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About DESI Results

During the next five years, the Dark Energy Spectroscopic Instrument (DESI) will Accuracy

carry out a massive redshift survey of 35 million galaxies and quasars, mapping e For full sample, classifier is approximately 70% accurate.
the large scale structure of the universe out to a redshift of 3. During the survey, we
expect that many of these objects will contain bright transients such as supernovae
(SN), tidal disruption events, and compact binaries that contaminate the spectra
of the host galaxies. Confusion Matrices

* For hard cut, where classifier claims 99% probability of spectra being a transient,
classifier is above 99% accurate

* True vs. predicted label. Left: default network output; right: high purity cuts
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The identification of transients is important not only to ensure correct estimates of 11.65% 9.67% [E0i) 11.40% 5.40%  8.82%
the host redshitts, but also for providing an opportunity to obtain “serendipitous”
spectra of the transients themselves. Spectroscopic classification is the “gold stan-
dard” in categorization of transients, making these discoveries invaluable when
combined with data from large photometric surveys. We have developed ML tools
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. Figure 3: Confusion matrices for all spectra (left) and after making cuts (right)
Analysis
ROC Curves

Traditional Supernoava Classification * The ROC curve shows that it is straightforward to obtain a sample of Type Ia
L o= 0. 007 I SNe with recall > 85% and false positive rate <1%

— T [ ' r T [ v r T 1 ' 1 L R. Johnson, Astronomy Magazine, August 2004

Supernova matrix ROC: AUC = 0.993 Average precision = 0.827
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Figure 1: Traditional classification based on specific spectral features [1, 2]. 000 035 050 095 100 000 035 050 095 100
FPR = FP / (FP + TN) recall (TPR) = TP / (TP + FN)
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recall (TPR) = TP/ (TP + FN)
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Simulation of data
e We simulated DESI Bright Galaxy Survey hosts and various types of supernovae. Figure 4: The ROC and PR curves for our CNN
* Uses bright galaxy mocks, BGS exposure, and observing conditions.

Pre-processing: "
* Weighted re-binning of simulations decimates data from 6000 to 150 points. Conclusions
* Clip negative flux values which come from subtracting the background.

* Normalize spectrum between [0,1] to condition data and to reduce training time. * High accuracy for simulated transients which is further increased by hard cuts
* De-redshift to view spectra in rest frame. on probable transients.

coadded spectra rescaled spectra * Making the sample more pure decreases the false positive rate and stop most
hosts from being falsely classified as transients.
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e g e Optimizing the network to run on real data. Hyperparameter fine-tuning
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Aemit [A] Aemit [A] * Image classification instead of classifying 1-D fluxes.

e Understand the features that network is training on using SCORE-CAM

Figure 2: Spectrum before (grey) and after (red) preprocessing

Classifier: Convolutional Neural Network (CNN)
* CNN consists of 4 convolutional layers, 1 dense layer, 1 output. References
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