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Abstract

In this paper, we explore how the local spacetime curvature is related to the matter energy
density in order to motivate Einstein’s equation and gain an intuition about it. We start
by looking at a scalar (number density) and vector (energy-momentum density) in special
and general relativity. This allows us to introduce the stress-energy tensor which requires a
fundamental discussion about its components. We then introduce the conservation equation
of energy and momentum in both flat and curved space which plays an important role in
describing matter in the universe and thus, motivating the essential meaning of Einstein’s
equation.

1 Introduction

In this paper, we are building the understanding of the the relation between spacetime cur-
vature and matter energy density. As introduced previously, they are equivalent:(

a measure of local
spacetime curvature

)
=

(
a measure of

matter energy density

)
(1)

In this paper, we will concentrate on finding the correct measure of energy density that
corresponds to the R-H-S of equation 1 in addition to finding the general measure of spacetime
curvature for the L-H-S. We begin by discussing densities, starting from its simplest, the
number density.

2 Density representation in special and general rel-

ativity

We assume flat space time : { Rectangular coordinates: (t, x, y, z)
Metric: gαβ = ηαβ = diag(−1, 1, 1, 1)

We start our discussion with a simple case: The number density (density of a scalar).
Consider the following situation where a box containing N particles is moving with speed V
along the x-axis as in 1.
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Figure 1: N particles are trapped in box which moves
with speed V along the x-axis (Hartle,2003)

The number density in the rest frame of the box is: n = N
V∗ where V∗ is the volume of the

box in the rest frame.

How would the number density change in the moving frame w.r.t the rest frame?

The number density should become larger since the volume will be smaller due to the Lorentz-
contraction of one of its lengths (the length along the x-axis.) by a factor of (1 − V 2)

1
2 .

Therefore, the density in the moving frame is :

N =
N
V

=
N

V∗(1− V 2)
1
2

=
n√

1− V 2
= nut (2)

Where n is the rest number density and we recall that ut = γ = (1− V 2)
1
2 which is the time

component of the four-velocity vector of the moving box.

This is the time component of a more generic four vector called the number current four-vector
which we define as :

N = nu 1 (3)

With components: Nα = (N, ~N) where:

~N = n~u =
n~V√

1− V 2

Which is the spatial component of N.
Next, note that if V∗ is taken to be very small, we can define N(x) and ~N(x) at a point x in
spacetime. These quantities are constrained by conservation of the number of particles.

1The bold notation indicates a four-vector.
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To see this, we know that: the time rate of change of
the number of particles
inside volume V

 = −

 net rate at which particles
flow out through the surfaces

of the volume-walls of the box


Mathematically,

d

dt

∫
V
Nd3x = −

∫
∂V

~N · d ~A (4)

By the divergence theorem:
d

dt

∫
V
Nd3x = −

∫
V
∇ · ~N

Which yields:
∂N

∂t
= −∇ · ~N (5)

Which can be expressed compactly as:

∂Nα

∂xα
= 0 (6)

Where Nα = (N, ~N) and xα = (t, x, y, z)

Generally, the densities of scalar quantities are the time component of a 4-vector whose spa-
tial component is referred to as the current density.

To understand this better, lets look at it geometrically. The density is a function that
takes a scalar and outputs an 3-dimensional element. As discussed in previous lectures, a
3-dimensional element can be seen as a three-surface in four-dimensional space whose orien-
tation is specified by a normal 4-vector. A three-volume element is therefore n∆V.
In order to obtain a scalar quantity associated with this three-volume element, we would
need a scalar product of n∆V with a 4-vector current. For example, if ∆N is the number of
particles in the three-volume n∆V then:

∆N = N · (n∆V) = Nαnα∆V (7)

Where N is the number current density.

Therefore, the spatial density can be thought of as the flux of N through an element of
spacelike three-surface. Whereas the current is a flux in spacelike directions through timelike
three surfaces.
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3 Densities of energy and momentum

We discussed the density of a scalar (number density), we will now consider the density
of vectors, in particular, the energy and momentum vectors since they are the sources of
spacetime curvature in the right hand side of Einstein’s equation in equation 1.
Similarly to the relation in equation 7, we can associate a four-vector ∆pα with a three volume
nα∆V through Tαβ which has to be a second rank tensor, this is expressed as follows:

∆pα = Tαβnβ∆V (8)

Where Tαβ is called the energy-momentum-stress tensor or the stress-energy tensor.

To find out the components of Tαβ we consider an inertial frame in flat spacetime that
contains a 3-D volume ∆V. As seen before, this volume is part of a three surface in spacetime
defined by:

{ −t = constant
nα = (1, 0, 0, 0) is the normal to the three surface

We can see this by taking a vector with t = 0, for example, then (0, ~x) = xα is a tangent to
the three surface. Thus, n× t = 0 which yields nα = (1, 0, 0, 0).
Therefore, we can write equation 8 as ∆pα = Tαt∆V
We define the energy density ε and the moment density ~π as follows :

{ ε ≡ ∆pt/∆V = T tt

~π ≡ ∆pi/∆V = T it
(9)

Which can be both measured by an observer at rest in the inertial frame.
To illustrate the stress-energy tensor, consider 1 again and suppose that the particles, with
mass m, are at rest w.r.t the box. For each particle, we have Eparticle = mγ and P]article =

m~vγ with γ =
(
1− V 2

)−1
2 . We also know that in order to obtain the energy density, we need

to multiply the the number density by the energy, which can be expressed as:

ε = N.Eparticle

which according to equation 9 and equation 6, would be equivalent to:

ε ≡ T tt = mnγ2 = mnutut (10)

Similarly, the momentum density can be written as:

πl ≡ T lt = mnγ2V l = mnulut (11)
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We can guess the more general expression of the stress-energy tensor to be:

Tαβ = mnuαuβ ≡ µuαuβ (12)

Notice that it is symmetric since Tαβ = T βα. Now, we already explained what Tαt means in
terms of the energy and momentum density, we should then take a look at the meaning of
the Tαj components.

For the time components:
Consider a time-like 3-surface and a 3-volume spanned by ∆y,∆z, and ∆t. The unit normal
to this surface is along x so nα = (0, 1, 0, 0).
Therefore,

∆pα = TαxV

becomes ∆pα = Tαx∆y∆z∆t(13) and solving for T tx, we obtain:

T tx =
∆pt

∆A∆t
(14)

Which is the flux of energy in the x-direction which is equivalent to the momentum density.
To see this, consider the box from figure 1 again, the amount of energy that cross a surface
dA in the y and z plane in a time dt is

(energy flux)dAdt = ( energy density )V dAdt = ( momentum density )dAdt

which implies
T tx = T xt

The L-H-S is the flux of energy as defined in equation 14 and the R-H-S is the momentum
density as defined in equation 11.

For the spatial components: From equation 13, we have ∆pl = T lx∆A∆t which implies that:

T lx =
∆pl/∆t

∆A
(15)

The rate of change of momentum ∆pl/∆t is just the force and ∆A is the area from the
surface whose normal is parallel to the x-axis. Therefore,

∆F i = T lJnJ∆A (16)

with T lJ being the ith component of the force per unit area exerted across a surface with
normal in direction j.
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To summarize all the components that we explained above:

• T tt is the energy density

• T it is the momentum density along i

• T ti is the energy flux along i

• T ij is the stress tensor

This can be expressed more compactly as:

Tαβ =

 energy density energy flux

momentum stress
density tensor

 (17)

Again, the stress-energy tensor as a whole is also symmetric, implying Tαβ = T βα.

4 Conservation of Energy and Momentum

We first consider flat-spacetime. Both the energy and momentum of matter are conserved.
Similarly to equation 6 we have in flat spacetime:

∂Tαβ

∂xβ
= 0 (18)

where α is a free index which implied that there are 4 equations, an energy equation and
the three components of momentum.

Again, similarly to equation 5, we have for the time component:

∂T tt

∂t
+ ~∇ · T it = 0 (19)

Per the definitions of T tt being the energy density and T it being the momentum den-
sity(equivalent to the energy flux), equation 19 is equivalent to:

∂ε

∂t
+ ~∇ · ~π = 0 (20)

which expresses the energy conservation.
The first term, if integrated over a small volume in space, is the rate of change of energy
inside the volume while the second term, if integrated the same way, is the flux of energy
going outside.

To derive the equation of motion of the fluid, equation 18 implies that the spatial components
satisfy:

∂πl

∂t
= −∂T

lJ

∂xj
≡ φl (21)
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Where φ is a force density since it is equal to the change in momentum density. To obtain
the force acting on a small fixed volume, we can integrate φl over this volume and use the
divergence theorem as follows:

F l =

∫
V
d3xφl = −

∫
V
d3x

∂T lJ

∂xJ
= −

∫
∂V
dAn

(out)
J T iJ =

∫
∂V
dAn

(in)
J T lJ (22)

Where ∂V is the boundary of V and n
(out)
J , n

(in)
J are the outward and inward normals to ∂V,

respectively. By equation 16, we can deduce that the R-H-S is equivalent to
∫
∂V ∆F which is

the sum of the the forces exerted across the boundary surface.

To illustrate, we will discuss an important example for a perfect fluid. Here, the stress tensor
is equivalent to the pressure. To briefly motivate this, equation 15 implies that the stress
tensor is the force / area which is, for a fluid at rest, is equivalent to the pressure. Since this
force is always normal across the surface of the fluid, the ith component is along i = j which
implies that T ij is diagonal, leading to

T ij = δijp

.
Since the time component of the stress energy is the energy density, for a perfect fluid in the
rest frame, we can write the following:

Tαβ = diag(ρ, p, p, p) (23)

So what happens when a fluid is moving?
Let the four-velocity of the moving fluid be u(x). We know that Tαβ should depend on u(x),
ρ(x), p(x), and the flat space metric ηαβ. The most general expression for this dependence
would be a linear combination (excluding the possibility of containing derivatives) is :

Tαβ = Auαuβ +Bηαβ (24)

Where A and B can be found by the requirement that equation 24 should reduce to equation
23 in the frame of an observer at rest w.r.t to the fluid. This implies that uα = (1,

−→
0 ) which

yields:

{ T
11 = Au1u1 +Bη11 = ρ = A−B
T 22 = Au2u2 +Bη22 = p = B

Which implies that A = ρ+ p and B = p. Thus, the perfect fluid stress energy is given by:

Tαβ = (ρ+ p)uαuβ + ηαβp (25)

This equation is used to model matter in many situations, for instance, the matter inside
neutron stars, gas in galaxies, the cosmic microwave background..etc.
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Let us now move on to curved spacetime. This is particularly important since Einstein’s
equation is clearly intending to describe a curved spacetime.

The perfect fluid stress energy can be easily generalized as follows:

Tαβ = (ρ+ p)uαuβ + gαβp (26)

Which naturally reduces to equation 27 in a local inertial frame.

As for the equation of conservation of energy and momentum (equation 18), it generalizes as
follows:

∇βTαβ = 0 (27)

Where ∇β is the covariant derivative (how a second rank tensor is differentiated). Equation
27 is actually not a conservation law, despite the name, since energy is not conserved in
the presence of dynamic spacetime curvature, it changes as a response to the change in the
curvature. For instance, the cosmic microwave background radiation experiences a decrease
in energy and temperature as the universe expands which can be described by equation 27.

5 Conclusion

Starting out from understanding densities in special and general relativity, we built our way
to the full meaning of the R-H-S of Einstein’s equation, which is contained in the energy
tensor of equation 17. We then described the conservation of energy and momentum through
equation 18 for flat space and 27 for curved space..
At this stage, we are ready to combine all the knowledge we gained throughout this paper to
introduce Einstein’s equation, which will be covered in the next lecture with David.
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