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ABSTRACT

• investigate tunneling and transport properties of Dirac electrons dressed by a linearly-polarized, off-resonance, high-frequency dressing field
• employ Floquet-Magnus perturbation theory to obtain the energy dispersion relation and dressed electron wave functions
• illustrate how features of the anomalous Klein paradox, i.e., a complete, asymmetrical electron transmission, which is independent on the

barrier height or width, is modified by the anisotropic energy dispersion caused by the applied dressing field
• investigate the current strength and its dependence on the asymmetry introduced by Klein tunneling in graphene and dice lattice sheets
• predict a decrease in transmission current when the Klein transmission peak is located at a larger angle
• expect larger transmission current in the dice lattice than in graphene due to a much broader Klein tunneling peak in the former system
• anticipate useful transport properties for the design of electronic and optical devices and electronic lenses in ballistic-electron optics

DICE LATTICE WAVE FUNCTIONS IN THE SQUARE BARRIER REGION
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where γ = +1 for electrons and−1 for holes and θs(k |λ0) is the spinor angle
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TRANSMISSION COEFFICIENT AND TUNNELING CONDUCTIVITY

• an approximate expression for the electron transmission through a high potential barrier VB � E0 is
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• Klein paradox with complete transmission and zero reflection is always present for head-on collisions, when θ(1)k = 0

• other resonances of unimpeded tunneling exist, corresponding to k(2)x WB = π × integer
• secondary peak locations depend on the barrier widthWB and the longitudinal wave number k(2)x within the barrier region
• the longitudinal wave number is determined by a relation connecting the kinetic energy E0 of incoming particles and the barrier height VB
• the tunneling conductivity is
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CURRENT VS. BARRIER HEIGHT AND CURRENT VS. INCOMING ENERGY
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ELECTRON TUNNELING THROUGH A SQUARE POTENTIAL BARRIER

• an incident electron with kinetic energy E0 tunnels through a rect-
angular potential barrier

• barrier height VB is chosen such that 0 < E0 < VB
• electron-hole-electron transitions occur between the two barrier

edges x = 0 and x = WB

• γ = +1 (or −1) refers to the Fermi energy located within the
upper (lower) Dirac cone

• the unit of energy for E0 and VB is the Fermi energyE(0)
F

• the unit of length forWB is 1/k
(0)
F
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doping density

( )a
( )1 ( )3( )2

Rectangular potential barrier,
V (x) = VB Θ(x)Θ(WB − x), with
Θ(x) the Heaviside unit step function.

PHOTON-DRESSED ELECTRONIC STATES

α-T3 lattice in the xy-plane irradiated with
(a) elliptically and (b) linearly polarized
off-resonance optical dressing fields. E0 is
the amplitude of the incident light’s electric
field component.

• components of the wave vector k and anisotropic energy disper-
sion of an α-T3 lattice under linearly polarized irradiation

• frame {x, y} is associated with the long-axis x̂ of elliptical energy

dispersion
• frame {x′, y′} is associated with the normal-direction x̂′ to the

potential barrier
• frames connected by an in-plane rotation angle β
• wave vector components kx′ and ky′ are given in the {x′, y′}

frame since they are related to the direction of incoming electrons
• spinor angle θs and group velocity angle θv is defined in the
{x, y} frame, corresponding to the two axes of elliptical energy
dispersion

• vG and k are generally not aligned (θk 6= θv) and the panels (a),
(b) correspond to β 6= 0 and β = 0
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