pB
| VA — cbind((1-pB)*BS[, 5], vecmat(pB, BS[,6:7]))
# Step 3: Logit for As utilities

logitA «— glmBS[,1] ~ IVA-1,fam |y=binomal (Iink="1ogit"))

| ogi t A$coefficients}

# Step 4. Calculate standard errors with bootstrapping

boot (McData, SBI, 500)

The above SBI model can also be estimated in STATA very eakilprder to do so,
we first define a function calleslbi that runs two logits and estimates A and B’s utilities.
We then use STATA's canndas function to calculate the standard errors.
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capture program drop sbi
programsbi, rclass
version 8.0
syntax, ua2(varlist num ua3(varlist num) ub3(varlist nun) yl(varnane)
y2(var namne)

* Step 1: Run a logit to estimate B s utilities and cal cul ate pp
logit ‘y2' ‘“ubl3 if 'yl
predi ct p2def

* Step 2: TransformA s regressors with p2def

foreach x of varlist ‘ua3 {
gen ‘X’ 13 = ' x’ *p2def

}

foreach x of varlist ‘ua2’ {
gen ‘X' 12 = ‘X’ x(1-p2def)
}

* Step 3. Logit for A's utilities

logit ‘y1' =1t2 *=_t3, nocons
matrix b = e(hb)

local co =1

foreach x of varlist ‘ua2’ ‘ua3’ {
ret scalar ‘x’ =Db[1, ‘co0’]

local co = ‘co’ +1

}

end
* Step 4: Calculate standard errors with bootstrapping

bootstrap "shi, ua2(x12) ua3(x13 xc) ub3(x23 xc) yl(yl) y2(y2)" r(x12)
r(x13) r(xc), reps(500) dots
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