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Abstract

This paper is the summary of a lecture given to the members of the
Kapitza society at the University of Rochester in February 2022.
The issue of the Markovianity of the time evolution of non-closed system
is discussed, along with some requirement for the validity of a Markovian
approximation.
Finally, the paper develops some ideas surrounding the solution of linear
differential equations, and uses them to develop an elementary treatment
of the Lindbladian formalism, deriving the Lindbladian Master Equation.
The case of a continuously monitored environment is discussed.

The content of this paper was mostly drawn from J. Preskill’s lecture
notes in quantum information theory. I claim no originality in the content
reported below.

1 Introduction

Time evolution in quantum theory is generally described by a unitary transfor-
mation acting on the full Hilbert space or density matrix representing a quantum
system. Such a transformation is usually obtained from the system’s Hamilto-
nian by solving the related Schrodinger equation.
In practice, however, we don’t have access to the full quantum system in gen-
eral: the most common example is the interaction of the system under study
with the environment, which is defined as anything that said system interacts
with other than itself.
When considering a part of a quantum mechanical system, time evolution is not
unitary nor Markovian anymore, and its treatment requires new tools.
In this paper we will focus on how this is done through the Lindbladian formal-
ism. It turns out that, under the assumption of Markovianity, it is possible to
obtain the time evolution of the accessible part of the system by solving a first
order differential equation, just like in the closed system case.
In particular, one can derive a generalized version of the Hamiltonian, the Lind-
bladian, that describes the time evolution of the system through an equation
analogous to Schrodinger’s. This time evolution, however, will not be unitary
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in general.
This paper presents a derivation of the Lindbladian Master Equation, starting
from a discussion of Markovianity in Section 2, followed by a review of solu-
tions of first order linear differential equations in Section 3. Finally, the LME
is derived in Section 4.

2 Markovian approximation

One ingredient necessary for the existence of a differential equation that de-
scribes the evolution of a system is the requirement that its state at time t+ dt
be completely determined by the state at time t. A system that satisfies this
condition is called Markovian.

Markovianity is usually built in in quantum mechanics: the Schroedinger
equation is a first order (in time) differential equation, and thus it is Marko-
vian by definition, guaranteeing that the time evolution of a closed quantum
mechanical system always has this property.
In the case we are interested in, however, there is no such guarantee: just like
a unitary evolution of system and environment doesn’t guarantee the unitary
evolution of the system alone, a global Markovian evolution doesn’t guarantee
that the system evolves in that way.

In facts, we are guaranteed the opposite: the fluctuation-dissipation theorem
tells us that the information that flows from the system into the environment
will always flow back. Therefore, the state of the system at a time t+ dt might
be influenced by its state at any prior time.

Despite this theoretical issues, there are many instances in which the system
can be treated as if it was Markovian in practice, by making a so-called Marko-
vian approximation.

To understand the validity of such an approximation one must consider three
time scales involved in the scenario where a system A interacts with the envi-
ronment E.
The first time scale, which we denote ∆tenv, is the one needed for the environ-
ment to ”forget” the information that flowed out of the system. In practice, this
means that after a time t≫ ∆tenv we may ignore whatever information flowed
out of the system.
The other physical quantity one needs is the time scale at which the system
evolves, ∆tsys. For the Markovian approximation to work we need, at the very
least, ∆tsys ≫ ∆tenv.

After a more careful analysis, it turns out that we need to consider one
more quantity to ensure that the approximation is indeed valid. Suppose, for
example, that we wanted to simulate the time evolution of A. To do so, we
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would have to coarse-grain time by sampling at a rate (∆tcoarse)
−1. Clearly, if

∆tcoarse ≫ ∆tenv then the evolution can be considered Markovian, but we also
need ∆tsys ≫ ∆tcoarse, or we won’t be able to faithfully simulate the system
itself.

We therefore see that the Markovian approximation can only be used if there
exists a time scale ∆tcoarse satisfying:

∆tsys ≫ ∆tcoarse ≫ ∆tenv (1)

[1] Mentions an atom interacting with an electromagnetic field as an exam-
ple where this simulation is useful, and the case of an electron spin interacting
with nuclear spins in a superconductor as a questionable one.

We will assume that the evolution of the systems under consideration is
Markovian from now on. This assumption is necessary in the derivation of the
LME presented in Section 4.

3 Solving linear differential equations

The aim of this paper is to construct the equivalent of a Hamiltonian for
open systems. To understand the requirements for this object, it is useful to
quickly review the theory of linear differential equations in general, and of the
Schroedinger equation in particular.
Consider the following linear differential equation:

d

dt
v = Av

v(0) = 0
(2)

Where v(0) is an element of some vector space V , and A is linear operator from
V to itself.
Recall that (2) has a formal solution given by:

v(t) = eAtv(0) (3)

Where eA =
∞∑

n=0

1
n!A

n.

Clearly, one has to check that the exponential in (3) is a well defined object.
In the cases we are going to consider, A is a bounded operator, and thus eA is
indeed well-defined.
The simplest example is when V = R and A is just a real number. Then the
solution to (2) is the usual exponential growth/decay.
A more interesting example is the Schroedinger equation: here V is some
Hilbert space and A = −iH is the negative imaginary units times the (time-
independent) Hamiltonian of the system. Then (2) becomes:

d

dt
v = −iHv (4)
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With solution
v(t) = e−iHtv(0) (5)

Here e−iHt is well defined as long as H is a bounded operator. Furthermore,
since Hamiltonians are hermitian, e−iHt is a unitary operator on V .
We see that this works even for the time evolution of the density matrix. In
this case, A is the superoperator −i[H, ·] which takes the density operator ρ to
−i[H, ρ]. Note that we replaced v → ρ to follow the usual convention for density
operators.

d

dt
ρ = −i[H, ·]ρ (6)

Which is solved by:
ρ(t) = e−i[H,·]ρ(0) (7)

It can be shown that e−i[H,·]ρ(0) = eiHtρ(0)e−iHt.

In the more general case of an open system, we are looking for a superoper-
ator L, called Lindbladian, that relates the derivative of the density matrix ρ(t)
to itself:

d

dt
ρ = L[ρ] (8)

Which should then be solved by:

ρ(t) = eLtρ(0) (9)

Unlike the Hamiltonian in (6), we don’t have requirements on L other than the
fact that it should reduce to H in the case of an isolated system. For example,
since L is not necessarily hermitian, eLt will not be unitary in general.
Finding L explicitly will be the topic of the next section.

4 Master equation

We are now ready to derive the Lindbladian Master Equation for an open sys-
tem.
First of all, recall that any superoperator (including eLt) has an operator-sum
representation. In our case:

ρ(t) = eLtρ(0) =
∑
µ≥0

Mµ(t)ρ(0)M
†
µ(t)

Expanding ρ(t) to first order, we get:

ρ(t+ dt) = ρ(t) + ρ̇dt =
∑
µ≥0

Mµρ(t)M
†
µ (10)

Note that the first equality relies on the Markovian assumption.
From (10) we see that Mµ must either be equal to the identity to zeroth order,
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be of order
√
dt, or both. By lumping all the terms equal to the identity to

zeroth order into M0, we get:

M0 = I +O(dt)

Mµ =
√
dtLµ, µ = 1, 2, 3... (11)

We can go one step further and express M0 as:

M0 = 1 + (−iH +K)dt

Where H, K, L are of order zero in dt and H and K are hermitian.
As we will see, H is labeled this way because it has to equal the Hamiltonian of
the system, although it’s not obvious.
First, we see can use the normalization condition on the Kraus operators to find
K:

1 =
∑
µ≥0

M†
µMµ = 1 +

(
−iH + iH +K +K +

∑
µ>0

L†
µLµ

)
dt+O(dt2)

And hence
2K +

∑
µ>0

L†
µLµ = 0

Concluding that

K = −1

2

∑
µ>0

L†
µLµ

And therefore

M0(t)ρM
†
0 (t) = ρ+ dt (−i[H, ρ] +Kρ+ ρK) (12)

Note how the term −i[H, ρ] arises naturally here. In the case where the
system is isolated, we wouldn’t have the terms in K, thus reducing to the usual
time evolution.

If we plug (11) and (12) into (10) we obtain:

∑
µ≥0

Mµ(t)ρ(0)M
†
µ(t) ∼ ρ+dt

(
−i[H, ρ] +

∑
µ>0

(
LµρL

†
µ − 1

2
L†
µLµρ−

1

2
ρL†

µLµ

))
(13)

By combining (10) and (13) and comparing the first order terms we get:

ρ̇ = −i[H, ρ] +
∑
µ>0

(
LµρL

†
µ − 1

2
L†
µLµρ−

1

2
ρL†

µLµ

)
= L[ρ] (14)

(14) is known as the Lindbladian master equation.
It is important to check that the time evolution of a density matrix is still a
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density matrix. In particular, if ρ(t) is a density operator, ρ(t + dt) should be
too.
Since H and ρ are assumed to be hermitian, we see that −i[H, ρ] must be her-
mitian too. Furthermore, the product of an operator by its hermitian conjugate

is also hermitian:
(
L†L

)†
= L† (L†)† = L†L.

Finally,
(
LρL†)† = (L†)† (Lρ)† = Lρ†L† = LρL†. Thus (14) preserves the her-

miticity of ρ.
Note that tr(ρ̇) = 0 is automatically enforced by the cyclical and linear proper-
ties of the trace:

tr(Hρ− ρH) = tr(Hρ)− tr(Hρ) = 0

tr

(
LµρL

†
µ − 1

2
L†
µLµρ−

1

2
ρL†

µLµ

)
= tr

(
LµρL

†
µ

)
−1

2
tr
(
L†
µLµρ

)
−1

2
tr
(
ρL†

µLµ

)
= 0

And thus (14) is trace preserving.
It can also be shown that (14) also preserves positivity [1] and thus it maps
density matrices to density matrices.

4.1 Monitoring the environment

The master equation derived above describes a system interacting with an un-
observed environment. In that case, we had to keep track of all possible changes
to the system and the state. Here we examine the case in which the environment
is continuously monitored. In this instance, quantum jumps are detected and
thus affect the state of the system, so time evolution will be altered.

Note that the the probability of having a quantum jump associated to Lµ,
µ ≥ 1 between times t and t+ dt is equal to dt(⟨ψ(t)|L†

µLµ |ψ(t)⟩.
If there is a jump to the state associated to Lµ, then the new (normalized) state
will be:

ψ(t+ dt) =
Lµ |ψ(t)⟩
|Lµ |ψ(t)⟩ |

While, if there is no jump, the state will be:

ψ(t+ dt) =
M0 |ψ(t)⟩
|M0 |ψ(t)⟩ |

This is known as Stochastic Schroedinger Equation. Unlike the Lindbladian
Master Equation (14), the SSE is not deterministic: time evolution has a
stochastic nature, as it depends on whether a given jump occurs.
On the other hand, the SSE is easier to simulate, as one only needs to deal with
a d-dimensional state vector instead of a d2-dimensional density matrix. One
can then simulate the SSE many times and average over the results to recover
the time evolution of the LME.
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