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We present a simple method for estimating regressions based on recursive extensive-form

games. Our procedure, which can be implemented in most standard statistical packages,

involves sequentially estimating standard logits (or probits) in a manner analogous to back-

wards induction. We demonstrate that the technique produces consistent parameter esti-

mates and show how to calculate consistent standard errors. To illustrate the method, we

replicate Leblang’s (2003) study of speculative attacks by financial markets and government

responses to these attacks.

1 Introduction

Strategic interaction is a fundamental consideration in the study of political choice. The
choices of members of Congress to seek reelection or retire is almost certainly related to
the decisions of potential challengers (Carson 2003). Executives must decide whether or
not to veto legislation in light of the potential for a legislative override (Carson and
Marshall 2004). In international politics, Signorino and Tarar (2006) examine the strategic
sources of extended deterrence and Leblang (2003) shows that the strategic interaction
between governments and markets is a critical element in understanding currency crises.
All of the aforementioned theoretical insights require empirical tests that roughly conform
to the important structural elements of the decision-making environment.
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Despite the increased use of choice (or game) theoretic explanations in modern political
science research, there is often a subtle disconnect between theories and the empirical tests
of these theories. ‘‘Indirect’’ statistical tests of formal models generally fail to properly
characterize the hypothesized relationships in statistical testing.1 Techniques for amelio-
rating this problem have been previously presented (Signorino 1999, 2002, 2003; Lewis
and Schultz 2003; Signorino and Tarar 2006). However, these methods generally require
researchers to program and then optimize a frequently complex, problem-specific model.

In this paper, we simplify the estimation of statistical strategic models in an effort to bridge
the disconnect between theory and empirical analysis. Our motivation is primarily practical
with respect to most contemporary research in political science. Signorino (1999, 2002, 2003)
provides a general framework for estimating statistical strategic models, along with different
ways of conceptualizing the uncertainty that can make strategic models ‘‘statistical.’’ Based
on this, the program Strat was developed, allowing scholars to estimate strategic models
relevant to their substantive research.2 The types of games that can be estimated in Strat,
however, are limited to six or seven relatively simple—though quite common—decision
structures. Scholars desiring to estimate parameters in a strategic model that is not included
in Strat must therefore construct and estimate their own maximum likelihood models.

In the following sections, we first demonstrate a useful simplification that allows re-
cursive statistical strategic models to be estimated with simple variants of logit and
probit—and in a way that is consistent with the underlying theory. The method is very
similar to the game-theoretic notion of backwards induction. We also show how to cor-
rectly estimate the standard errors (SEs) using this simplified technique. Finally, using the
proposed method, we replicate Leblang’s (2003) study of currency crises.

2 Referent Example

It will be helpful to employ an example throughout our analysis. Figure 1 displays the
structure of our referent model. In this game, player A must choose between playing Right
(R) or Left (L). If A chooses Right, player B must then choose whether to play right (r) or
left (‘). Playing left results in outcome R‘. If B chooses right, (Rr) is the outcome. The
players utilities are shown at the terminal nodes—e.g., UA(L) is state A’s utility for the L
outcome, and UB(R‘) is state B’s utility for the R‘ outcome.

Structurally, the model is quite simple. The fact that players do not make their decisions
simultaneously (or without knowledge of other players’ moves) makes this a fully re-
cursive model. Assuming the players and we as analysts have complete information
concerning the utilities, then for any specification of the utilities, the model can be solved
via backwards induction for the subgame perfect equilibrium.

The logic of backwards induction is relatively straightforward. We start at the end nodes
of the game and then ask what choice the player will make at the preceding decision node.
With perfect and complete information, we can determine which option will be selected.
Given that knowledge, we can step back to the next preceding decision node and determine
what that player will do. For example, consider Fig. 1. Let us first suppose that A’s
preferences are Rr_L_R‘ and B’s are Rr_R‘.3 If we start with B’s decision, we can
see that, if A chooses R, B will choose r, leading to Rr. Player A knows this, so her decision

1Signorino and Yilmaz (2003) focus on this problem.
2‘‘Strat: A Program for Estimating Statistical Strategic Models’’ is available at www.rochester.edu/College/PSC/
signorino.

3x_y_z means that option x is preferred to y, that y is preferred to z, and that (via transitivity) x is preferred to z.
We omit L in B’s preferences because it is not relevant for this game.
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between L and R is really a decision between outcomes L and Rr. Given A’s preferences
above, A will choose R, leading to the subgame perfect equilibrium outcome Rr. Now
suppose A’s preferences are as stated above, but B’s are exactly the opposite: R‘_Rr. In
this case, if A chooses R, then B will choose ‘. Because A prefers L to R‘, the equilibrium
outcome will be L. It is important to note that it is this ability to work from the end of the
game back toward its beginning that allows us to employ the statistical technique we will
later present.

In its present form, the model is not statistical. To construct a statistical strategic model,
we need to assume some form of uncertainty on the part of the players and/or analyst.
There are a number of ways we might do so: agent error, private information by the
players, or complete information by the players but imperfect measurement (or specifica-
tion of regressors) by the analyst (Signorino 2003). Of the three, the one that is consistent
with our simplified estimation technique is the agent error specification.4 We now give
Fig. 1 an agent error representation.

2.1 The Statistical Strategic Model

To fully specify the statistical model, we assume that there is a shock to the players’
expected utilities for their actions. Consider B’s decision. B’s utilities will be specified as

UB*ð‘Þ5UBð‘Þ þ a‘ 5UBðR‘Þ þ a‘; ð1Þ

UB*ðrÞ5UBðrÞ þ ar 5UBðRrÞ þ ar; ð2Þ
where UB*ð�Þ is considered the ‘‘true’’ utility, UBð�Þ is the component of the utility that is
observable to the other players and to the analyst, and a is a random private component,
observable only to player B. We assume B maximizes her (true) utility.

Because we as the analysts do not observe the a terms, we can only make probabilistic
statements about whether B is likely to play right or left. Once a density is assumed for a,
derivation of the choice probabilities is straightforward, following traditional random
utility models, as demonstrated in a strategic context in Signorino (1999, 2003).

Fig. 1 Two-player game. Player A must choose whether to play Left (L) or Right (R). If Player A
plays R, Player B must then choose whether to play Left (‘) or Right (r).

4For those who do not like the Non-Nash interpretation of the agent error specification, Signorino (2003) shows
that, for simple models such as that in Fig. 1, it will yield almost identical results as the (strictly Nash) private
information version. Researchers should be aware, however, that the more complicated the game structure, the
more the agent error model will diverge from the private information model.
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We will assume throughout this paper that the a are distributed Type I Extreme Value,
leading to logit probabilities.5 B’s probabilities, pr and p‘, of playing right and left,
respectively, are

pr 5
eUBðRrÞ

eUBðR‘Þ þ eUBðRrÞ ; ð3Þ

p‘ 5
eUBðR‘Þ

eUBðR‘Þ þ eUBðRrÞ : ð4Þ

Now consider A’s choice between playing Right and Left. If A plays Left, the game
ends. However, A’s decision to pick Right depends on what she thinks B will do. Because
the a’s are private information, A is uncertain of B’s action and, therefore, must estimate
the probability that B will play right or left. Therefore, A’s utility for playing Right is an
expected utility over the lottery consisting of B’s choice, with probabilities as above: pr,
and p‘. Player A’s utilities are thus

UA*ðLÞ5UAðLÞ þ aL ð5Þ

UA*ðRÞ5EUAðRÞ þ aR ð6Þ

5 p‘UAðR‘Þ þ prUAðRrÞ þ aR: ð7Þ

We will assume that the analyst shares the same uncertainty as the players. With the
same assumptions as before, the probabilities of A playing Right versus Left are logit
probabilities. The twist here is that they are based on an expected utility calculation and do
not take the same form as logit probabilities in typical statistical analyses. A’s probabil-
ities, pR and pL, of picking Right and Left, respectively, are

pL 5
eUAðLÞ

eUAðLÞ þ eEUAðRÞ
5

eUAðLÞ

eUAðLÞ þ ep‘UAðR‘ÞþprUAðRrÞ ; ð8Þ

pR 5
eEUAðRÞ

eUAðLÞ þ eEUAðRÞ
5

ep‘UAðR‘ÞþprUAðRrÞ

eUAðLÞ þ ep‘UAðR‘ÞþprUAðRrÞ : ð9Þ

For any specification of the utilities, (p‘, pr, pL, pR) are the equilibrium probabilities
of the statistical strategic model. Since we have assumed that the uncertainty enters as
Type I Extreme Value perturbations to the action utilities, (p‘, pr, pL, pR) is a Logit
Quantal Response Equilibrium (see McKelvey and Palfrey (1998) and Signorino
(1999)). Because the a terms are assumed to be independently distributed, the
equilibrium probabilities for the outcomes are just the product of the choice probabilities
along each outcome’s path:

Pr½L�5 pL ð10Þ

5The techniques demonstrated here can be implemented in exactly the same fashion if one assumes the a are
normally distributed, resulting in probit probabilities.
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Pr½R‘�5 pR � p‘ ð11Þ

Pr½Rr�5 pR � pr ð12Þ

Having specified the statistical strategic model, a natural question concerns how the
equilibria of the statistical model compare to the subgame perfect equilibria of the model
with complete information—i.e., without the shocks to players’ expected utilities. The
intuition for this is best explained with reference to the variance of the error terms,
assuming the observed utilities are held constant. As the variance of the error terms goes
to zero, the model becomes one of players with perfect and complete information, who
maximize their utility at each decision point. Therefore, in the limit, the equilibria are
subgame perfect. When the variance of the error terms is nonzero but extremely small
relative to the observed utilities, the statistical equilibria often resemble a smoothed ver-
sion of the subgame perfect equilibria. As the variance of the error terms increases, the
equilibria may at times resemble smoothed versions of the subgame perfect equilibria, but
may at other times look very different from the subgame perfect equilibria because the
choice probabilities affect expected utility calculations.

The last step in specifying the model is to assign regressors to the utilities and then
estimate the parameters accompanying those regressors. The statistical strategic model is
just a strategic, random utility model. Therefore, the equilibrium choice and outcome
probabilities provide a probability model that can be used in maximum likelihood esti-
mation. The method of estimation—and, specifically, a new, simpler method for doing
so—is the subject to which we now turn.

3 Statistical Backwards Induction

We provide a technique in this section that allows practitioners to estimate recursive
strategic models (of any depth or breadth) requiring only variations of logit or probit in
standard statistical packages. This technique has a number of nice properties in relation to
the system estimator currently used. Before turning to the new procedure, we first specify
the system estimator.

3.1 The System Estimator

To date, empirical analyses employing statistical strategic models have employed a ‘‘sys-
tem’’ approach to estimation—where all parameters are estimated simultaneously for the
entire model (see, e.g., Signorino 1999, 2002, 2003; Guo 2002; Carson 2003, 2005;
Signorino and Yilmaz 2003; Carson and Marshall 2004; Carter 2005; Quackenbush
2005; Signorino and Tarar 2006).6 To compare the system estimator to Statistical Back-
wards Induction (SBI), it will be helpful to change our notation slightly.

Consider the game in Fig. 2, which is a more fully specified version of the model in
Fig. 1. Let us now assume that our data is coded as

yA 5
1; if UA*ðRÞ � UA*ðLÞ;
0; if UA*ðLÞ.UA*ðRÞ;

�
ð13Þ

6Strat currently implements a systems approach to maximum likelihood estimation of the parameters. This is also
referred to as a ‘‘full information maximum likelihood’’ estimator.
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and

yB 5
1; if UB*ðrÞ � UB*ð‘Þ;
0; if UB*ð‘Þ.UB*ðrÞ;

�
ð14Þ

where yA 5 1 and yB 5 1 correspond to A and B choosing R and r, respectively. The
equilibrium action probabilities are the same as before. According to the new coding, they
are pR 5 Pr(yA 5 1) and pr 5 Pr(yB 5 1).

Figure 2 also displays a very simple specification of regressors for the utilities. Here, we
have normalized UA(yA 5 0) 5 0 and UB(yA 5 1, yB 5 0) 5 0. The remaining utilities are
specified with a single regressor and parameter:

UAðyA 5 1; yB 5 0Þ5Xa1ba1;

UAðyA 5 1; yB 5 1Þ5Xa2ba2;

UBðyA 5 1; yB 5 1Þ5Xb2bb2:

Assuming we have data for all outcomes and regressors, then the system estimator
would maximize the log of the following likelihood with respect to the regression co-
efficients ba1, ba2, and bb2:

L5
YN

p
ð1�yAÞ
L � ðpRp‘ÞyAð1�yBÞ � ðpRprÞyAyB ;

where the observation index i, i51, 2, . . . , N, has been dropped. In sum, for the system
estimator, we construct a probability model for all of the actions and outcomes, and then
use that to form the likelihood to be maximized. All parameters for all of the players are
then estimated simultaneously.

3.2 SBI Estimator

In order to illustrate estimation by SBI, it is helpful to think of the strategic model as
a recursive system of equations (see also Signorino 2002; Signorino and Yilmaz 2003). The
main insight is that a recursive system of equations can be estimated equation-by-equation.

Fig. 2 Model with regressors (X) and parameters (b).
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Therefore, a recursive statistical strategic model can be estimated by univariate analogs of
backwards induction.

3.2.1 The strategic model as a recursive system of equations

Consider the strategic model from the previous section and the data coding in equations
(13) and (14). These imply the following system of latent variable equations:

yA*5UA*ðRÞ � UA*ðLÞ; ð15Þ

yB*5UB*ðrÞ � UB*ð‘Þ; ð16Þ
where the data are coded as yj 5 1 if yj* � 0 and yj � 0 if yj*, 0, for j 2 {A, B}. Given the
regressor specification in Fig. 2, the system can be written as

yA*5 p‘Xa1ba1 þ prXa2ba2 þ eA; ð17Þ

yB*5Xb2bb2 þ eB: ð18Þ
If we assume that the a perturbations to the expected utilities are distributed Type I
Extreme Value, then the ej terms are distributed logistic (McFadden 1974). The resulting
choice probabilities pr 5 Pr½yB*. 0� and pR 5 Pr½yA*. 0� will be logit probabilities.7

It bears reiterating that this system of latent variable equations is completely consistent
with the statistical game with agent error—it is just a different way of writing the same
model. Moreover, the probabilities are all logit probabilities, but, again, where the
expected utility calculations are explicitly modeled.

Because the a shocks are assumed independent, the e terms are also independent.
Therefore, equations (17) and (18) are not ‘‘linked’’ through their error terms. Moreover,
the system of equations is recursive, which, in theory, would imply that we can ‘‘start from
the bottom and work up,’’ estimating first the equation for yB* and then using that infor-
mation in the estimation of yA*. Indeed, it is not coincidental that the game-theoretic model
can be solved via backwards induction and that this statistical model can be estimated in an
analogous fashion. The only problem with this setup so far is that, although the equations
for yB* and yA* result in logit probabilities, the systematic component of yA* does not take the
same functional form as in typical logit models. This is, of course, due to the expected
utility calculation. If Fig. 2 generated the data and we were to use logit with the typical
first-order linear Xb specification for each equation, then our parameter estimates would be
biased and inconsistent (see Signorino and Yilmaz 2003). However, as we will show, this
problem can be easily overcome.

3.2.2 The basic SBI procedure

SBI requires three components common to empirical political science: (1) standard logit or
probit regression (e.g., in Stata, SPSS, etc.), (2) the ability to calculate predicted proba-
bilities from the aforementioned regression, and (3) the ability to generate new variables
by multiplying two existing variables. The basic idea for the SBI is to estimate the system
equation-by-equation using standard logits, but transforming regressors in expected utility
calculations into ‘‘new’’ regressors that can be used in standard logit estimation. Consider

7Probit probabilities result from an assumption of normally distributed error terms.
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our strategic system of equations in equations (17) and (18) describing Fig. 2. For our
referent example, the basic SBI estimation procedure is the following:

1. B’s Choice. Since yB*5Xb2bb2 þ eB does not require information concerning yA*, logit

may be used to estimate b̂b2. Once b̂b2 is obtained, calculate p̂r and p̂‘ 5 1� p̂r .

2. A’s Choice. Substitute p̂‘ and p̂r into A’s equation, giving

yA*5 p̂‘Xa1ba1 þ p̂rXa2ba2 þ eA:

To use standard statistical packages, we must first create the transformed regressors Za1 5

p̂‘Xa1 and Za2 5 p̂rXa2. Logit may then be used to estimate the parameters in the equation:

yA*5Za1ba1 þ Za2ba2 þ eA:

It is important to note that in each stage, the transformed latent variable regression
equation is exactly the same as the original, just written in a different way. Therefore,
although the parameters in the transformed equations are associated with transformed
regressors, the interpretation of the parameters is the same as in the original equation.
For example, b̂a2 is still the estimated effect of Xa2 on A’s utility for outcome (yA 5 1, yB 5

1). The transformation of the regressors is only done to allow for estimation in standard
computer packages, and it does not affect the interpretation of the parameter estimates.

SBI implies a number of nice properties above and beyond the ease of implementation.
Logit estimation in each stage will yield consistent estimates of the parameters and
functions of the parameter estimates, such as the equilibrium choice and outcome prob-
abilities. The consistency of the parameter estimates derives from their status as maximum
likelihood estimators. Obviously, system estimators would also yield consistent estimates.
Indeed, because the equations are recursive and because the error terms are uncorrelated,
we would expect both methods (system and SBI) to yield virtually identical results.
However, they may not—and there are additional benefits to using SBI.

First, SBI often provides a feasible estimator, when the system estimator might be much
more difficult to estimate. The likelihood function for the system estimator is not guaran-
teed to be globally concave. That is not to say that there are multiple extrema, but rather
that the likelihood function may only be quasi-concave. It is easy to show just from plotting
the likelihood that as the number of observations becomes small and as the variance of
the error term becomes small, the likelihood function becomes increasingly ‘‘step-like,’’
reflecting the fact that the equilibrium probabilities closely approximate the subgame
perfect step response. The effect of this is that system estimation may have problems with
weak (or fragile) identification. In contrast, logit and probit have globally concave likeli-
hood functions, resulting in much easier and more rapid numerical optimization.8

Second, SBI is fast. Optimized algorithms exist for implementing logit (or probit and
their variants) in a host of software packages, while maximizing a user-specified likelihood
is often a slow and painstaking process that heavily depends on the quality of starting
values. Across a host of tests and implementations, the SBI strategic model iterates and
converges more rapidly and requires fewer iterations than an identical systems approach.

Third, SBI retains more data for estimation. In practice, the system method requires all
of the data appearing anywhere in the game to be sent simultaneously to a procedure that
calculates the log likelihood of each observation. Although a number of techniques exist
for dealing with missing data, listwise deletion is still often the default method. In this

8Monte Carlo simulations suggest a rather rapid decay in the convergence properties of system estimators (in
Stata) that posed no problem for SBI.
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case, if any observation contains a missing data point, the entire row is generally deleted.
So for example, if a variable in A’s decision contains missing data, then the entire row will
be deleted, even if that variable does not appear in B’s decision. This produces a needless
loss of data in estimating B’s parameters. Because the system is recursive, and because the
SBI approach estimates each equation individually, missing data outside a given subgame
will not affect the sample for the equation associated with that subgame. Therefore, the
iterative approach is able to use as much data as possible in estimating the parameters.

Finally, we show in the appendix that the SBI estimator produces consistent estimates
of ba1, ba2, and bb2. It also produces consistent estimates of the SE of bb2. However,
because p̂‘ and p̂r are substituted into A’s equation and the resulting Za1 5 p̂‘Xa1 and
Za2 5 p̂rXa2 variables are treated as data (without estimation uncertainty), SBI will yield
biased estimates of the SEs of ba1 and ba2. Fortunately, this is easily remedied by a non-
parametric bootstrap.9

3.3 SBI with Bootstrapped SEs

To retain the simplicity of SBI, we rely on a simulation method for calculating the
SEs—one that adds only a single step to the procedure outlined in the previous section.
The approach we use is a form of the nonparametric bootstrap. The bootstrap procedure is
quite simple. M iterations of the bootstrap are run. During each iteration m 5 1, 2, . . ., M of
the bootstrap, a sample is randomly drawn with replacement from the original data. SBI is
then used to estimate parameters governing B’s choice, generate new regressors, and
estimate A’s parameters (which are saved). After the M iterations of the bootstrap pro-
cedure, the SEs of A’s parameter estimates are calculated by simply taking the standard
deviations (SDs) of the saved estimates.

As mentioned previously, the bootstrap correction is only necessary for the estimation of
A’s parameters. Because B’s actions do not depend on any auxiliary parameters, the first-
stage maximum likelihood SEs are consistent. It is only when we turn to choices that depend
on the expected choices of others that a correction for the presence of a random action
probability is necessary. With this need for correction in mind, we compare the system and
SBI approaches for estimating statistical strategic models in a Monte Carlo experiment.

3.4 Monte Carlo Analysis

For the Monte Carlo analysis, we assumed a similar regressor specification as in Fig. 2.
We have normalized UA(yA 5 0) 5 0 and UB(yA 5 1, yB 5 0) 5 0. The remaining
utilities are specified as follows:

UAðyA 5 1; yB 5 0Þ5Xa2ba2;

UAðyA 5 1; yB 5 1Þ5Xa3ba3 þ Xcba3c;

UBðyA 5 1; yB 5 1Þ5 bb0 þ Xb3bb3 þ Xcbb3c;

9As with any method, there are limitations to this one as well. The main limitation here is really a modeling issue:
it assumes the underlying model is recursive. It is important to note, however, that some common games are not
recursive—for example, games with simultaneous moves and those with Bayesian updating. Although these
games can be written as a system of equations, they generally do not have the simple structure (and nice
properties) just demonstrated. For examples of this, see the simultaneous move games in McKelvey and Palfrey
(1998) and the signaling games in Lewis and Schultz (2003), Wand (2005), and Signorino and Whang (2007).
In these cases, researchers will need to derive and program the more complicated structural model.
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where ba2 5 ba3 5 ba3c 5 bb3 5 1, bb3c 5�1, and bb0 5 p. Xc is a common regressor that
appears in both players’ utilities. Data were generated based on the behavioral assump-
tions of the game, with X uniformly distributed over [�2p, 2p], e distributed logistic, with
V(e) 5 p2/3. Simulations were run for sample sizes n 5 500 and n 5 5000. Once data were
generated, the parameters were estimated using both the system and SBI methods, and
correct SEs for SBI are calculated using the bootstrap with 1000 bootstrap iterations.
Simulations were repeated 5000 times for n 5 500 and 2000 times for n 5 5000 to form
the densities of the estimators.

Table 1 summarizes the results of the Monte Carlo analysis for ba3 and ba3c. The first
number in each cell is the mean of the Monte Carlo density. The number in parentheses is
the SD. As we previously noted, the SBI estimator will produce consistent estimates for
the parameters (i.e., the b’s) for all players in the game, as well as for the SEs for B. The
upper section of Table 1 displays the Monte Carlo sampling distributions of b̂a3 and b̂a3c
for the system and SBI estimators. First, note that both the SBI and system estimators are
consistent; they both recover the true parameter values on average.10 Second, although the
SBI estimator uses less information than the system estimator, it is nearly as efficient for
samples of at least 500. Indeed, it is also useful to note that the SD of the system
estimator’s density is the gold standard for the SE estimators. So, for samples of 500,
we would like the average estimated SE to be close to 0.22, whereas for n 5 5000, it
should be close to 0.06.

For the Monte Carlo, A’s estimated SEs were calculated in two ways. The system SEs
are based on the (estimated) asymptotic variance from systems estimation. The ‘‘boot-
strapped SBI’’ SEs are produced by running the bootstrap procedure on the SBI estimator
and then taking the SD of the saved parameter estimates.

The lower section of Table 1 displays the average estimated SE based on system and
bootstrapped SBI estimation. The system SEs are obviously very close to the SDs of the
sampling distributions in the upper section. More importantly for our purposes here, the
bootstrapped SBI SEs are also quite close. As is to be expected, the bootstrapped SBI SEs
are slightly larger than the system SEs. This is because the SBI method is itself less
efficient than the system method. Moreover, the bootstrap method will induce some in-
efficiency. Nevertheless, the sampling properties of the SBI method and of bootstrapping
imply that the bootstrapped SBI SEs will be consistent. In fact, we can see that as the
sample increases to 5000, the difference in the SEs is quite small.

Although not reported here, the SBI SEs for B’s utilities will be larger than the corre-
sponding system SEs. SBI uses a smaller sample to estimate the coefficients at ‘‘lower’’

Table 1 Monte Carlo results

n 5 500 n 5 5000

Parameter estimates b̂a3 b̂a3c b̂a3 b̂a3c
System 1.096 (0.224) 1.090 (0.223) 1.037 (0.061) 1.034 (0.058)
SBI 1.047 (0.227) 1.043 (0.226) 1.024 (0.065) 1.021 (0.063)

Standard errors seðb̂a3Þd seðb̂a3cÞd seðb̂a3Þd seðb̂a3cÞd
System 0.215 (0.054) 0.211 (0.055) 0.062 (0.004) 0.061 (0.004)
Bootstrapped SBI 0.255 (0.083) 0.252 (0.084) 0.067 (0.006) 0.067 (0.006)

Note. The first number in each cell is the mean of the Monte Carlo density. The number in parentheses is the SD.

10Although not shown here, the results for ba2 are similar to those reported in Table 1.

10 Muhammet Ali Bas et al.



nodes, so this again comes as little surprise. Because the system is recursive, SBI SEs for
this step are consistent. However, SBI is less efficient than the systems estimator, which
simultaneously utilizes all available information.

With a theoretical model and its statistical counterpart in hand, we illustrate the power
of this technique with real data in the next section.

4 Data Analysis

A substantial political economy literature has examined speculative attacks on currency
pegs—arbitrage opportunities may lead individual investors to take financial positions that
combine to ‘‘attack’’ the declared par value of a currency (in terms of some other cur-
rency). Given an attack, governments confront a difficult choice: to expend resources in
defense of the par value or to allow the currency to devalue, with all the concomitant
distributional issues accompanying devaluation. Leblang (2003) analyzes the strategic
aspect of such speculative attacks using a system estimator based on the model depicted
in Fig. 3.11 Leblang’s (2003) analysis provides a nice opportunity to compare system
estimation versus SBI.

The variables that measure market (M) utilities for the status quo, defense, and de-
valuation and government (G) utility for defense and devaluation are listed in Table 2. In
general terms, markets are argued to attack currencies when there is a disconnect between
the fixed exchange rate and the equilibrium rate of exchange (proxied by Reserves, Real
Exchange Rate Overvaluation, Credit Growth), a history of questionable fixes (proxied by
Prior Attacks), and/or greater structural incentives to challenge a government’s resolve
(proxied by Contagion, U.S. Interest Rates, and Debt Service). Similarly, governments are
argued to defend pegged exchange rates when it is politically expedient (proxied by
Unified Government, Campaign/Election, Right Government, Export Sector, and Post-
election) given the resources at their disposal with which to combat speculative attacks
(proxied by Interest Rates, Capital Controls, and Reserves).

The specification of the utilities with regressors is shown in Fig. 3b. Here, regressors
and parameters subscripted with m are associated with market utilities. Those subscripted
with g are associated with government utilities. The replication results using system and

Fig. 3 Leblang’s model of speculative attacks on currencies.

11To be clear, he analyzes a sample of monthly data from states that are nominally democratic—countries with
Polity scores greater than 5—with pegged exchange rates.
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SBI estimators are presented in Table 3. The columns labeled System replicates the system
estimator results in Leblang (2003) Table 2. The columns labeled SBI replicate Leblang’s
results, but using SBI. The table is divided into an upper and lower section. In the upper section,
the parameter estimates for the constant terms (bm0, bg0, bg1) are presented. In the lower
section, the estimates associated with regressors in Xm and Xg are presented. Bootstrapping
is used to correct the bias in SEs for markets for reasons described in Section A.2.

The tiny differences in system versus SBI estimates confirm that the simplified SBI
method is very similar to the full system estimator. Furthermore, SBI produces inferences
that do not at all diverge from the systems estimator. The magnitudes and signs of the
estimates do not substantially differ between the system and SBI estimators; and the SEs
are quite similar.

Substantively, with respect to government decisions to defend or devalue, Unified
Government, Export Sector, Postelection periods, and Capital Controls fail to reject the
null hypothesis of no effect for both estimation techniques. By contrast, Campaign/Election

Table 2 Variables and measures from Leblang (2003)

Variables Utility Sign Measures

Unified Government G þ Binary: party that controls the executive also
controls the lower house of the legislaturea

Export Sectort–1 G � Log Exports
GDP

� �
t�1

: size of the export sector
relative to GDPb

Campaign/Election G þ Binary: 3-month campaigns and the month of
electionsa

Postelection G � Binary: 3 months postdating every election
montha

Right Government G þ Binary: governments classified Left, Center,
and Right according to Left-Right positions
on state control of the economya

Interest Ratest–1 G þ Deflated discount rates, money market rates,
or deposit rates depending on availabilityc

Capital Controlst–1 G, M þ, þ Binary: controls on the capital accountd

Reserves G, M þ, þ Log Reserves
BaseMoney

� �
t�1

: total reserves minus gold

to base money [M0]c

Real Exchange Rate
Overvaluation

M � Hodrick-Prescott residuals of the monthly real
exchange ratec

Credit Growtht–1 M � Rate of growth in domestic creditc

U.S. Interest Ratest–1 M � Interest rate on 90-day U.S. depositsc

Debt Servicet–1 M � Total interest and debt repayment in foreign
currenciesc—International Monetary Fund,
short-, and long-term loans—as a
percentage of exportsb

Contagion M � Number of speculative attacks outside country
i in month t

Prior Attacks M � Number of speculative attacks for country i in
all months preceding t

aDatabase of Political Institutions, Beck et al. (2001) updated by Leblang (2003).
bWorld Development Indicators, (World Bank n.d.).
cInternational Financial Statistics, (International Monetary Fund n.d.b).
dAnnual Report on Exchange Arrangements and Exchange Restrictions.
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periods, Right Governments, the level of Interest Rates, and foreign exchange Reserves
exert statistically significant impacts on the decision to defend or devalue resulting in
identical inferences from systems and SBI estimation. In short, government utilities show-
case minimal differences between systems estimation and SBI. For market decisions to
initiate speculative attacks, Capital Controls, U.S. Interest Rates, and levels of Debt Service
have no statistically discernible impact, while Real Exchange Rate Overvaluation, the rate
of domestic Credit Growth, foreign exchange Reserves, Contagion, and Prior Attacks in-
fluence the decision without regard to estimation technique. Finally, there is no statistically
significant difference between the market utilities for defense and devaluation in either the
systems or SBI estimates as represented by the constant. This implies that there is no
evidence that markets necessarily prefer devaluations to defenses given a speculative attack.

Assessing model fit, the bottom row of Table 3 shows a very small difference between
the log likelihoods of the system and SBI approaches to estimating this statistical strategic
model. Comparing the sum of the log likelihoods from the SBI estimator to the system log
likelihood, the resulting difference is 0.0466.12 Thus, this replication exercise demon-
strates a simplified technique for the analysis of currency crises that is both useful and
closely mirrors its system equivalent.

Table 3 Replication of Leblang’s results

System SBI

Market Government Market Government

Constants
bg0 �0.43 (0.78) 0.20 (0.78)
bm0 �3.66* (0.30) �4.05* (0.47)
bm1 �3.14* (0.29) �3.41* (0.50)

bm bg bm bg

Variables
Unified Government �0.35 (0.35) �0.07 (0.45)
Export Sectort–1 �0.20 (0.17) �0.29 (0.23)
Campaign/Election 1.66* (0.75) 2.23* (0.93)
Postelection 1.06 (0.59) 1.10 (0.74)
Right Government �0.94* (0.45) �1.55* (0.65)
Interest Ratest–1 1.93* (0.64) 1.33* (0.69)
Capital Controlst–1 �0.45 (0.25) 0.07 (0.75) �0.42 (0.47) 0.67 (0.79)
Reservest–1 0.23* (0.06) 0.31* (0.17) 0.29* (0.07) 0.59* (0.21)
Real Exchange Rate

Overvaluation
�0.44* (0.09) �0.46* (0.18)

Credit Growtht–1 �0.06* (0.03) �0.07* (0.04)
U.S. Interest Ratest–1 �0.05 (0.06) �0.05 (0.06)
Debt Servicet–1 �0.03 (0.05) �0.03 (0.05)
Contagion �0.12* (0.05) �0.13* (0.05)
Prior Attacks �0.12* (0.05) �0.12* (0.05)

n 7240 7240 7240 88
Log likelihood �482.02 �432.27 �49.79

Note. The first number in each cell is the mean of the Monte Carlo density. The number in parentheses is the SD.
*p � 0.05.

12This result is obtained by subtracting the sum of SBI log likelihoods from the system log likelihood.
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5 Conclusion

Our objective in this paper has been to provide a simple method for estimating recursive,
statistical strategic models. Researchers can now use common commands (e.g., logit,
probit, bootstrap) in their favorite statistical package to estimate these models. Moreover,
the technique is flexible, allowing researchers to estimate models corresponding to a wide
array of strategic situations.

As we have shown, this user-friendliness does come with a small cost: the SBI estimator
is less efficient than the full information system estimator. However, for most data sets, the
difference should be negligible. Indeed, we found no substantive differences between the
system and SBI replications of the Leblang (2003) analysis.

The above cost, we believe, is well offset by the introduction of a large tool set for
political science scholars. Deriving statistical models that are consistent with theoretical
models is difficult enough. For many researchers, the programming requirements generally
associated with these specialized models are often a roadblock to their implementation. By
removing that roadblock, scholars can get on with the business of substantive research
concerning strategic political behavior.
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Appendix A: Properties of the SBI Estimator

The general problem of multistep estimation is considered in a broad econometric
literature. Consistency is almost certain, because maximum likelihood estimators are
consistent, as are functions of them. That said it is instructive to investigate the
equation-by-equation technique and to provide a general analysis of its properties.
We first ask, is SBI estimation consistent?

A.1 Consistency

The SBI strategic estimator is a special case of the two-step maximum likelihood
estimators described in Murphy and Topel (1985). Thus, consistency of the SBI
estimator follows from the consistency of two-step maximum likelihood estimation
procedures. For simplicity, consider a simple case with two models, in which one
model is embedded in the other:

y1 5 f1ðx1; h1Þ; ðA1Þ

y2 5 f2ðx1; x2; h1; h2Þ; ðA2Þ

Two-step maximum likelihood first estimates the parameter vector h1 by maximum
likelihood. h2 is then estimated by maximum likelihood with ĥ1 inserted in place of h1

as if it were known (Greene 2000). The consistency of the first step follows from the
consistency of maximum likelihood estimators (MLEs). Murphy and Topel (1985)
show that estimating h2 from f2ðy2jx1; x2; ĥ1; h2Þ is asymptotically equivalent to
estimating it from f2ðy2j x1; x2; h1; h2Þ; therefore, the second step is also consistent
(Murphy and Topel 1985).
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In our equation-by-equation strategic method, the first step consists of estimating
B’s choice probabilities by logit (or probit) and then using these estimates as if they
were known in estimating A’s choice probabilities with logit (or probit). Thus, it
follows that both steps of the SBI estimator provide consistent estimates of players’
choice probabilities.

A.2 Efficiency

Our analysis of efficiency is based on the considerable econometric literature on
multistep maximum likelihood estimators, see Murphy and Topel (1985) and Newey
and McFadden (1994). We first examine the properties of multistep estimators.

Newey and McFadden (1994, Theorem 6.2, 2180) characterize the general condi-
tions where the presence of a first-step estimator influences asymptotic inference.13

Subject to certain regularity conditions, the key to valid asymptotic inference relies on
the consequences of consistency in the first-stage estimates. If consistency of the first-
stage estimates is critical for the consistency of subsequent estimates, Newey and
McFadden (1994) prove that the (estimated asymptotic) SEs for the second stage
are inconsistent. With reference to SBI estimation, Newey and McFadden show that
the SEs are generally incorrect because consistency of the estimated action probabil-
ities ‘‘below’’ is critical for consistency of the parameters. Upon reflection, this may
not be critical. Given the common practice of testing zero null hypotheses, we are
more concerned with falsely rejecting true null hypotheses; indeed, the power of tests
is seldom if ever discussed in applied research. Unfortunately, a further difficulty for
the equation-by-equation technique is suggested by Newey (1984).

Newey (1984) argues that second-stage SEs of equation-by-equation estimators will
be incorrect and too small (in a positive semidefinite sense). An intuition arises from
the remark of Karaca-Mandic and Train (2003, 401) that ‘‘the covariance matrix of the
second-stage estimator includes noise introduced by the first-stage estimates.’’ Newey
(1984) demonstrates that sequential generalized method of moments estimators will
have undersized asymptotic SEs when the covariances between the stages are zero and
the (estimated) quantities are assumed to be known. Recall that the SBI estimation
technique begins by calculating B’s action probabilities and employing predicted
values p̂r as the expected actions of B to form new regressors ZA 5 ½p̂rXa2; p̂‘Xa1�.
Employing the theory of the partitioned inverse, Newey partitions the estimation
problem into first and second stages to demonstrate that a zero covariance among
the stages (which we assume to be true because the players’ choices are indepen-
dent) and treatment of the predictions as data requires that the estimated (asymp-
totic) SEs will be too small because they fail to account for the sampling variance of
the predicted probabilities. We first turn to an analytic characterization of the
problem.

A.2.1 Efficiency: Analytics

For a two-player model as in Fig. 2, we can derive the SE correction for the second stage
of the SBI estimator.14 As a special case of maximum likelihood estimation, the first

13Their analysis is of the general class of method of moments estimators.
14The derivation follows closely Karaca-Mandic and Train (2003).
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step of the equation-by-equation estimator finds b̂B that solves the moment condition
gB(bB) 5 0 and then the second stage finds b̂A that satisfies gAð; bA; b̂BÞ5 0, where

gBðbBÞ5
1

NB

XNB

i51

dLBðyBib̂BÞ
dbB

; ðA3Þ

gAðbA; b̂BÞ5
1

N

XN

i51

dLAðyAi; b̂A; b̂BÞ
dbA

: ðA4Þ

Taking a first-order Taylor’s expansion of first- and second-stage moment conditions
around the true parameter values bB

* and bA
* we get

gBðbB
*Þ � R1ðb̂B � bB

*Þ 5A 0; ðA5Þ

gAðbA
*;bB

*Þ � R2ðb̂B � bB
*Þ � R3ðb̂A � bA

*Þ 5A 0; ðA6Þ
where 5

A
denotes asymptotic equality and

R1 5 � plim
dgBðbB

*Þ
dbB

;

R2 5 � plim
dgAðbA

*; bB
*Þ

dbB

;

R3 5 � plim
dgAðbA

*; bB
*Þ

dbA

:

Let us further assume that R1, R2, and R3 are nonsingular square matrices.

A.2.2 B’s Decisions

We can use (A5) to construct

ffiffiffiffiffiffi
NB

p
ðb̂B � bB

*Þ 5A 1ffiffiffiffiffiffi
NB

p
XNB

i51

R�1
1

dLBðyBib̂BÞ
dbB

;

ffiffiffiffiffiffi
NB

p
ðb̂B � bB

*Þ 5A 1ffiffiffiffiffiffi
NB

p
XNB

i51

HB;

where HB 5R�1
1

dLBðyBib̂BÞ
dbB

. Using HB as defined and the information matrix equality,
we can write

b̂B ;
A

NðbB
*;VarðHBÞ=NBÞ;

to characterize the asymptotic distribution of b̂B, a standard MLE. Of particular interest,
the ‘‘bottom’’ of the tree contains all of the relevant information with which to assess the
final node of a recursive decision problem. As a result, estimates obtained from the
terminal node of an extensive form set of choices have all of the desirable properties of
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a univariate maximum likelihood estimator. The SBI estimator is consistent and efficient at
the terminal node of a recursive decision problem.

A.2.3 A’s Decisions

Unfortunately, the same cannot be said for ‘‘upper’’ decisions precisely because of the
sampling distribution of the parameters b̂B and the associated sampling distributions
of functions of these parameters—p̂‘; p̂r. Turning our attention to (A6) and the param-
eters governing A’s choices, we have

ðb̂A � bA
*Þ 5A R�1

3 ðgAðbA
*;bB

*Þ � R2ðb̂B � bB
*ÞÞ

5
A

R�1
3

1

N

XN

i5 1

dLAðyAi; b̂A; b̂BÞ
dbA

� R2R�1
1

1

NB

XNB

i51

bLBðyBib̂BÞ
dbB

 !

5
A 1

N
R�1

3

XN

i5 1

dLAðyAi; b̂A; b̂BÞ
dbA

� R2R�1
1

N

NB

XN

i51

yAi
dLBðyBib̂BÞ

dbB

 !

ffiffiffiffi
N

p
ðb̂A � bA

*Þ 5A 1ffiffiffiffi
N

p
XN

i51

HAi;

where

HAi 5R�1
3

dLAðyAi; b̂A; b̂BÞ
dbA

� R�1
3 R2R�1

1

N

NB
yAi

dLBðyBib̂BÞ
dbB

:

This allows us to write the asymptotic distribution of b̂A as

b̂A ;
A

NðbA
*;VarðHAÞ=NÞ:

In implementation, HA, R1, R2, R3 are calculated using the estimated parameters,
and the plim evaluations are replaced with their sample approximations.15 If we
assume that N/NB is finite, Var(HA) is given by

VarðHAÞ5
1

N

XN

i51

ĤAiĤ9Ai: ðA7Þ

The SE correction described above applies only for the two-stage SBI estimator or when
there are only two decision nodes to estimate. As the number of decision nodes increases,
the number of iterations of the SBI estimator also increases and deriving the exact SE
correction becomes practically impossible. A more practical approach that goes well with
the ease of the SBI estimator is bootstrapping, a nonparametric method for correctly
estimating upper stage SEs. This approach uses simulation methods to recover the sam-
pling distribution of the probabilities.

15Readers familiar with Maddala (1983) and Murphy and Topel (1985) will note the similarities.
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Appendix B: R and Stata Programs for Bootstrapping SEs

In this section, we present example R and Stata programs for running the SBI esti-
mator for the model in Fig. 2 that we used for our Monte Carlo experiment. As we
describe in Section 3 in more detail, UA(yA 5 0) and UB(yA 5 1, yB 5 0) are
normalized to zero. The remaining utilities are specified as follows:

UAðyA 5 1; yB 5 0Þ5Xa1ba1

UAðyA 5 1; yB 5 1Þ5Xa21
ba21

þ Xa22
ba22

UBðyA 5 1; yB 5 1Þ5 bb20
þ Xb21

bb21
þ Xb22

bb22
:

In the following R code, we define a simple function SBI that runs two consecutive
logit regressions to estimate A and B’s utilities. We first put the data matrix into the
form of DATA5 ½yA; yB;Xb21 ;Xb22 ;Xa1;Xa21 ;Xa22 �. We then use R’s canned bootstrap-
ping function boot from the boot library to calculate the bootstrapped SEs.

The above SBI model can also be estimated in Stata very easily. In order to do so,
we first define a function called sbi that runs two logits and estimates A and B’s
utilities. Assuming that we have our variables YA, YB, XB21, XB22, XA1, XA21,
and XA22 loaded in Stata’s memory, we use Stata’s canned bootstrap function to
calculate the SEs.

SBI ) function(Data, ind){

BSdata ) Data[ind,] # Draw the bootstrap sample
YA ) BSdata[,1] # A’s choices
YB ) BSdata[,2] # B’s choices; unrealized5NA
XB ) BSdata[,3:4] # B’s regressors

# Step 1: Logit to estimate B’s utilities and calculate p̂r

logitB ) glm(YB ; XB,family5binomial(link5‘‘logit’’))
bB ) logitB$coefficients
XB ) cbind(1,XB)
pr ) exp(XB %*% bB)/(1þexp(XB %*% bB))

# Step 2: Transform A’s regressors with p̂r

XA1 ) BSdata[,5]
XA2 ) BSdata[,6:7]
ZA1 ) (1�pr)*XA1
ZA2 ) cbind(pr*XA2[,1],pr*XA2[,2])

# Step 3: Logit for A’s utilities
logitA ) glm(YA ; ZA1þZA2-1,family5binomial(link5‘‘logit’’))
logitA$coefficients

}

# Step 4: Calculate standard errors with bootstrapping

boot(DATA, SBI, 500)
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