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ABSTRACT DICE LATTICE WAVE FUNCTIONS IN THE SQUARE BARRIER REGION

investigate tunneling and transport properties of Dirac electrons dressed by a linearly-polarized, off-resonance, high-frequency dressing field e Regionl
employ Floquet-Magnus perturbation theory to obtain the energy dispersion relation and dressed electron wave functions

illustrate how features of the anomalous Klein paradox, i.e., a complete, asymmetrical electron transmission, which is independent on the . e—i@él)
barrier height or width, is modified by the anisotropic energy dispersion caused by the applied dressing field (1) B (1) . / r o (1,7) 7 . /
investigategthe current strength and it§; dependencepon the agsyymnIl)etry introduced}ll)y KleIi)Ii) tunneling ing graphene and dice lattice sheets 75 (Ro, k) = 7exp (ka’ B ) exp (ikyr ') \/5(17) o exp (ka’ B ) exp (ikyr v')
predict a decrease in transmission current when the Klein transmission peak is located at a larger angle 10s
expect larger transmission current in the dice lattice than in graphene due to a much broader Klein tunneling peak in the former system ) )

anticipate useful transport properties for the design of electronic and optical devices and electronic lenses in ballistic-electron optics where v = +1 for electrons and —1 for holes and 05 (k | Ao) is the spinor angle
e Region 2

ELECTRON TUNNELING THROUGH A SOUARE POTENTIAL BARRIER 2 R 2
\I!( )(AO, k) = n exp (’Lk(,)x ) exp (z’ky/ y/) \/5(7)’ — 7 SXP (ik;,’r)x’) exp (z'ky/ y/)
i6%°

an incident electron with kinetic energy £y tunnels through a rect-
angular potential barrier

barrier height Vg is chosen such that 0 < &y < Vg
electron-hole-electron transitions occur between the two barrier : & - (1) -
edgesz = 0and z = Wp ; e~ 0s
v = +1 (or —1) refers to the Fermi energy located within the \If(f ) (Ao, k) = — exp (ik<1,)x’) exp (z’ky/ y’) \/_ 2~y
upper (lower) Dirac cone 4 ; IS

e Region3

the unit of energy for £9 and Vg is the Fermi energy El(g,o)
the unit of length for W is 1/ k](;?)

k() = \/7g is the Fermi wave number Rectangular potential barrier, CURRENT vs. BARRIER HEIGHT AND CURRENT vs. INCOMING ENERGY
20 _ g (0) . . V(r) =VeO(x)0(Wp — x), with

r° = hvpky’ with vp the Fermi velocity and ng the areal . . .
doping density O(z) the Heaviside unit step function. .
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PHOTON-DRESSED ELECTRONIC STATES
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dispersion
frame {z’, y'} is associated with the normal-direction &’ to the
potential barrier o
frames connected by an in-plane rotation angle 3 barrier height | ~ Incoming energy
wave vector components k,, and k,, are given in the {z’, 3"} e . 0 o0
frame since they are related to the direction of incoming electrons
spinor angle 0s and group velocity angle 0, is defined in the ana]ytical result analytical result
{z,y} frame, corresponding to the two axes of elliptical energy
dispersion

.. : : : v and k are generally not aligned (0x # 60,) and the panels (a), : £ — 5.0
a-T3 la.ttlFe in the xy-plar}e irradiated W1th (b) correspond to 3 % 0 and 3 = 0 j o
(a) elliptically and (b) linearly polarized E -
off-resonance optical dressing fields. & is
the amplitude of the incident light’s electric

field component.
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(a) Elliptical polarization (b) Linear polarization
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e components of the wave vector k and anisotropic energy disper- e N | barrier height
sion of an «-73 lattice under linearly polarized irradiation s ‘
e frame {x, y} is associated with the long-axis & of elliptical energy
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TRANSMISSION COEFFICIENT AND TUNNELING CONDUCTIVITY

an approximate expression for the electron transmission through a high potential barrier Vg > &y is REFERENCES AFFILTIATIONS AND CONTACTS
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secondary peak locations depend on the barrier width W and the longitudinal wave number k‘?) within the barrier region

the longitudinal wave number is determined by a relation connecting the kinetic energy &£p of incoming particles and the barrier height Vg5 Farhana Anwar, Andrii Iurov, Danhong Huang, Godfrey Gumbs, and Ashwani Sharma. Inter- (1) .
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