
Brief Introduction to R

Prepared by Anna Walsdorff
anna.walsdorff@rochester.edu

Updated: September 28, 2018

mailto:anna.walsdorff@rochester.edu

License
Thisdocument is releasedunder theCreativeCommonsAttribution license (cb), http://creativecommons.
org/licenses/by/3.0/.

The source code for this document is available onGithubathttps://github.com/ffrodslaw/r-intro.

This document contains and incorporates material from notes by Casey Crisman-Cox and the R Core
Team.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://github.com/ffrodslaw/r-intro
https://drive.google.com/file/d/0BzD2LimxGIzIeWppdWxCZHR1T2M/view?usp=sharing
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

Contents
I The basics of R 1

1 Installing R . 1
2 R as a calculator . 2
3 Vectors and objects . 4
4 Matrices . 7
5 Lists . 12
6 Packages and updating . 13
7 Getting help . 13

II Programming 15
8 Control statements . 15
9 *ply functions . 16
10 Write your own function . 17

III Data frames 18
11 Reading in data . 18
12 Extracting and manipulating data . 18
13 Merging . 22
14 Reshaping . 22
15 New variables . 23
16 Saving data . 23

IV Plots 25
17 Basic graphs . 25
18 Scatterplots . 25
19 Adding features . 29
20 Other plots . 29
21 Saving plots . 32

V Statistical analyses 33
22 Ordinary least squares . 33
23 Extracting model information . 33
24 Output into tables . 37

I The basics of R
Advantages

Why do we care?

• It’s open source and free

• It’s available for all major platforms (Win, Mac, Linux)

• Easy to find support online

• Frequent updates

• Very flexible

Not so great

• No graphical user interface (like Stata or SPSS)

• You don’t “see” what you’re doing to the data (like Excel)

• Can be difficult to learn

• No warranty whatsoever

1 Installing R

Go to https://cran.r-project.org/ and choose your operating systemunder “Download and Install
R”.

Windows

Choose “base” to get to the base distribution and then download the latest version.

Mac

Installing R on your Mac should be pretty similar. Choose the version that matches your Mac. For exam-
ple, if you run Mac OS X 10.11 or higher, download the “R-3.5.1.pkg” package.

Linux

Find your distribution and follow the instructions. This is a little less straightforward thanwithWindows
and Mac but if you run into any trouble email me.

1

https://cran.r-project.org/

Installing an editor

Once you haveR installed, you have full access to its functions. R comes installed with a terminal that you
use to send commands. While it works just fine, it is not the easiest to learn.
We will use an editor for ease of use and organization. R Studio is an excellent alternative to the console
as it provides a nice system to edit your files while you’re working on them and keeps everything better
organized.
To download R Studio, visit https://www.rstudio.com/products/rstudio/download/#download
and find the installer that matches your system.

How does it work?

R is a compiled language which means that it executes your code immediately (no need to build an entire
program).
When you start R, you see information about the version, software licence etc. and the prompt:
>

This tells you that R is waiting for you. Your typed command appears next to the prompt and can be
executed by hitting Enter.

2 R as a calculator

> 1 + 2
[1] 3

By executing this command, R creates an object and prints the content of the object. The [1] denotes that
the object only has one value.
It can happen that you see a different prompt, a + instead of a >. This means that R is waiting for more
input and the current command is not complete.

> 1 +
+ 2
[1] 3

A frequent problem are brackets, you might have opened one but didn’t close it. R doesn’t know what to
do and waits for further input. Give R what it wants.

> 7 / (1 + 3
+)
[1] 1.75

(Note: this is not the same as 7 / 1 + 3 .)

2

https://www.rstudio.com/products/rstudio/download/#download

Operators

R understands these basic operators

• + and − for addition and subtraction

• ∗ and / for multiplication and division

• ∧ for exponents

Standard functions are also available:

> log(10) #base= e
[1] 2.302585

> log(10, base=10)
[1] 1

> exp(1)
[1] 2.718282

> sin(0)
[1] 0

> acos(-1)
[1] 3.141593

R can’t do the impossible:

> log(0)
[1] -Inf

> log(-1)
Warning in log(-1): NaNs produced
[1] NaN

Where -Inf means −∞ and NaN means “Not a Number”. Getting those is a sign that you need to stop
and reevaluate what you’re doing.

Comments and Spacing

It is great to annotate your code. This will remind you or everyone else who reads your code of what you
did. The command for that is #; R ignores everything printed after it (until the line ends).

> 1 + 2 # always annotate
[1] 3

R does not care about how many spaces you put in your commands.

3

3 Vectors and objects

Basically everything in R is an object. R creates and manipulates objects. Having information stored as
objects allows you to call it later on. Examples of objects are integers, vectors, matrices, lists and data
frames. In R an assignment can take many forms, and all of the following are the same.
> x <- exp(1)
> x = exp(1)
> exp(1) -> x
> assign('x', exp(1))

When you want to assign an object, you give it a name. Descriptive names can be useful when you have
to handle many objects. Use <- or = to assign an object (most R users prefer the former). Any name that
does not start with a number is fine. Note that R is case-sensitive.
Once a value is assigned to the variable we can use x like any other number.
> x
[1] 2.718282

> x-2
[1] 0.7182818

> log(x)
[1] 1

Notice that none of the above actually change the value of x. If we want to assign a new value to x we just
use the arrow again.
> x
[1] 2.718282

> x <- exp(2)

> x
[1] 7.389056

Vectors

Notice that all of our output began with the symbol [1], for example
> 2+2

[1] 4

The just means that R thinks of this as a vector(a set of numbers) and the [1] tells you that the value next
to it is the first number in the vector. There’s no reason why an variable in R has to have only one value.
The simplest way to create vector is with the c() function.

4

> x <- c(1, 4, 6, 1)

> x
[1] 1 4 6 1

The [1] is still there to tell us that the number next to it is the first value in the vector. The c in this
function stands for “concatenate” and it can be used to bring lots of vectors together.

> y <- c(2, 3, 2, 1)
> c(y, y, y, x, x, x, y, y, x, x)

[1] 2 3 2 1 2 3 2 1 2 3 2 1 1 4 6 1 1 4 6 1 1 4 6 1 2 3 2 1 2 3 2 1 1 4 6
[36] 1 1 4 6 1

Whenever the output goes onto a second line we get a new indicator to tell us what position it is. So in
the code above we have [1] at the beginning of the output and then [36] which tells us that the value
that starts the second line is the 36th value in the vector.

Nearly all the functions we looked at before work on vectors.

> x+y
[1] 3 7 8 2

> x/y
[1] 0.500000 1.333333 3.000000 1.000000

> log(x)
[1] 0.000000 1.386294 1.791759 0.000000

We can also sort the values within a vector.

> sort(x)
[1] 1 1 4 6

> sort(x, decreasing=TRUE)
[1] 6 4 1 1

> length(x)
[1] 4

Easier ways to create vectors

If we are creating a vector that follows a pattern, we do not have manually type out every element of it.
For consecutive integers, we can use a colon.

> 1:15
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

> 5:2
[1] 5 4 3 2

The more general version of the colon is the seq() command.
> seq(0,20)
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

> seq(0, 20, by = 2)
[1] 0 2 4 6 8 10 12 14 16 18 20

> seq(0, 20, length.out = 5)
[1] 0 5 10 15 20

The rep() command allows you to repeat numbers.
> rep(10, 2)
[1] 10 10

> rep(x,3)
[1] 1 4 6 1 1 4 6 1 1 4 6 1

> rep(x, each = 3) # repeats each number within x one at a time
[1] 1 1 1 4 4 4 6 6 6 1 1 1

Note here that a vector can also include non-numerical elements. For example,
> animals <- c("cat", "beaver", "raccoon")

Indexing

We use indexing when we want to extract or replace a single value within a vector. For this we use square
brackets.
> z <- seq(0, 6, by = 2)
> z[3]
[1] 4

> z[1:3] # first three values
[1] 0 2 4

> z[c(1,3)] # values 1 and 3, note that we need c()
[1] 0 4

> z[-c(1,3)] # everything but values 1 and 3
[1] 2 6

6

We can also extract using logical operators. Assume we only want elements of z that are greater than 4.

> z>4
[1] FALSE FALSE FALSE TRUE

The command returns a vector of TRUE and FALSE values to show whether a certain element in z fulfills
the condition. In order to get the elements that meet the conditions, we can subset the vector again.

> z[z>4]
[1] 6

Commonly used logical operators are < (less than), <= (less than or equal to), > (greater than), >= (greater
than or equal to), == (equal), != (not equal), and ! (not). Logical operators can be strung together using
& (and) and | (or).

> z > 3 & z < 5
[1] FALSE FALSE TRUE FALSE

> z[z > 3 & z < 5]
[1] 4

> z[z > 3 | z < 5]
[1] 0 2 4 6

Removing objects

We use the ls() command to view all the objects that we have defined.

> ls()
[1] "animals" "x" "y" "z"

If we want to remove one of them, we can use the rm() command. It cannot be undone, so be careful
with it.

> rm(list='z')
> ls()
[1] "animals" "x" "y"

Wecanalsodelete one thanoneobject at a timebyusing thec() command, for examplerm(list = c('x', 'y')).
The command rm(list=ls()) deletes everything.

4 Matrices

Matrices are two-dimensional versions of vectors. To create a matrix in R , you just need to create a vector
and tell R the dimensions.

7

> matrix(x, nrow = 2)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> matrix(x, ncol = 2)
[,1] [,2]

[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

R fills in the numbers column by column, but we can force it to do it by row:

> matrix(x, ncol = 2, byrow = TRUE)
[,1] [,2]

[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10

We can also use cbind and rbind to “bind” vectors together to make a matrix, bind a vector to a matrix,
or bind matrices together.

> cbind(x, y)
x y

[1,] 1 -10
[2,] 2 -9
[3,] 3 -8
[4,] 4 -7
[5,] 5 -6
[6,] 6 -5
[7,] 7 -4
[8,] 8 -3
[9,] 9 -2

[10,] 10 -1

> rbind(x, y)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

x 1 2 3 4 5 6 7 8 9 10
y -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Another useful command for matrices is diag(). It has a few different uses.

> diag(3) # 3 x 3 identity matrix
[,1] [,2] [,3]

[1,] 1 0 0

8

[2,] 0 1 0
[3,] 0 0 1

> diag(x) # square matrix with diagonal = x, off-diagonal = 0
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 0 0 0 0 0 0 0 0 0
[2,] 0 2 0 0 0 0 0 0 0 0
[3,] 0 0 3 0 0 0 0 0 0 0
[4,] 0 0 0 4 0 0 0 0 0 0
[5,] 0 0 0 0 5 0 0 0 0 0
[6,] 0 0 0 0 0 6 0 0 0 0
[7,] 0 0 0 0 0 0 7 0 0 0
[8,] 0 0 0 0 0 0 0 8 0 0
[9,] 0 0 0 0 0 0 0 0 9 0

[10,] 0 0 0 0 0 0 0 0 0 10

> Z <- matrix(1:9, nrow = 3)
> Z

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> diag(Z) # extract the diagonal of a square matrix
[1] 1 5 9

You can also turn a matrix back into a vector.

> c(Z)
[1] 1 2 3 4 5 6 7 8 9

> as.vector(Z)
[1] 1 2 3 4 5 6 7 8 9

Any time you want to check what kind of object something is, you can check its class.

> class(x)
[1] "integer"

> class(Z)
[1] "matrix"

Matrix attributes

Just like with vectors we can use square brackets to extract or replace elements. For a matrix X, the com-
mand X[i, j] gives you the element from row i, column j.
> X <- matrix(1:12, nrow = 3)

9

> X
[,1] [,2] [,3] [,4]

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> X[2,4]
[1] 11

> X[3,2] <- 8
> X

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 8 9 12

> X[1,] # extracts the whole first row
[1] 1 4 7 10

> X[, 2] # extracts the second column
[1] 4 5 8

> X[1:2,] # first two rows
[,1] [,2] [,3] [,4]

[1,] 1 4 7 10
[2,] 2 5 8 11

As before, we can use logical operators.

> X[,2] == 8 # which rows have 8 in the second column?
[1] FALSE FALSE TRUE

> X[X[,2] == 8,] # pulls out the corresponding elements
[1] 3 8 9 12

For most things, R treats matrices as vectors that are written differently and we can do operations with it
such as asking for their length, mean, standard deviation, etc.

> length(X)
[1] 12

> mean(X)
[1] 6.666667

> sd(X)
[1] 3.626502

Commands that only work with matrices include:

> dim(X)

10

[1] 3 4

> nrow(X)
[1] 3

> ncol(X)
[1] 4

Another thing that can be donewithmatrices but not with vectors is naming the rows and columns. Both
of the names are just string vectors and can be set with, e.g. colnames(X) <- c("left", "right")
and rownames(X) <- c("up", "down").

Matrix operations

Matrix math in R includes standard operations including arithmetic.

> X <- matrix(1:4, nrow = 2)
> Y <- diag(2)

> X + Y
[,1] [,2]

[1,] 2 3
[2,] 2 5

> X-Y
[,1] [,2]

[1,] 0 3
[2,] 2 3

> X * Y # element-wise multiplication
[,1] [,2]

[1,] 1 0
[2,] 0 4

> X %*% Y # matrix multiplication
[,1] [,2]

[1,] 1 3
[2,] 2 4

If you use matrix multiplication on a vector R will guess whether it is a row or column vector. It might
guess wrong occasionally, so be careful. We can also transpose and invert matrices.

> X
[,1] [,2]

[1,] 1 3
[2,] 2 4

> t(X) # transpose

11

[,1] [,2]
[1,] 1 2
[2,] 3 4

> solve(X) # invert
[,1] [,2]

[1,] -2 1.5
[2,] 1 -0.5

Other handy function include the determinant of the Cholesky decomposition.
> Y <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)

> det(Y)
[1] 0.75

> chol(Y) # Choleski decomposition
[,1] [,2]

[1,] 1 0.5000000
[2,] 0 0.8660254

> t(chol(Y)) %*% chol(Y)
[,1] [,2]

[1,] 1.0 0.5
[2,] 0.5 1.0

Other things that will be useful are the trace as well as eigenvalues and eigenvectors of matrices.
> sum(diag(Y)) # there is no command for the trace
[1] 2

> eigen(Y)
eigen() decomposition
$values
[1] 1.5 0.5

$vectors
[,1] [,2]

[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068

5 Lists

When R returns a list to us, we can extract the elements of it using the dollar sign. The names are given by
the output. In the eigen() example above the names are given as “values” and “vectors”.
> eigen(Y)$values
[1] 1.5 0.5

12

> eigen(Y)$vectors
[,1] [,2]

[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068

Alternatively, we can still use brackets but we need to double them up when we are dealing with lists.

> eigen(Y)[[2]]
[,1] [,2]

[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068

> class(eigen(Y)[[2]])
[1] "matrix"

6 Packages and updating

Packages expand the functionality of R . They are free and can be downloaded from CRAN (and to a
much smaller extent from other sources). You can directly install them in the console.

> install.packages("MASS")

It may ask you to pick a mirror. Choose whichever you want. After the package it installed, you can load
it.

> library(MASS)

Updating R and R packages

To update R , you need to 1) download the new version, 2) install it, and 3) uninstall the old version.
If there is a major upgrade, you may need to copy files from your library folder to the new once before
uninstalling the old version. This save you from reinstalling all of your packages.
To update an R package, simply run install.packages() again or use RStudio’s function for it in the
“Tools” menu.

7 Getting help

Youwill likely run into a lot of problem. This is normal and happens even to themost seniorR users. One
way to solve it is to look up the R help file of the particular function that you are curious about.

> ?log
> help(log)

13

Both commands do the same. The help file consists of multiple sections such as what the function is
supposed to do, what arguments it takes, more details, and an example of its use. If you know what you
want to do, but don’t know what function to use, you can search for that as well:

> ??"multivariate normal"
> help.search("multivariate normal")

If neither solves your problem, Google will nearly always find you the right answer, especially results from
Stack Overflow.

14

htpp://www.stackoverflow.com

II Programming

8 Control statements

Conditional

For logical conditions we can use if and else as separate commands.

> if (logical){
command1
command2

}else{
command3

}

A trivial example of an if else statement is

> y <- FALSE
> if(y){
+ cat("Hello World")
+ }else{
+ cat("Goodbye")
+ }

Goodbye

There also is a vectorized version of the if/else construct, the ifelse function.

ifelse(condition , a, b)

It returns a if the condition is fulfilled and b if not.

Repetitive

A loop repeatedly goes over the same code for a list of different objects. The most basic form in R is the
for loop.

> y <- 1:10
> for(i in 1:10){
+ y[i] <- y[i]^2
+ }
> y
[1] 1 4 9 16 25 36 49 64 81 100

The break command is useful when you are repeating a process but do not care about how many times
it is done, just that it is. For example, you want something to converge.

> repeat{
+ y <- runif(1)

15

+ if(y < 0.05){
+ break
+ }
+ }
> y
[1] 0.02829025

Alternatively (and easier), you can use the while structure which basically functions like a for loopwith
a built-in stop command.

> y <- 1
> while(y > 0.05){
+ y <- runif(1)
+ }
> y
[1] 0.02105261

9 *ply functions

The ply family is a set of functions with the goal of making code faster and more readable. They can often
be used to avoid writing out lengthy loops. The most basic one of them, apply, is used on vectors.

> X <- replicate(3, rnorm(10))
> apply(X, 2, sd) # standard deviation of every column
[1] 0.9302021 1.3075942 0.9424055

The options 2 refers to column while 1 refers to rows.

> apply(X, 1, max)
[1] 0.6140781 0.5996994 0.8903101 0.5666874 1.2870948
[6] 2.1704159 -0.7683647 -0.3774086 0.5831079 1.0580204

When you’re dealing with lists you can use lapply.
> X <- list(A = diag(1:4),
+ B = matrix(1:4, nrow = 2))
> lapply(X, solve)
$A

[,1] [,2] [,3] [,4]
[1,] 1 0.0 0.0000000 0.00
[2,] 0 0.5 0.0000000 0.00
[3,] 0 0.0 0.3333333 0.00
[4,] 0 0.0 0.0000000 0.25

$B
[,1] [,2]

[1,] -2 1.5

16

[2,] 1 -0.5

If you want to do an operations on a list that returns a vector instead, you can use sapply.
> X <- list(A = diag(1:4),
+ B = matrix(1:4, nrow = 2))
> sapply(X, max)
A B
4 4

10 Write your own function

One of the great things about R is that it allows you to write your own functions in a relatively simple and
elegant way. Customizing R by writing your own function will make your experience with it much easier
andmore comfortable. Most canned commands are written inR itself. For example, check out the source
code of the rowMeans command by typing the command without any parentheses into the console.
A function is defined in the form

> name <- function(arg_1, arg_1, ...) expression

For example, you could write your own function that calculates the sum of squares.

> sum_of_squares <- function(x, y) {
+ x^2 + y^2
+ }

< sum_of_squares(2,5)
29

Named arguments and defaults

If argument to called functions are given in the “name = object” form, they can be given in any order.
In the example above, the call sum_of_squares(y = 5, x = 2) will yield the same result.
When writing your own function, you can specify default values of arguments. This means that they are
not necessary to be included in the call. In the same example above, if we set y’s default to 10, we would
not need to specify it every time.

> sum_of_squares <- function(x, y = 10) {
+ x^2 + y^2
+ }

< sum_of_squares(2)
104

17

III Data frames
Data frames are just another type of object in R .They are used to store and manipulate data because they
offer some advantages over matrices such as

• Each column in a data frame can be of a different class (numeric, character, factor). All the columns
in a matrix must be the same class (numeric, character).

• Data frames can be merged together; the merge command does not work on matrices.

• Most regression commands are designed to work with data frames and not matrices.

• It’s easier to extract individual variables.

11 Reading in data

R has the ability to read many different kinds of data. The two standard commands for tab- and comma-
separated data are read.table and read.csv respectively. It’s recommended to save Excel files as a
comma separated file (.csv) and then load it intoR instead of trying to directly load Excel files. If you only
have data in the Stata format (.dta), you can use the foreign package. It also reads in files from SAS,
SPSS, S+, and others. To practice loading Stata files, download the replication data set for Fearon and
Laitin’s 2003 article on civil war.

> library(foreign)
> setwd("~/Dropbox") # change this to the directory where your dataset is

saved

> # Note that I use relative paths within my working directory

> fl <- read.dta("fearonlaitin2003.dta")
> class(fl)

[1] "data.frame"

12 Extracting and manipulating data

Looking at all variables

If you want to look at your data, we can use the View command. This command opens up a newwindows
where we can see the data just like we would using the browse command in Stata. There also is the fix
command that allows us to edit values just like in Stata.

> View(fl)
> fix(fl)

18

https://web.stanford.edu/group/ethnic/publicdata/publicdata.html

Data sets can be huge and looking at all of it might be impractical. The head() command allows us to
only look at the first 6 observations of a data set. Equivalently, the tail() command let’s us look at the
last 6 observations.

> head(fl)

The command summary can be used to get a summary of every column in the data frame.

> summary(fl[, 1:10]) # summary statistics for first 10 columns
ccode country cname cmark

year
Min. : 2.0 Length:6610 Length:6610 Min. :0.00000 Min.

:1945
1st Qu.:230.0 Class :character Class :character 1st Qu.:0.00000 1st

Qu.:1964
Median :451.0 Mode :character Mode :character Median :0.00000

Median :1977
Mean :450.6 Mean :0.02436 Mean

:1976
3rd Qu.:663.0 3rd Qu.:0.00000 3rd

Qu.:1989
Max. :950.0 Max. :1.00000 Max.

:1999
wars war warl onset

ethonset
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.00000 Min.

:0.0000
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu

.:0.0000
Median :0.0000 Median :0.0000 Median :0.0000 Median :0.00000 Median

:0.0000
Mean :0.1552 Mean :0.1389 Mean :0.1346 Mean :0.01725 Mean

:0.0118
3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu

.:0.0000
Max. :4.0000 Max. :1.0000 Max. :1.0000 Max. :4.00000 Max.

:4.0000

colnames() or names() can be used to look at all column names in the data frame.

> names(fl)
[1] "ccode" "country" "cname" "cmark" "year" "wars"
[7] "war" "warl" "onset" "ethonset" "durest" "aim"

[13] "casename" "ended" "ethwar" "waryrs" "pop" "lpop"
[19] "polity2" "gdpen" "gdptype" "gdpenl" "lgdpenl1" "lpopl1"
[25] "region" "western" "eeurop" "lamerica" "ssafrica" "asia"
[31] "nafrme" "colbrit" "colfra" "mtnest" "lmtnest" "

elevdiff"
[37] "Oil" "ncontig" "ethfrac" "ef" "plural" "second"

19

[43] "numlang" "relfrac" "plurrel" "minrelpc" "muslim" "nwstate
"

[49] "polity2l" "instab" "anocl" "deml" "empethfrac" "empwarl
"

[55] "emponset" "empgdpenl" "emplpopl" "emplmtnest" "empncontig" "
empolity2l"

[61] "sdwars" "sdonset" "colwars" "colonset" "cowwars" "
cowonset"

[67] "cowwarl" "sdwarl" "colwarl"

Individual variables

R treats data frames like a special version of a list. Similarly to before with lists, we can use the dollar sign
to refer to individual elements, i.e. variables in a data frame.

> summary(fl$pop) # summary statistics for population variable
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
222 3217 8137 31787 20601 1238599 177

Alternatively, we can also use an index. For example, summary(fl[, 18]) will yield the same output.
Extracted variables are just vectors and we can treat them as such.

> fl$pop[1:10]
[1] 140969 141936 142713 145326 147987 152273 155000 157727 160475 163202

Subsetting

There are many different ways to subset, both by variables and by observation. Assume we wanted to
create a subset with only COW codes and years in it. The following commands all do the same thing.

> temp <- fl[, c("ccode", "year")]
> temp <- fl[, c(1, 5)]
> temp <- cbind.data.frame(fl$ccode, fl$year)
> temp <- with(fl, cbind.data.frame(ccode, year))
> temp <- subset(fl, select = c("ccode", "year"))

> head(temp)
ccode year

1 2 1945
2 2 1946
3 2 1947
4 2 1948
5 2 1949
6 2 1950

Now let’s assume we only wanted to extract observations from the US.

20

> temp <- fl[fl$ccode == 2,]

> temp <- subset(fl, ccode == 2)
> head(temp[, 1:10]) # show only first 10 variables

ccode country cname cmark year wars war warl onset ethonset
1 2 USA USA 1 1945 0 0 0 0 0
2 2 USA USA 0 1946 0 0 0 0 0
3 2 USA USA 0 1947 0 0 0 0 0
4 2 USA USA 0 1948 0 0 0 0 0
5 2 USA USA 0 1949 0 0 0 0 0
6 2 USA USA 0 1950 0 0 0 0 0

We can combine subsetting by variables and observations.

> temp <- subset(fl, ccode == 2, select = c("year", "polity2"))
> head(temp)

year polity2
1 1945 10
2 1946 10
3 1947 10
4 1948 10
5 1949 10
6 1950 10

Factors

Factors are a type of class that R uses for categorical variables. An example is the region variables in
Fearon and Laitin’s data.

> summary(fl$region)
western democracies and japan

1155
e. europe and the former soviet union

646
asia
1096

n. africa and the middle east
910

sub-saharan africa
1593

latin america and the caribbean
1210

> head(fl$region)
[1] western democracies and japan western democracies and japan
[3] western democracies and japan western democracies and japan
[5] western democracies and japan western democracies and japan
6 Levels: western democracies and japan ...

21

> levels(fl$region) # just the levels
[1] "western democracies and japan"
[2] "e. europe and the former soviet union"
[3] "asia"
[4] "n. africa and the middle east"
[5] "sub-saharan africa"
[6] "latin america and the caribbean"

> nlevels(fl$region) # number of levels
[1] 6

Youmaywant to convert factors to characters beforemanipulating them. Useful functions for converting
objects are as.numeric, as.character, as.Date, as.factor, as.matrix, and as.data.frame.

13 Merging

We use the merge command to join two data frames together based on specific columns.

> df1 <- data.frame(ccode = 1:5,
+ var1 = rnorm(5))

> df2 <- data.frame(ccode = 1:5,
+ var2 = runif(5))

> df3 <- merge(df1,
+ df2,
+ by = "ccode")
> df3

ccode var1 var2
1 1 0.01272682 0.85499172
2 2 1.09159960 0.79616244
3 3 0.58217858 0.34005053
4 4 -0.56010580 0.40052045
5 5 -0.84454966 0.03681286

If the variable names thatwewant tomerge ondiffer in the twodata frames, we can specifyby.x andby.y
separately. If the two data frames differ in the scope of groups to merge on (countries in our example),
merge will only recover observations from overlapping countries. If we would only want countries from
the first data frame, we can specify all.x = TRUE (or all.y = TRUE for the second data frame). We
can also merge on more than one variable by using a vector of variables in the by argument.

14 Reshaping

Sometimes you might want to reshape data, especially from wide to long. For example, Freedom House
data is only available in a wide format. We will use the melt command from the reshape2 package.

22

library(reshape2)

generate some fake data in the wide format
fakedata <- read.table(header = TRUE, text="

country X1979 X1980 X1981
1 F F NF
2 NF NF NF")

colnames(> colnames(fakedata)
[1] "country" "X1979" "X1980" "X1981"

We want to reshape it into a country-year format.

> long <- melt(fakedata,
+ id.vars = c("country"),
+ variable.name = "year",
+ value.name = "press"
+)

> long$year <- as.numeric(substring(long$year, 2)) # get rid of X in front of
year and save as number

> head(long)
country year press

1 1 1979 F
2 2 1979 NF
3 1 1980 F
4 2 1980 NF
5 1 1981 NF
6 2 1981 NF

15 New variables

New variables can be added to data frames by saving them to their new variable name directly in the data
frame.

> fl$lgdp <- log(fl$gdpen) # logged GDP per capita

It is just as easy to delete variable.

> fl$lgdp <- NULL

16 Saving data

All the read function have equivalents that write data.

> write.csv(fl, "fl.csv")

23

> write.dta(fl, "fl.dta")

> save(fl, "fl.Rdata") # save as .Rdata data set

You can save multiple objects to a .Rdata file. save.image saves your entire workspace.

24

IV Plots
There are three major systems for plotting in R : base, lattice, and gglot. All three can do the same
things, so you do not need to learn all of them. I will show you how to make graphs using ggplot which
is very popular among R users. In order to use it, we need to load the ggplot2 library.

17 Basic graphs

We’ll start out using the base functions to create plots. These might not be publication-ready but suffice
for some basic exploration of the data.

> x <- -10:10
> y <- x^2
> plot(y ~ x)

> # in a data frame
> data <- data.frame(x = x, y = y)
> with(data, plot(y ~ x))

−10 −5 0 5 10

0
20

40
60

80
10

0

x

y

To get a fast histogram we can do the following:

> x <- rnorm(1000)
> hist(x, freq = FALSE)

18 Scatterplots

Let’s start using ggplot. We’re going to use a data set that is part of the ggplot2 package. The data set
midwest includes demographic information for counties in the Midwest.

25

Histogram of x

x

D
en

si
ty

−4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

> library(ggplot2)
> data(midwest)

> colnames(midwest)
[1] "PID" "county" "state"
[4] "area" "poptotal" "popdensity"
[7] "popwhite" "popblack" "popamerindian"

[10] "popasian" "popother" "percwhite"
[13] "percblack" "percamerindan" "percasian"
[16] "percother" "popadults" "perchsd"
[19] "percollege" "percprof" "poppovertyknown"
[22] "percpovertyknown" "percbelowpoverty" "percchildbelowpovert"
[25] "percadultpoverty" "percelderlypoverty" "inmetro"
[28] "category"

ggplot relies on layers which are connected with the ‘+’ sign. The first layer is created using the ggplot
command on a data frame.

> plot1 <- ggplot(midwest)
> plot1 # it's blank

To actually plot something we need to add another layer.

plot percentage of people with college degree vs percentage living below the
poverty level

> plot1 <- ggplot(midwest) +
+ geom_point(aes(x = percollege , y = percbelowpoverty))
> plot1

Once a plot is created, it is pretty straight-forward to make changes to it. Let’s say we want to add a title
and change the axis labels.

26

0

10

20

30

40

50

10 20 30 40 50

percollege

pe
rc

be
lo

w
po

ve
rt

y

> plot1 <- plot1 + # take plot1 and add
+ xlab("Percentage of people with college degree") +
+ ylab("Percentage of people below poverty line") +
+ ggtitle("College degrees and poverty")
> plot1

0

10

20

30

40

50

10 20 30 40 50

Percentage of people with college degree

P
er

ce
nt

ag
e

of
 p

eo
pl

e
be

lo
w

 p
ov

er
ty

 li
ne

College degrees and poverty

We can add color by including a factor variable. In this case, let’s color the observation by states.

> midwest$state <- factor(midwest$state) # needs to be a factor
> plot1 <- ggplot(midwest) +
+ geom_point(aes(x = percollege , y = percbelowpoverty , color =

state)) +
+ xlab("Percentage of people with college degree") +
+ ylab("Percentage of people below poverty line") +

27

+ ggtitle("College degrees and poverty")
> plot1

0

10

20

30

40

50

10 20 30 40 50

Percentage of people with college degree

P
er

ce
nt

ag
e

of
 p

eo
pl

e
be

lo
w

 p
ov

er
ty

 li
ne

state

IL

IN

MI

OH

WI

College degrees and poverty

Alternatively, we can also adjust the color, shape, and size of all points if we do so within geom_point
but outside aes.
> plot1 <- ggplot(midwest) +
+ geom_point(aes(x = percollege , y = percbelowpoverty), col = "

steelblue") +
+ xlab("Percentage of people with college degree") +
+ ylab("Percentage of people below poverty line") +
+ ggtitle("College degrees and poverty")
> plot1

0

10

20

30

40

50

10 20 30 40 50

Percentage of people with college degree

P
er

ce
nt

ag
e

of
 p

eo
pl

e
be

lo
w

 p
ov

er
ty

 li
ne

College degrees and poverty

28

Other things we can change are the background theme and the font size.

> plot1 +
+ theme_bw(20)

0

10

20

30

40

50

10 20 30 40 50
Percentage of people with college degreeP

er
ce

nt
ag

e
of

 p
eo

pl
e

be
lo

w
 p

ov
er

ty
 li

ne College degrees and poverty

19 Adding features

It is easy to add more features to a ggplot, just like we did with adding a title and axis labels. Now we’ll
add a best fit line, an arbitrary line, and a rug plot.

> plot2 <- ggplot(midwest, aes(x = percollege , y = percbelowpoverty)) +
+ geom_point() +
+ geom_smooth(method = "lm", size = 1) + # best fit line
+ geom_abline(intercept = 2, slope = 1
+ , color = "red", size = 2) +
+ geom_rug(sides = "b") # bottom rug plot
> plot2

20 Other plots

Histogram

> plot3 <- ggplot(midwest, aes(x = percollege)) + # only need x for histogram
+ geom_histogram(binwidth = 1)
> plot3

I specified the bin width here, if you do not do that R will choose something automatically. Let’s change
the colors and the axis labels.

29

0

10

20

30

40

50

10 20 30 40 50

percollege

pe
rc

be
lo

w
po

ve
rt

y

0

10

20

30

40

50

10 20 30 40 50

percollege

co
un

t

> plot3 <- plot3 +
+ geom_histogram(binwidth = 1
+ , color = "black" # outline
+ , fill = "white")+ # inside
+ ylab("Count") +
+ xlab("Percentage of people with college degree")
> plot3

Density

A density plot is a smoothed version of the histogram for continuous data.
> plot4 <- ggplot(midwest, aes(x = percollege)) +
+ geom_density() +
+ ylab("Density") +
+ xlab("Percentage of people with college degree") +

30

0

10

20

30

40

50

10 20 30 40 50

Percentage of people with college degree

C
ou

nt

+ ggtitle("Basic density")
> plot4

0.000

0.025

0.050

0.075

10 20 30 40 50

Percentage of people with college degree

D
en

si
ty

Basic density

We can check whether it matches the histogram by overlapping the two.

> plot4 <- ggplot(midwest, aes(x = percollege)) +
+ geom_histogram(aes(y =..density..)
+ , binwidth = 1
+ , color = "black"
+ , fill = "white") +
+ geom_density(alpha = .2, fill = "#FF6666") +
+ ylab("Density") +
+ xlab("Percentage of people with college degree") +
+ ggtitle("Density + Histogram")

31

> plot4

0.00

0.03

0.06

0.09

0.12

10 20 30 40 50

Percentage of people with college degree

D
en

si
ty

Density + Histogram

21 Saving plots

To save individual plots you can do the following

> ggsave(plot4, file = "plot4.pdf", height = 4, width = 6) # saves into your
working directory

32

V Statistical analyses

22 Ordinary least squares

We’re going to use the same dataset by Fearon and Laitin again.

library(foreign)
fl <- read.dta("fearonlaitin2003.dta") # change to path on your computer

OLS inR is donewith thelm command. It takes formulas in the following form: Y ~ X1 + X2..., where
Y is the dependent variable and the Xs are the independent variables. The tilde is used to separate them.
We can also include -1 if we want to drop the constant term. Check out help(lm) to see additional
options and arguments.

> # basic OLS
> model1 <- lm(onset ~ ethfrac
+ , data = fl)

run only on former British colonies (variable: colbrit)
> model2 <- lm(onset ~ ethfrac
+ , data = fl
+ , subset = colbrit == 1)

We can make most adjustments to the formula with I() such as squared variables. We can also include
interaction term or transform variables.

includes population and population squared
> model3 <- lm(onset ~ ethfrac + pop + I(pop^2)
+ , data = fl)

interaction between ethnic fractionalization and population
> model4 <- lm(onset ~ ethfrac * pop
+ , data = fl)

23 Extracting model information

The value of lm() is a fitted model object; technically it is a list of results of class "lm". Information
can be extracted using different functions such as summary, family, predict, residuals, coef, and
others. summary() is the most common command since it give you a very comprehensive summary of
the results of regression analysis. Let’s have a look at our last regression model, model4.
> summary(model4)

Call:
lm(formula = onset ~ ethfrac * pop, data = fl)

Residuals:

33

Min 1Q Median 3Q Max
-0.1068 -0.0215 -0.0156 -0.0113 3.9667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.459e-03 3.017e-03 2.804 0.00507 **
ethfrac 1.835e-02 6.361e-03 2.884 0.00393 **
pop 4.628e-08 2.479e-08 1.867 0.06192 .
ethfrac:pop 4.235e-08 4.813e-08 0.880 0.37894

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’. 0.1 ‘’ 1

Residual standard error: 0.138 on 6429 degrees of freedom
(177 observations deleted due to missingness)

Multiple R-squared: 0.004104, Adjusted R-squared: 0.003639
F-statistic: 8.83 on 3 and 6429 DF, p-value: 7.719e-06

We can also pull out information individually:

> model4$coefficients
(Intercept) ethfrac pop ethfrac:pop

8.459111e-03 1.834898e-02 4.628410e-08 4.234679e-08

> head(model4$residuals) # residuals
1 2 3 4 5 6

-0.02366425 -0.02372362 -0.02377133 -0.02393177 -0.02409515 -0.02435831

> head(model4$fitted.values) # predicted values
1 2 3 4 5 6

0.02366425 0.02372362 0.02377133 0.02393177 0.02409515 0.02435831

> head(model4$model) # data used to fit model
onset ethfrac pop

1 0 0.3569501 140969
2 0 0.3569501 141936
3 0 0.3569501 142713
4 0 0.3569501 145326
5 0 0.3569501 147987
6 0 0.3569501 152273

> model4$call # command used to create object
lm(formula = onset ~ ethfrac * pop, data = fl)

> vcov(model4) # returns variance matrix of model
(Intercept) ethfrac pop ethfrac:pop

(Intercept) 9.104143e-06 -1.539275e-05 -2.088196e-11 3.474674e-11
ethfrac -1.539275e-05 4.046649e-05 3.351982e-11 -9.699062e-11
pop -2.088196e-11 3.351982e-11 6.144572e-16 -8.775865e-16

34

ethfrac:pop 3.474674e-11 -9.699062e-11 -8.775865e-16 2.316167e-15

Hypothesis testing

The package car provides us with the useful command linearHypothesis.
> # same as the basic t-test
> linearHypothesis(model4, c("ethfrac = 0"))
Linear hypothesis test

Hypothesis:
ethfrac = 0

Model 1: restricted model
Model 2: onset ~ ethfrac * pop

Res.Df RSS Df Sum of Sq F Pr(>F)
1 6430 122.67
2 6429 122.51 1 0.15855 8.3201 0.003934 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’. 0.1 ‘’ 1

> # special test
> linearHypothesis(model4, c("ethfrac = 0.4"))
Linear hypothesis test

Hypothesis:
ethfrac = 0.4

Model 1: restricted model
Model 2: onset ~ ethfrac * pop

Res.Df RSS Df Sum of Sq F Pr(>F)
1 6430 191.10
2 6429 122.51 1 68.591 3599.5 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’. 0.1 ‘’ 1

> # test if they have the same coefficient
> linearHypothesis(model4, c("ethfrac = ethfrac:pop"))
Linear hypothesis test

Hypothesis:
ethfrac - ethfrac:pop = 0

Model 1: restricted model
Model 2: onset ~ ethfrac * pop

35

Res.Df RSS Df Sum of Sq F Pr(>F)
1 6430 122.67
2 6429 122.51 1 0.15854 8.32 0.003934 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’. 0.1 ‘’ 1

Fixed effects and clustered errors

One options to include fixed effects is by including dummy variables.
> FE.model1 <- lm(onset ~ ethfrac + factor(ccode)
+ , data = fl)

By introducing a dummy variable for every country in the dataset, you create a huge output. It’s easier on
the eyes to use the plm package instead. It suppresses the fixed effects in its output.
> library(plm)
Loading required package: Formula
> FE.model2 <- plm(onset ~ ethfrac
+ , model = "within" # FE command
+ , index = c("ccode", "year") # panel variables
+ , data = fl)

> summary(FE.model2)
Oneway (individual) effect Within Model

Call:
plm(formula = onset ~ ethfrac, data = fl, model = "within", index = c("ccode",

"year"))

Unbalanced Panel: n = 161, T = 7-55, N = 6610

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.

-0.21272 -0.02500 0.00000 0.00000 3.91118

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

ethfrac -0.37153 0.10575 -3.5133 0.0004456 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’. 0.1 ‘’ 1

Total Sum of Squares: 119.69
Residual Sum of Squares: 119.47
R-Squared: 0.0019106
Adj. R-Squared: -0.023011
F-statistic: 12.3433 on 1 and 6448 DF, p-value: 0.00044562

36

You can get a random effects model by changing the model argument to model = "random". You can
also use plm’s built-in clustering functions.

> # same as lm with clustering
> pool1 <- plm(onset ~ ethfrac
+ , model = "pooling"
+ , index = c("ccode", "year")
+ , data = fl)

> # panel corrected standard errors
> pcse <- vcovBK(pool1, cluster = "time")
> coeftest(pool1, pcse)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0094397 0.0023773 3.9707 7.241e-05 ***
ethfrac 0.0202591 0.0064428 3.1445 0.001671 **

Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’. 0.1 ‘’ 1

We can do the same for fixed effects models.

> # fixed effects model, standard errors clustered on country
> clust <- vcovBK(FE.model2, cluster = "group") # can be either "group" or "

time" or both
> coeftest(FE.model2, clust)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
ethfrac -0.371531 0.076281 -4.8706 1.139e-06 ***

Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’. 0.1 ‘’ 1

24 Output into tables

Youmight want to include the output of your regressionmodels into a paper. Wewill cover two packages
that let you export tables into LATEX(or HTML).

xtable

> library(xtable)
> xtable(model1)
% latex table generated in R 3.5.0 by xtable 1.8-2 package

37

% Wed Sep 26 17:11:06 2018
\begin{table}[ht]
\centering
\begin{tabular}{rrrrr}

\hline
& Estimate & Std. Error & t value & Pr($>$$|t|$) \\
\hline

(Intercept) & 0.0094 & 0.0028 & 3.34 & 0.0009 \\
ethfrac & 0.0203 & 0.0059 & 3.43 & 0.0006 \\
\hline

\end{tabular}
\end{table}

In LATEX, this looks like this:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.0094 0.0028 3.34 0.0009

ethfrac 0.0203 0.0059 3.43 0.0006

stargazer

This package is useful when we want to display models side by side. Unlike xtable it works on nearly
every canned model directly.

> library(stargazer)

> stargazer(model2, model3, FE.model2
+ , title = "Trying out Stargazer"
+ , label = "tab:stargazer"
+ , covariate.labels = c("Ethnic Frac."
+ , "Population"
+ , "Ethnic Frac. * Population")
+ , dep.var.labels = "Onset"
+ , digits = 2
+ , style = "AJPS") # choose a journal to emulate

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-
mail: hlavac at fas.harvard.edu

% Date and time: Thu, Sep 27, 2018 - 04:59:11 PM
\begin{table}[!htbp] \centering

\caption{Trying out Stargazer}
\label{tab:stargazer}

\begin{tabular}{@{\extracolsep{5pt}}lccc}
\\[-1.8ex]\hline \\[-1.8ex]
\\[-1.8ex] & \multicolumn{3}{c}{\textbf{Onset}} \\
\\[-1.8ex] & \multicolumn{2}{c}{\textbf{OLS}} & \textbf{panel} \\
& \multicolumn{2}{c}{\textbf{}} & \textbf{linear} \\

38

\\[-1.8ex] & \textbf{Model 1} & \textbf{Model 2} & \textbf{Model 3}\\
\hline \\[-1.8ex]
Ethnic Frac. & 0.01 & 0.02*** & $-$0.37*** \\
& (0.01) & (0.01) & (0.11) \\
Population & & 0.0000*** & \\
& & (0.0000) & \\
Ethnic Frac. * Population & & $-$0.00** & \\
& & (0.00) & \\
Constant & 0.01** & 0.01** & \\
& (0.01) & (0.003) & \\

N & 1896 & 6433 & 6610 \\
R-squared & 0.0002 & 0.005 & 0.002 \\
Adj. R-squared & $-$0.0003 & 0.004 & $-$0.02 \\
Residual Std. Error & 0.13 (df = 1894) & 0.14 (df = 6429) & \\
F Statistic & 0.34 (df = 1; 1894) & 10.16*** (df = 3; 6429) & 12.34$^{***

}$ (df = 1; 6448) \\
\hline \\[-1.8ex]
\multicolumn{4}{l}{***p $<$.01; **p $<$.05; *p $<$.1} \\
\end{tabular}
\end{table}

Using the out option, you can also directly save this to a .tex file. The table looks as follows:

Table 1: Trying out Stargazer

Onset

OLS panel
linear

Model 1 Model 2 Model 3

Ethnic Frac. 0.01 0.02∗∗∗ −0.37∗∗∗
(0.01) (0.01) (0.11)

Population 0.0000∗∗∗

(0.0000)
Ethnic Frac. * Population −0.00∗∗

(0.00)
Constant 0.01∗∗ 0.01∗∗

(0.01) (0.003)
N 1896 6433 6610
R-squared 0.0002 0.005 0.002
Adj. R-squared −0.0003 0.004 −0.02
Residual Std. Error 0.13 (df = 1894) 0.14 (df = 6429)
F Statistic 0.34 (df = 1; 1894) 10.16∗∗∗ (df = 3; 6429) 12.34∗∗∗ (df = 1; 6448)
∗∗∗p < .01; ∗∗p < .05; ∗p < .1

39

	The basics of R
	Installing R
	R as a calculator
	Vectors and objects
	Matrices
	Lists
	Packages and updating
	Getting help

	Programming
	Control statements
	*ply functions
	Write your own function

	Data frames
	Reading in data
	Extracting and manipulating data
	Merging
	Reshaping
	New variables
	Saving data

	Plots
	Basic graphs
	Scatterplots
	Adding features
	Other plots
	Saving plots

	Statistical analyses
	Ordinary least squares
	Extracting model information
	Output into tables

