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Abstract

We present a simple method for estimating regressions basedon extensive-form
games. Our procedure, which can be implemented in most standard statistical pack-
ages, involves sequentially estimating standard logits (or probits) in a manner analo-
gous to backwards induction. We demonstrate that the technique produces consistent
parameter estimates and show how to calculate consistent standard errors. To illustrate
the method, we replicate Leblang’s (2003) study of speculative attacks by financial
markets and government responses to these attacks.



1 INTRODUCTION

Strategic interaction is a fundamental consideration in the study of political choice. The

choices of members of Congress to seek reelection or retire is almost certainly related

to the decisions of potential challengers (Carson 2003). Executives must decide whether

or not to veto legislation in light of the potential for a legislative override (Carson and

Marshall 2004). In international politics, Signorino and Tarar (2006) examine the strategic

sources of extended deterrence and Leblang (2003) shows that the strategic interaction

between governments and markets is a critical element in understanding currency crises.

All of the aforementioned theoretical insights require empirical tests that roughly conform

to the important structural elements of the decision makingenvironment.

Despite the increased use of choice (or game) theoretic explanations in modern po-

litical science research, there is often a subtle disconnect between theories and the em-

pirical tests of these theories. “Indirect” statistical tests of formal models generally fail

to properly characterize the hypothesized relationships in statistical testing.1 Techniques

for ameliorating this problem have been previously presented (Signorino 1999, Signorino

2003, Signorino 2002, Lewis and Schultz 2003, Signorino andTarar 2006). However, these

methods generally require researchers to program and then optimize a frequently complex,

problem-specific model.

In this paper, we simplify the estimation of statistical strategic models in an effort to

bridge the disconnect between theory and empirical analysis. Our motivation is primar-

ily practical with respect to most contemporary research inpolitical science. Signorino

(1999, 2002, 2003) provides a general framework for estimating statistical strategic mod-

els, along with different ways of conceptualizing the uncertainty that can make strategic

1Signorino and Yilmaz (2003) focus on this problem.
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models “statistical.” Based on this, the program STRAT was developed, allowing scholars

to estimate strategic models relevant to their substantiveresearch.2 The types of games

that can be estimated in STRAT, however, are limited to six orseven relatively simple —

though quite common — decision structures. Scholars desiring to estimate parameters in a

strategic model that is not included in STRAT must thereforeconstruct and estimate their

own maximum likelihood models.

In the following sections, we first demonstrate a useful simplification that allows recur-

sive statistical strategic models to be estimated with simple variants of logit and probit —

and in a way that is consistent with the underlying theory. The method is very similar to

the game-theoretic notion of backwards induction. We also show how to correctly estimate

the standard errors using this simplified technique. Finally, using the proposed method, we

replicate Leblang’s (2003) study of currency crises.

2 REFERENTEXAMPLE

It will be helpful to employ an example throughout our analysis. Figure 1 displays the

structure of our referent model. In this game, player A must choose between playing Right

(R) or Left (L). If A chooses Right, player B must then choose whether to play right (r) or

left (ℓ). Playing left results in OutcomeRℓ. If B chooses right, (Rr) is the outcome. The

players utilities are shown at the terminal nodes — e.g.,UA(L) is state A’s utility for theL

outcome, andUB(Lℓ) is state B’s utility for theLℓ outcome.

Structurally, the model is quite simple. The fact that players do not make their decisions

simultaneously (or without knowledge of other players’ moves) makes this a fullyrecursive

2“STRAT: A Program for Estimating Statistical Strategic Models” is available at
www.rochester.edu/College/PSC/signorino.
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Figure 1: Two-Player Game.Player A must choose whether to play Left (L) or Right (R).
If Player A plays R, Player B must then choose whether to play Left (ℓ) or Right (r).

model. Assuming the players and we as analysts have completeinformation concerning the

utilities, then for any specification of the utilities, the model can be solved via backwards

induction for the subgame perfect equilibrium.

The logic of backwards induction is relatively straightforward. We start at the end nodes

of the game and then ask what choice the player will make at thepreceding decision node.

With perfect and complete information we can determine which option will be selected.

Given that knowledge, we can step back to the next preceding decision node and determine

what that player will do. For example, consider Figure 1. Letus first suppose that A’s

preferences areRr ≻ L ≻ Rℓ and B’s areRr ≻ Rℓ.3 If we start with B’s decision, we

can see that, if A choosesR, B will chooser, leading toRr. Player A knows this, so her

decision betweenL andR is really a decision between outcomesL andRr. Given A’s

preferences above, A will chooseR, leading to the subgame perfect equilibrium outcome

3x ≻ y ≻ z means that optionx is preferred toy, thaty is preferred toz, and that (via transitivity)x is
preferred toz. We omitL in B’s preferences because it is not relevant for this game.
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Rr. Now suppose A’s preferences are as stated above, but B’s areexactly the opposite:

Rℓ ≻ Rr. In this case, if A choosesR, then B will chooseℓ. Because A prefersL to

Rℓ, the equilibrium outcome will beL. It is important to note that it is this ability to work

from the end of the game back towards its beginning that allows us to employ the statistical

technique we will later present.

In its present form, the model is not statistical. To construct a statistical strategic model,

we need to assume some form of uncertainty on the part of the players and/or analyst. There

are a number of ways we might do so: agent error, private information by the players,

or complete information by the players but imperfect measurement (or specification of

regressors) by the analyst (Signorino 2003). Of the three, the one that is consistent with

our simplified estimation technique is the agent error specification.4 We now give Figure 1

an agent error representation.

2.1 The Statistical Strategic Model

To fully specify the statistical model, we assume there is a shock to the players’ expected

utilities for their actions. Consider B’s decision. B’s utilities will be specified as

U∗

B(ℓ) = UB(ℓ) + αℓ = UB(Rℓ) + αℓ (1)

U∗

B(r) = UB(r) + αr = UB(Rr) + αr (2)

whereU∗

B(·) is considered the “true” utility,UB(·) is the component of the utility that is

observable to the other players and to the analyst, andα is a random private component,

4Fortunately, for those who do not like the Non-Nash interpretation of the agent error specification, Sig-
norino (2003) shows that, for simple models such as that in Figure 1, it will yield similar results as the (strictly
Nash) private information version.
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observable only to player B. We assume B maximizes her (true)utility.

Because we as the analysts do not observe theα terms, we can only make probabilistic

statements about whether B is likely to play right or left. Once a density is assumed for

α, derivation of the choice probabilities is straightforward, following traditional random

utility models, as demonstrated in a strategic context in Signorino (1999, 2003).

We will assume throughout this paper that theα are distributed Type I Extreme Value,

leading to logit probabilities.5 B’s probabilities,pr andpℓ, of playing right and left, respec-

tively, are

pr =
eUB(Rr)

eUB(Rℓ) + eUB(Rr)
(3)

pℓ =
eUB(Rℓ)

eUB(Rℓ) + eUB(Rr)
(4)

Now consider A’s choice between playing Right and Left. If A plays Left, the game

ends. However, A’s decision to pick Right depends on what shethinks B will do. Because

theα’s are private information, A is uncertain of B’s action and,therefore, must estimate

the probability that B will play right or left. Therefore, A’s utility for playing Right is an

expected utility over the lottery consisting of B’s choice,with probabilities as above:pr,

andpℓ. Player A’s utilities are thus

U∗

A(L) = UA(L) + αL (5)

U∗

A(R) = EUA(R) + αR (6)

= pℓUA(Rℓ) + prUA(Rr) + αR, (7)

5The techniques demonstrated here can be implemented in exactly the same fashion if one assumes theα

are Normally distributed, resulting in probit probabilities.
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We will assume that the analyst shares the same uncertainty as the players. With the

same assumptions as before, the probabilities of A playing Right versus Left are logit

probabilities. The twist here is that they are based on an expected utility calculation and do

not take the same form as logit probabilities in typical statistical analyses. A’s probabilities,

pR andpL, of picking Right and Left, respectively, are

pL =
eUA(L)

eUA(L) + eEUA(R)
=

eUA(L)

eUA(L) + epℓUA(Rℓ)+prUA(Rr)
(8)

pR =
eEUA(R)

eUA(L) + eEUA(R)
=

epℓUA(Rℓ)+prUA(Rr)

eUA(L) + epℓUA(Rℓ)+prUA(Rr))
(9)

For any specification of the utilities, (pℓ, pr, pL, pR) are the equilibrium probabilities

of the statistical strategic model. Since we have assumed that the uncertainty enters as

Type I extreme value perturbations to the action utilities,(pℓ, pr, pL, pR) is a Logit Quantal

Response Equilibrium (see McKelvey and Palfrey (1998) and Signorino (1999)). Because

theα terms are assumed to be independently distributed, the equilibrium probabilities for

the outcomes are just the product of the choice probabilities along each outcome’s path:

Pr[L] = pL (10)

Pr[Rℓ] = pR · pℓ (11)

Pr[Rr] = pR · pr (12)

Having specified the statistical strategic model, a naturalquestion concerns how the

equilibria of the statistical model compare to the subgame perfect equilibria of the model

with complete information — i.e., without the shocks to players’ expected utilities. The

intuition for this is best explained with reference to the variance of the error terms, assuming
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the observed utilities are held constant. As the variance ofthe error terms goes to zero,

the model becomes one of players with perfect and complete information, who maximize

their utility at each decision point. Therefore, in the limit, the equilibria are subgame

perfect. When the variance of the error terms is non-zero butextremely small relative

to the observed utilities, the statistical equilibria often resemble a smoothed version of

the subgame perfect equilibria. As the variance of the errorterms increase, the equilibria

may at times resemble smoothed versions of the subgame perfect equilibria, but may at

other times look very different from the subgame perfect equilibria because the choice

probabilities affect expected utility calculations.

The last step in specifying the model is to assign regressorsto the utilities and then

estimate the parameters accompanying those regressors. The statistical strategic model is

just a strategic, random utility model. Therefore, the equilibrium choice and outcome prob-

abilities provide a probability model that can be used in maximum likelihood estimation.

The method of estimation — and, specifically, a new, simpler method for doing so — is the

subject to which we now turn.

3 STATISTICAL BACKWARDS INDUCTION

We provide a technique in this section that allows practitioners to estimate recursive strate-

gic models (of any depth or breadth) requiring only variations of logit or probit in standard

statistical packages. This technique has a number of nice properties in relation to the sys-

tem estimator currently used. Before turning to the new procedure, we first specify the

system estimator.

7



B

A

p

0

0

L
p

R

p
l

p
r

X
a1    a1

β X
a2    a2

β

X
b2    b2

β

L R

l r

Figure 2: Two-Player Model with Binary Choices.

3.1 The System Estimator

To date, empirical analyses employing statistical strategic models have employed a “sys-

tem” approach to estimation — where all parameters are estimated simultaneously for the

entire model (see, for example, Signorino (1999, 2003, 2002); Signorino and Tarar (2006);

Signorino and Yilmaz (2003); Guo (2002); Carter (2005); Quackenbush (2005); Carson

(2003, 2005), Carson and Marshall (2004)).6 To compare the system estimator to Statisti-

cal Backwards Induction [SBI], it will be helpful to change our notation slightly.

Consider the game in Figure 2, which is a more fully specified version of the model in

Figure 1. Let us now assume that our data is coded as

yA =











1 if U∗

A(R) ≥ U∗

A(L)

0 if U∗

A(L) > U∗

A(R)
(13)

6STRAT currently implements a systems approach to maximum likelihood estimation of the parameters.
This is also referred to as a “full information maximum likelihood” estimator.
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and

yB =











1 if U∗

B(r) ≥ U∗

B(ℓ)

0 if U∗

B(ℓ) > U∗

B(r)
(14)

whereyA = 1 andyB = 1 correspond to A and B choosingR andr, respectively. The

equilibrium action probabilities are the same as before. According to the new coding, they

arepR = Pr(yA = 1) andpr = Pr(yB = 1).

Figure 2 also displays a very simple specification of regressors for the utilities. Here,

we have normalizedUA(yA = 0) = 0 andUB(yA = 1, yB = 0) = 0. The remaining

utilities are specified with a single regressor and parameter:

UA(yA = 1, yB = 0) = Xa1βa1

UA(yA = 1, yB = 1) = Xa2βa2

UB(yA = 1, yB = 1) = Xb2βb2

Assuming we have data for all outcomes and regressors, then the system estimator

would maximize the log of the following likelihood with respect to the regression coeffi-

cientsβa1, βa2, andβb2:

L =

n
∏

p
(1−yA)
L · (pR pℓ)

yA(1−yB) · (pR pr)
yA yB

where the observation indexi has been dropped. In sum, for the system estimator, we

construct a probability model for all of the actions and outcomes, and then use that to form

the likelihood to be maximized. All parameters for all of theplayers are then estimated

simultaneously.
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3.2 Statistical Backwards Induction Estimator

In order to illustrate estimation by Statistical BackwardsInduction (SBI), it is helpful to

think of the strategic model as a recursive system of equations (see also Signorino (2002)

and Signorino and Yilmaz (2003)). The main insight is that a recursive system of equations

can be estimated equation-by-equation. Therefore, a recursive statistical strategic model

can be estimated by univariate analogs of backwards induction.

3.2.1 The Strategic Model as a Recursive System of Equations

Consider the strategic model from the previous section and the data coding in equations 13

and 14. These imply the following system of latent variable equations:

y∗

A = U∗

A(R)− U∗

A(L) (15)

y∗

B = U∗

B(r)− U∗

B(ℓ) (16)

where the data are coded asyj = 1 if y∗

j ≥ 0, andyj = 0 if y∗

j < 0, for j ∈ {A, B}. Given

the regressor specification in Figure 2, the system can be written as

y∗

A = pℓ Xa1 βa1 + pr Xa2 βa2 + ǫA (17)

y∗

B = Xb2 βb2 + ǫB (18)

If we assume theα perturbations to the expected utilities are distributed Type I Extreme

Value, then theǫj terms are distributed logistic (McFadden (1974)). The resulting choice
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probabilitiespr = Pr[y∗

B > 0] andpR = Pr[y∗

A > 0] will be logit probabilities.7

It bears reiterating that this system of latent variable equations is completely consistent

with the statistical game with agent error — it is just a different way of writing the same

model. Moreover, the probabilities are all logit probabilities, but, again, where the expected

utility calculations are explicitly modeled.

Because theα shocks are assumed independent, theǫ terms are also independent.

Therefore, Equations 17–18 are not “linked” through their error terms. Moreover, the sys-

tem of equations is recursive, which, in theory, would implythat we can “start from the

bottom and work up,” estimating first the equation fory∗

B, and then using that information

in the estimation ofy∗

A. Indeed, it is not coincidental that the game-theoretic model can

be solved via backwards induction and that this statisticalmodel can be estimated in an

analogous fashion. The only problem with this setup so far isthat, although the equations

for y∗

B andy∗

A result in logit probabilities, the systematic component ofy∗

A does not take

the same functional form as in typical logit models. This is,of course, due to the expected

utility calculation. If Figure 2 generated the data and we were to use logit with the typical

first-order linearXβ specification for each equation, then our parameter estimates would

be biased and inconsistent (see Signorino and Yilmaz (2003)). However, as we will show,

this problem can be easily overcome.

3.2.2 The Basic SBI Procedure

Statistical Backwards Induction requires three components common to empirical political

science: (1) standard logit or probit regression (e.g., in Stata, SPSS, etc), (2) the ability

to calculate predicted probabilities from the aforementioned regression, and (3) the ability

to generate new variables by multiplying two existing variables. The basic idea for the

7Probit probabilities result from an assumption of Normally-distributed error terms.
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SBI is to estimate the system equation-by-equation using standard logit, but transforming

regressors in expected utility calculations into “new” regressors that can be used in standard

logit estimation. Consider our strategic system of equations in Equations 17–18 describing

Figure 2. For our referent example, the basic SBI estimationprocedure is the following:

1. B’s Choice. Sincey∗

B = Xb2βb2 + ǫB does not require information concerningy∗

A,

logit may be used to estimatêβb2. Onceβ̂b2 is obtained, calculatêpr andp̂ℓ = 1− p̂r.

2. A’s Choice. Substitutêpℓ andp̂r into A’s equation, giving

y∗

A = p̂ℓXa1βa1 + p̂rXa2βa2 + ǫA

To use standard statistical packages, we must first create the transformed regressors

Za1 = p̂ℓXa1 andZa2 = p̂rXa2. Logit may then be used to estimate the parameters

in the equation

y∗

A = Za1βa1 + Za2βa2 + ǫA

It is important to note that in each stage, the transformed latent variable regression equa-

tion is exactly the same as the original, just written in a different way. Therefore, although

the parameters in the transformed equations are associatedwith transformed regressors,

the interpretation of the parameters is the same as in the original equation. For example,

β̂a2 is still the estimated effect ofXa2 on A’s utility for outcome(yA = 1, yB = 1). The

transformation of the regressors is only done to allow for estimation in standard computer

packages, and it does not affect the interpretation of the parameter estimates.

Statistical Backwards Induction implies a number of nice properties above and beyond

the ease of implementation. Logit estimation in each stage will yield consistent estimates

of the parameters and functions of the parameter estimates,such as the equilibrium choice
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and outcome probabilities. The consistency of the parameter estimates derives from their

status as maximum likelihood estimators. Obviously, system estimators would also yield

consistent estimates. Indeed, because the equations are recursive and because the error

terms are uncorrelated, we would expect both methods (system and SBI) to yield virtually

identical results. However, they may not — and there are additional benefits to using SBI.

First, SBI often provides a feasible estimator, when the system estimator might be much

more difficult to estimate. The likelihood function for the system estimator is not guaran-

teed to be globally concave. That is not to say that there are multiple extremum, but rather

that the likelihood function may only be quasi-concave. It is easy to show just from plot-

ting the likelihood that as the number of observations becomes small and as the variance of

the error term becomes small, the likelihood function becomes increasingly “step-like,” re-

flecting the fact that the equilibrium probabilities closely approximate the subgame perfect

step response. The effect of this is that system estimation may have problems with weak

(or fragile) identification. In contrast, logit and probit have globally concave likelihood

functions, resulting in much easier and more rapid numerical optimization.8

Second, SBI is fast. Optimized algorithms exist for implementing logit (or probit and

their variants) in a host of software packages, while maximizing a user-specified likelihood

is often a slow and painstaking process that heavily dependson the quality of starting

values. Across a host of tests and implementations, the SBI strategic model iterates and

converges more rapidly and requires fewer iterations than an identical systems approach.

Finally, SBI retains more data for estimation. In practice,the system method requires

all of the data appearing anywhere in the game to be sent simultaneously to a procedure that

calculates the log-likelihood of each observation. Although a number of techniques exist

8Monte carlo simulations suggest a rather rapid decay in the convergence properties of system estimators
(in Stata) that posed no problem for SBI.
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for dealing with missing data, listwise deletion is still often the default method. In this

case, if any observation contains a missing data point, the entire row is generally deleted.

So for example, if a variable in A’s decision contains missing data, then the entire row will

be deleted, even if that variable does not appear in B’s decision. This produces a needless

loss of data in estimating B’s parameters. Because the system is recursive, and because the

SBI approach estimates each equation individually, missing data outside a given subgame

will not affect the sample for the equation associated with that subgame. Therefore, the

iterative approach is able to use as much data as possible in estimating the parameters.

Finally, we show in the appendix that the SBI estimator produces consistent estimates

of βa1, βa2, andβb2. It also produces consistent estimates of the standard error of βb2.

However, becausêpℓ andp̂r are substituted into A’s equation and the resultingZa1 = p̂ℓXa1

andZa2 = p̂rXa2 variables are treated as data (without estimation uncertainty), SBI will

yield biased estimates of the standard errors ofβa1 and βa2. Fortunately, this is easily

remedied by a nonparametric bootstrap.

3.3 SBI with Bootstrapped Standard Errors

To retain the simplicity of Statistical Backwards Induction, we rely on a simulation method

for calculating the standard errors — one that adds only a single step to the procedure

outlined in the previous section. The approach we use is a form of the nonparametric

bootstrap. The bootstrap procedure is quite simple.M iterations of the bootstrap are run.

During each iterationm = 1, 2, . . . , M of the bootstrap, a sample is randomly drawn with

replacement from the original data. SBI is then used to estimate parameters governing B’s

choice, generate new regressors, and estimate A’s parameters (which are saved). After the

M iterations of the bootstrap procedure, the standard errorsof A’s parameter estimates are

calculated by simply taking the standard deviations of the saved estimates.
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As mentioned previously, the bootstrap correction is only necessary for the estimation

of A’s parameters. BecauseB’s actions do not depend on any auxiliary parameters, the

first-stage maximum likelihood standard errors are consistent. It is only when we turn to

choices that depend on the expected choices of others that a correction for the presence of a

random action probability is necessary. With this need for correction in mind, we compare

the system and SBI approaches for estimating statistical strategic models in a Monte Carlo

experiment.

3.4 Monte Carlo Analysis

For the Monte Carlo analysis, we assumed a similar regressorspecification as in Figure 2.

We have normalizedUA(yA = 0) = 0 andUB(yA = 1, yB = 0) = 0. The remaining

utilities are specified as follows:

UA(yA = 1, yB = 0) = Xa2βa2

UA(yA = 1, yB = 1) = Xa3βa3 + Xcβa3c

UB(yA = 1, yB = 1) = βb0 + Xb3βb3 + Xcβb3c.

whereβa2 = βa3 = βa3c = βb3 = 1, βb3c = −1 andβb0 = π. Xc is a common regressor

that appears in both players’ utilities. Data were generated based on the behavioral as-

sumptions of the game, withX uniformly distributed over[−2π, 2π], ǫ distributed logistic,

with V (ǫ) = π2/3. Simulations were run for sample sizes N=500 and N=5000. Once data

were generated, the parameters were estimated using both the system and SBI methods,

and correct standard errors for SBI are calculated using thebootstrap with 1000 bootstrap

iterations. Simulations were repeated 5000 times for N=500and 2000 times for N=5000 to
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form the densities of the estimators.

N=500 N=5000

Parameter Estimates β̂a3 β̂a3c β̂a3 β̂a3c

System 1.096
(.224)

1.090
(.223)

1.037
(.061)

1.034
(.058)

SBI 1.047
(.227)

1.043
(.226)

1.024
(.065)

1.021
(.063)

Standard Errors ̂se(β̂a3)
̂se(β̂a3c)

̂se(β̂a3)
̂se(β̂a3c)

System .215
(.054)

.211
(.055)

.062
(.004)

.061
(.004)

Bootstrapped SBI .255
(.083)

.252
(.084)

.067
(.006)

.067
(.006)

Table 1: Monte Carlo Results.The first number in each cell is the mean of the monte carlo
density. The number in parentheses is the standard deviation.

Table 1 summarizes the results of the Monte Carlo analysis for βa3 andβa3c. The first

number in each cell is the mean of the monte carlo density. Thenumber in parentheses is

the standard deviation. As we previously noted, the SBI estimator will produce consistent

estimates for the parameters (i.e., theβ’s) for all players in the game, as well as for the

standard errors for B. The upper section of Table 1 displays the monte carlo sampling dis-

tributions ofβ̂a3 andβ̂a3c for the system and SBI estimators. First, note that both the SBI

and system estimators are consistent; they both recover thetrue parameter values on aver-

age.9 Second, although the SBI estimator uses less information than the system estimator,

9Although not shown here, the results forβa2 are similar to those reported in Table 1.
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it is nearly as efficient for samples of at least 500. Indeed, it is also useful to note that the

standard deviation of the system estimator’s density is thegold standard for the standard

error estimators. So, for samples of 500, we would like the average estimated standard

error to be close to .22, while for N=5000, it should be close to .06.

For the monte carlo,A’s estimated standard errors were calculated in two ways. The

“system” standard errors are based on the (estimated) asymptotic variance from systems

estimation. The “bootstrapped SBI” standard errors are produced by running the boot-

strap procedure on the SBI estimator and then taking the standard deviation of the saved

parameter estimates.

The lower section of Table 1 displays the average estimated standard error based on

system and bootstrapped SBI estimation. The system standard errors are obviously very

close to the standard deviations of the sampling distributions in the upper section. More

importantly for our purposes here, the bootstrapped SBI standard errors are also quite close.

As is to be expected, the bootstrapped SBI standard errors are slightly larger than the system

standard errors. This is because the SBI method is itself less efficient than the system

method. Moreover, the bootstap method will induce some inefficiency. Nevertheless, the

sampling properties of the SBI method and of bootstapping imply that the boostrapped SBI

standard errors will be consistent. In fact, we can see that as the sample increases to 5000,

the difference in the standard errors is quite small.

Although not reported here, the SBI standard errors for B’s utilities will be larger than

the corresponding system standard errors. SBI uses a smaller sample to estimate the co-

efficients at “lower” nodes, so this again comes as little surprise. Because the system is

recursive, SBI standard errors for this step are consistent. However, SBI is less efficient

than the systems estimator, which simultaneously utilizesall available information.

With a theoretical model and its statistical counterpart inhand, we illustrate the power
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of this technique with real data in the next section.

4 DATA ANALYSIS

For most countries, exchange rate policy is the single most important macroeconomic pol-

icy decision to be made (Cooper 1999). Because there are costs to exchange rate variability,

many states choose to fix their currencies to some external anchor, e.g. the US dollar or the

Euro. When fixed exchange rates are chosen governments must control fiscal and monetary

policy to maintain a par with a low inflation currency. As the ill effects of fiscal and mon-

etary excess compound, arbitrage opportunities arise thatmay lead individual investors to

take financial positions that combine to “attack” the declared par value of a currency (in

terms of some other currency). Governments now confront a difficult choice, to expend

resources in defense of the par value or to allow the currencyto devalue, with all the con-

comitant distributional issues accompanying devaluation. A game theoretic rendition is

presented in Figure 3. It is this basic decision structure – market decisions to engage in

speculative attacks and governmental responses to these attacks – that we use to compare

system estimation to Statistical Backwards Induction.

Leblang (2003) analyzes the strategic aspect of speculative attacks on currencies in

international political economy using the model in Figure 3. Using Signorino’s (1999)

(”system”) method, he estimates a model of strategic interaction between speculators in

currency markets and policymakers in governments. To be clear, he analyzes a sample

of monthly data from states that are nominally democratic10 with pegged exchange rates.

Because we are merely interested in demonstrating the similarities among the estimation

methods, we necessarily give short shrift to the substantive implications of the results.

10Countries with Polity scores greater than 5.
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Figure 3: Leblang’s Model of Speculative Attacks on Currencies.

The variables that measure market utilities (UM ) for the status quo, defense, and deval-

uation, and government utility (UG) for defense and devaluation are listed in Table 2. In

general terms, markets are argued to attack currencies whenthere is a disconnect between

the fixed exchange rate and the equilibrium rate of exchange [proxied by Reserves, Real

Exchange Rate Overvaluation, Credit Growth], a history of questionable fixes [proxied

by Prior Attacks], and/or greater structural incentives tochallenge a government’s resolve

[proxied by Contagion, US Interest Rates, and Debt Service]. Similarly, Governments are

argued to defend pegged exchange rates when it is politically expedient [proxied by Unified

Government, Campaign/Election. Right Government, ExportSector, and Post Election].

At the same time, Governments must consider the resources attheir disposal with which

to combat speculative attacks [proxied by Interest Rates, Capital Controls, and Reserves].

With general concepts and measured factors determining themarket’s utility for specula-
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tive attack and government responses in mind, we provide estimates of statistical strategic

models in Table 3.

Variables Utility Sign Measures

Unified Government G + Binary: Party that controls the executive also
controls the lower house of the legislaturea

Export Sectort−1 G - Log(Exports
GDP

)t−1: Size of the export sector
relative to GDPb

Campaign/Election G + Binary: Three month campaigns and
the month of electionsa

Post Election G - Binary: Three months postdating every
election montha

Right Government G + Binary: Governments classified Left, Center,
and Right according to Left-Right positions on
state control of the economya

Interest Ratest−1 G + Deflated discount rates, money market rates,
or deposit rates depending on availabilityc

Capital Controlst−1 G,M +,+ Binary: Controls on the capital accountd

Reserves G,M +,+ Log( Reserves
BaseMoney

)t−1: Total reserves minus gold to
base money [M0]c

RER Overvaluation M - Hodrick-Prescott residuals of the monthly
real exchange ratec

Credit Growtht−1 M - Rate of growth in domestic creditc

US Interest Ratest−1 M - Interest rate on 90 day US depositsc

Debt Servicet−1 M - Total interest and debt repayment in foreign
currenciesc – IMF, short, and long term
loans – as a percentage of exportsb

Contagion M - Number of speculative attacks outside
countryi in montht.

Prior Attacks M - Number of speculative attacks for
countryi in all months precedingt.

a Database of Political Institutions, Beck, Clarke, Groff, Keefer and Walsh (2001)

updated by Leblang (2003).
b World Development Indicators, (World Bank N. d.).
c International Financial Statistics, (International Monetary Fund N. d.b).
d Annual Report on Exchange Arrangements and Exchange Restrictions,

International Monetary Fund (N. d.a).

Table 2: Variables and Measures from Leblang (2003)
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4.1 Results

The replication results using system and SBI estimators arepresented in Table 3. The table

is divided into an upper and lower section. In the upper section, the parameter estimates for

the constant terms (βm0, βg0, βg1) are presented. In the lower section, the estimates asso-

ciated with regressors inXm andXg are presented. The column labeledSystemreplicates

the system estimator results in Leblang’s (2003) Table 2. The columns labeledSBI repli-

cate Leblang’s results, but using Statistical Backwards Induction. Bootstrapping is used to

correct the bias in standard errors for Markets for reasons described in Section A.2. The

far left column presents the name of the variables while the remaining columns reflect the

estimation method and the estimated coefficient relating that variable to the utility for the

outcome described by the column heading.

The most prominent result is that reported statistical significance does not differ across

the estimation techniques. Put simply, Statistical Backwards Induction results in inferences

that do not at all diverge from the systems estimator. The magnitudes and signs of the

estimates also do not substantially differ between the systems and SBI estimators providing

further evidence of the equation-by-equation technique’svalue. The standard errors are also

quite similar. This replication exercise demonstrates a simplified technique for the analysis

of currency crises that is both useful and closely mirrors its system equivalent.

Assessing the fit of the general model, the bottom row of Table3 shows a very small

difference between the log-likelihoods of the system and SBI approaches to estimating this

statistical strategic model. Comparing the sum of the log-likelihoods from the SBI estima-

tor to the system log-likelihood, the resulting differenceis .0466.11 The tiny differences

in realized values confirm that this simplified method is verysimilar to the full systems

estimator. With these similarities in mind, we turn to the evidence regarding government

11This result is obtained by subtracting the sum ofSBI log-likelihoods from the system log-likelihood.
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System SBI
Constants Market Government Market Government

βg0 -.43 .20
(.78) (.78)

βm0 -3.66* -4.05*
(.30) (.47)

βm1 -3.14* -3.41*
(.29) (.50)

System SBI
Market Government Market Government

Variable βm βg βm βg

Unified Government -.35
(.35)

-.07
(.45)

Export Sectort−1 -.20
(.17)

-.29
(.23)

Campaign/Election 1.66*
(.75)

2.23*
(.93)

Post Election 1.06
(.59)

1.10
(.74)

Right Government -.94*
(.45)

-1.55*
(.65)

Interest Ratest−1 1.93*
(.64)

1.33*
(.69)

Capital Controlst−1 -.45
(.25)

.07
(.75)

-.42
(.47)

.67
(.79)

Reservest−1 .23*
(.06)

.31*
(.17)

.29*
(.07)

.59*
(.21)

RER Overvaluation -.44*
(.09)

-.46*
(.18)

Credit Growtht−1 -.06*
(.03)

-.07*
(.04)

US Interest Ratest−1 -.05
(.06)

-.05
(.06)

Debt Servicet−1 -.03
(.05)

-.03
(.05)

Contagion -.12*
(.05)

-.13*
(.05)

Prior Attacks -.12*
(.05)

-.12*
(.05)

N 7240 7240 7240 88

Log-likelihood -482.02 -432.27 -49.79

Table 3: Replication of Leblang’s Results.
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decisions to defend or devalue before assessing the determinants of speculative attacks.

4.1.1 To Defend or Devalue? (G)

We first assess government decisions to defend or devalue.Unified Governmentfails to re-

ject the null hypothesis using both systems and StatisticalBackwards Induction estimation.

Furthermore, the astute reader will note that the estimateshave overlapping 95% confi-

dence intervals. Similarly, theExport Sectionis statistically insignificant without regard to

the estimation technique and the 95% confidence intervals across the two estimation meth-

ods contain both estimates. The same holds for thePost Electionperiod. The two estimates

are very similar numerically and the confidence intervals have considerable overlap.Cap-

ital Controls fail to reject the null hypothesis of no effect and the parameter is sufficiently

variable that the 95% confidence intervals overlap. With thesupport for the null hypothesis

explored, we now complete the results for Government decisions.

Systems and SBI techniques provide identical inferences and similar estimates of the

effects of exogenous factors on Government (G) utilities. For example,Campaign/Election

periods increase the likelihood of defenses of par values without regard to the estimation

technique. Furthermore, the systems and SBI estimates are separated by less than a single

standard deviation.Right Governmentsare less likely to defend pegged exchange rates,

all other things equal and this result does not depend on the estimation strategy. Though

it might appear that the two estimates are quite different, each estimate is contained in

the 95% confidence interval of the other. AsInterest Ratesincrease, defenses become

more likely and the 95% confidence intervals of both estimates show considerable overlap.

Lastly, foreign exchangeReservesare liquid assets with which to defend an exchange rate;

it is not surprising thatReservesincrease the likelihood of defenses. Government utilities

showcase minimal differences between systems estimation and SBI. We now turn to the
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determinants of market decisions.

4.1.2 Speculative Attacks and the Status Quo (M)

Just as before, there is a strong congruence between the results of the two approaches to

estimating statistical strategic models. For example,Capital Controlshave no discernible

effect on the utility of speculative attacks and the systemsand SBI estimates are nearly

numerically identical. Similarly,Reserves, as expected, deter speculation and the result

does not depend on the estimator used. The estimated effectsand their associated standard

errors differ ever so slightly, but each estimate is within one standard deviation of the other

suggesting significant overlap. Market utility for the status quo is increasing in the size of

foreign exchange reserves.

Real Exchange Rate OvervaluationandCredit Growthboth decrease market utility for

the status quo with estimates that are nearly numerically identical. Without regard to the

estimation technique employed, overvalued real exchange rates and high levels of domestic

credit growth encourage speculative attacks. Turning to the effects ofUS Interest Rates,

we see that the estimates are statistically insignificant but numerically identical. Similarly,

Debt Servicehas no statistically discernible influence on market utilities for the status quo,

but the results to two decimal places are identical for both the effect and its standard error.

Continuing the theme of identical estimates,ContagionandPrior Attacksboth decrease

the utility that markets derive from the status quo; the estimated effects are almost identical

while the associated standard errors are identical. To conclude the discussion of results, we

briefly turn our attention to the remaining parameters.

There is no statistically significant difference between the market utilities for defense

and devaluation in either the systems or SBI estimates as represented by the constant. Sub-

stantively, this implies that there is no evidence that markets necessarily prefer devaluations
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to defenses given a speculative attack.

Two general themes emerge from this reanalysis of Leblang’s(2003) work on currency

crises. First, there are no important differences between Statistical Backwards Induction

and systems methods of estimating statistical strategic models. Second, there is strong

evidence of strategic interaction between states and markets in interactions that lead to

non-events, currency crises and devaluations, and defenses of exchange rate pegs.

5 CONCLUSION

Our objective in this paper has been to provide a simple method for estimating recursive,

statistical strategic models. Researchers can now use common commands (e.g., logit, pro-

bit, bootstrap) in their favorite statistical package to estimate these models. Moreover, the

technique is flexible, allowing researchers to estimate models corresponding to a wide array

of strategic situations.

As we have shown, this user-friendliness does come with a small cost: the SBI estimator

is less efficient than the full information system estimator. However, for most data sets, the

difference should be negligible. Indeed, we found no substantive differences between the

system and SBI replications of the Leblang (2003) analysis.

The above cost, we believe, is well offset by the introduction of a large tool set for

political science scholars. Deriving statistical models that are consistent with theoretical

models is difficult enough. The programming requirements generally associated with these

specialized models are often a roadblock to their implementation. By removing that road-

block, researchers can get on with the business of substantive research concerning strategic

political behavior.
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A PROPERTIES OF THESBI ESTIMATOR

The general problem of multi-step estimation is consideredin a broad econometric litera-
ture. Consistency is almost certain, because maximum likelihood estimators are consistent,
as are functions of them. That said, it is instructive to investigate the equation-by-equation
technique and to provide a general analysis of its properties. We first ask, is SBI estimation
consistent?

A.1 Consistency

The SBI strategic estimator is a special case of the two-stepmaximum likelihood estima-
tors described in Murphy and Topel (1985). Thus, consistency of the SBI estimator follows
from the consistency of two step maximum likelihood estimation procedures. For sim-
plicity, consider a simple case with two models, in which onemodel is embedded in the
other:

y1 = f1(x1, θ1) (19)

y2 = f2(x1, x2, θ1, θ2) (20)

Two-step maximum likelihood first estimates the parameter vectorθ1 by maximum like-
lihood. θ2 is then estimated by maximum likelihood witĥθ1 inserted in place ofθ1 as
if it were known (Greene 2000). The consistency of the first step follows from the con-
sistency of MLE estimators. Murphy and Topel (1985) show that estimatingθ2 from
f2(y2 | x1, x2, θ̂1, θ2) is asymptotically equivalent to estimating it fromf2(y2 | x1, x2, θ1, θ2),
therefore the second step is also consistent (Murphy and Topel 1985).

In our equation-by-equation strategic method, the first step consists of estimating B’s
choice probabilities by logit (or probit), and then using these estimates as if they were
known in estimating A’s choice probabilities with logit (orprobit). Thus, it follows that
both steps of the SBI estimator provide consistent estimates of players’ choice probabilities.

A.2 Efficiency

Our analysis of efficiency is based on the considerable econometric literature on multi-step
maximum likelihood estimators, see Murphy and Topel (1985)and Newey and McFadden
(1994). We first examine the properties of multi-step estimators.

Newey and McFadden (1994, Theorem 6.2, p. 2180) characterize the general condi-
tions where the presence of a first-step estimator influencesasymptotic inference.12 Subject

12Their analysis is of the general class of method of moments estimators.
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to certain regularity conditions, the key to valid asymptotic inference relies on the conse-
quences of consistency in the first-stage estimates. If consistency of the first-stage esti-
mates is critical for the consistency of subsequent estimates, Newey and McFadden (1994)
prove that the (estimated asymptotic) standard errors for the second stage are inconsistent.
With reference to SBI estimation, Newey and McFadden show that the standard errors are
generally incorrect because consistency of the estimated action probabilities “below” is
critical for consistency of the parameters. Upon reflection, this may not be critical. Given
the common practice of testing zero null hypotheses, we are more concerned with falsely
rejecting true null hypotheses, indeed the power of tests isseldom if ever discussed in ap-
plied research. Unfortunately, a further difficulty for theequation-by-equation technique is
suggested by Newey (1984).

Newey (1984) argues that second stage standard errors of equation-by-equation estima-
tors will be incorrect and too small (in a positive semi-definite sense). An intuition arises
from Karaca-Mandic and Train’s (2003, p. 401) remark that “the covariance matrix of
the second-stage estimator includes noise introduced by the first-stage estimates.” Newey
(1984) demonstrates that sequential generalized method ofmoments estimators will have
undersized asymptotic standard errors when the covariances between the stages are zero
and the (estimated) quantities are assumed to be known. Recall that the SBI estimation
technique begins by calculatingB’s action probabilities and employing predicted values
p̂r as the expected actions ofB to form new regressorsZA = [p̂rXa2, p̂ℓXa1]. Employing
the theory of the partitioned inverse, Newey partitions theestimation problem into first and
second stages to demonstrate that a zero covariance among the stages (which we assume
to be true because the players choices are independent) and treatment of the predictions as
data requires that the estimated (asymptotic) standard errors will be too small because they
fail to account for the sampling variance of the predicted probabilities. We first turn to an
analytic characterization of the problem.

A.2.1 Efficiency: Analytics

For a two-player model as in Figure 2, we can derive the standard error correction for the
second stage of the SBI estimator.13 As a special case of maximum likelihood estima-
tion, the first step of the equation-by-equation estimator findsβ̂B that solves the moment
conditiongB(βB) = 0 and then the second stage findsβ̂A that satisfiesgA(, βA, β̂B) = 0,
where

13The derivation follows closely Karaca-Mandic and Train (2003)
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gB(βB) =
1

NB

NB
∑

i=1

δLB(yBi β̂B)

δβB

(21)

gA(βA, β̂B) =
1

N

N
∑

i=1

δLA(yAi; β̂A, β̂B)

δβA

(22)

Taking a first order Taylor’s expansion of first and second stage moment conditions
around the true parameter valuesβ∗

B andβ∗

A we get

gB(β∗

B)− R1(β̂B − β∗

B)
A
= 0 (23)

gA(β∗

A, β∗

B)− R2(β̂B − β∗

B)− R3(β̂A − β∗

A)
A
= 0 (24)

where
A
= denotes asymptotic equality and

R1 = −plim
δgB(β∗

B)

δβB

R2 = −plim
δgA(β∗

A, β∗

B)

δβB

R3 = −plim
δgA(β∗

A, β∗

B)

δβA

Let us further assume thatR1, R2, andR3 are nonsingular square matrices.

A.2.2 B’s Decisions

We can use (23) to construct

√

NB(β̂B − β∗

B)
A
=

1√
NB

NB
∑

i=1

R−1
1

δLB(yBi β̂B)

δβB

√

NB(β̂B − β∗

B)
A
=

1√
NB

NB
∑

i=1

ΘB
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whereΘB = R−1
1

δLB(yBi β̂B)
δβB

. UsingΘB as defined and the information matrix equality, we
can write

β̂B
A∼ N(β∗

B, V ar(ΘB)/NB)

to characterize the asymptotic distribution ofβ̂B, a standard MLE. Of particular interest,
the “bottom” of the tree contains all of the relevant information with which to assess the
final node of a recursive decision problem. As a result, estimates obtained from the terminal
node of an extensive form set of choices have all of the desirable properties of a univariate
maximum likelihood estimator.The SBI estimator is consistent and efficient at the terminal
node of a recursive decision problem.

A.2.3 A’s Decisions

Unfortunately, the same cannot be said for “upper” decisions precisely because of the
sampling distribution of the parameterŝβB and the associated sampling distributions of
functions of these parameters –p̂ℓ, p̂r. Turning our attention to (24) and the parameters
governing A’s choices, we have

(β̂A − β∗

A)
A
= R−1

3 (gA(β∗

A, β∗

B)− R2(β̂B − β∗

B))

A
= R−1

3

(

1

N

N
∑

i=1

δLA(yAi; β̂A, β̂B)

δβA

− R2R
−1
1

1

NB

NB
∑

i=1

δLB(yBi β̂B)

δβB

)

A
=

1

N
R−1

3

( N
∑

i=1

δLA(yAi; β̂A, β̂B)

δβA

− R2R
−1
1

N

NB

N
∑

i=1

yAi

δLB(yBi β̂B)

δβB

)

√
N(β̂A − β∗

A)
A
=

1√
N

N
∑

i=1

ΘAi

where

ΘAi = R−1
3

δLA(yAi; β̂A, β̂B)

δβA

− R−1
3 R2R

−1
1

N

NB

yAi

δLB(yBi β̂B)

δβB

.

This allows us to write the asymptotic distribution ofβ̂A as

β̂A
A∼ N(β∗

A, V ar(ΘA)/N).

In implementation,ΘA, R1,R2, R3 are calculated using the estimated parameters, and
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the plim evaluations are replaced with their sample approximations.14 If we assume that
N/NB is finite,V ar(ΘA) is given by

V ar(ΘA) =
1

N

N
∑

i=1

Θ̂AiΘ̂
′

Ai. (25)

The standard error correction described above applies onlyfor the two-stage SBI estimator,
or when there are only two decision nodes to estimate. As the number of decision nodes in-
creases, the number of iterations of the SBI estimator also increases, and deriving the exact
standard error correction becomes practically impossible. A more practical approach that
goes well with the ease of the SBI estimator is bootstrapping, a nonparametric method for
correctly estimating upper stage standard errors. This approach uses simulation methods to
recover the sampling distribution of the probabilities.

14Readers familiar with Murphy and Topel (1985) and Maddala (1983) will note the similarities.
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B R AND STATA CODE FOR THESBI ESTIMATOR AND

BOOTSTRAPPINGSTANDARD ERRORS

In this section, we present example R and Stata codes for running the SBI estimator for
the model in Figure 2 that we used for our Monte Carlo experiment. As we describe in
Section 3 in more detail,UA(yA = 0) andUB(yA = 1, yB = 0) are normalized to zero. The
remaining utilities are specified as follows:

UA(yA = 1, yB = 0) = Xa2βa2

UA(yA = 1, yB = 1) = Xa3βa3 + Xcβa3c

UB(yA = 1, yB = 1) = βb0 + Xb3βb3 + Xcβb3c.

In the following R code, we define a simple functionSBI that runs two consecutive
logit regressions to estimate A and B’s utilities. We then use R’s canned bootstrapping
functionboot from theboot library to calculate the bootstrapped standard errors.
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SBI ←function(Data, i){

BS ← Data[i,] # Draw the bootstrap sample
IVB ← BS[,3:4][BS[,1]==1,] # B’s regressors

# Step 1: Run a logit to estimate B’s utilities and calculate p̂B

logitB ← glm(BS[,2][BS[,1]==1]∼ IVB,
family=binomial(link="logit"))

bB ← logitB$coefficients
pB ← exp(cbind(BS[,3:4],1) %*% b2)/(1+exp(cbind(BS[,3:4],

1) %*% b2))

# Step 2: Transform A’s regressors with pB

IVA ← cbind((1-pB)*BS[, 5], vecmat(pB, BS[,6:7]))

# Step 3: Logit for A’s utilities

logitA ← glm(BS[,1] ∼ IVA-1,family=binomial(link="logit"))

logitA$coefficients}

# Step 4: Calculate standard errors with bootstrapping

boot(McData, SBI, 500)

The above SBI model can also be estimated in STATA very easily. In order to do so,
we first define a function calledsbi that runs two logits and estimates A and B’s utilities.
We then use STATA’s cannedbs function to calculate the standard errors.
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capture program drop sbi
program sbi, rclass

version 8.0
syntax, ua2(varlist num) ua3(varlist num) ub3(varlist num) y1(varname)

y2(varname)

* Step 1: Run a logit to estimate B’s utilities and calculate p̂B

logit ‘y2’ ‘ub3’ if ‘y1’
predict p2def

* Step 2: Transform A’s regressors with p2def

foreach x of varlist ‘ua3’{
gen ‘x’ t3 = ‘x’*p2def
}
foreach x of varlist ‘ua2’{
gen ‘x’ t2 = ‘x’*(1-p2def)
}

* Step 3: Logit for A’s utilities

logit ‘y1’ * t2 * t3, nocons
matrix b = e(b)

local co = 1
foreach x of varlist ‘ua2’ ‘ua3’{
ret scalar ‘x’ = b[1, ‘co’]
local co = ‘co’+1
}

end

* Step 4: Calculate standard errors with bootstrapping

bootstrap "sbi, ua2(x12) ua3(x13 xc) ub3(x23 xc) y1(y1) y2(y2)" r(x12)
r(x13) r(xc), reps(500) dots
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