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Abstract

In this paper, we introduce the Lorentz group which is key in our understanding of relativistic
physics. We start our discussion by introducing transformations and in particular the Galilean
transformation. We transition into the Lorentz transformation which we derive in three ways,
each of which builds our understanding of the Lorentz group. Finally, we formally define the
Lie algebra SO(m,n) by introducing its generators and determining how they commute.
Our discussion will emphasize the group theoretic aspects instead of the physics of special
relativity.

1 Relative motion and transformations

The laws of physics for observers in relative motion are related. We denote the transformation
that takes the laws of physics as experienced by observer 1 to those seen by observer 2 by
T(1 — 2).

A fundamental postulate of physics states that:

T(2 = 3)T(1 — 2) = T(1 — 3) (1)

This postulate asserts that the relativity of motion defines a group where the transformation
T reflects our understanding of space and time. Its form has been a fundamental question in
twentieth-century physics. The two forms of concern were the Galilean and the Lorentzian
transformation.

2 Galilean Transformation and Addition group

The two dimensional representation

denotes the addition group where
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D(u) also represents the Galilean group of non-relativistic physics such as:
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t is the time coordinate while x is the space coordinate. Equations 3 relate the time and space
coordinates of two observers in uniform motion with velocity u with respect to each other.
We can see that the representation in equation 2 translates to the addition of relative velocity.

We now know that time is not absolute which means that ¢ = ¢’ is incorrect. This was
historically known as the fall of absolute time. The realization that electromagnetism is
not invariant under the Galilean transformation led Einstein to formulate special relativity.
He showed that the Galilean transformation is in fact an approximation of the Lorentzian
transformation in the non -relativistic regime. Before then, it wasn’t known that the speed
of light is universal (that it does not depend on the observer) which was the key to modifying
the Galilean transformation. In the next chapter, we outline three derivations of the Lorentz
transformation.

3 Derivations of the Lorentz transformation

3.1 Derivation 1 (brute force)

In Einstein’s thought experiment, light is bouncing off between two mirrors, separated by a
distance y, moving in a direction that is perpendicular to the separation. We consider two
frames with two sets of coordinates, a primed and a non-primed. In the primed frame, two
events that give off light happen at the same place at different times, and in the non-primed
frame, the events happen wherever and whenever. If we are considering a (1 + 1) dimensional
spacetime, then we can call the spatial separation between the two events Az, and temporal
separation At, for the non primed coordinates. Similarly, for the primed coordinates, we have
Az’ =0 and At'.

By a simple Pythagorean theorem calculation, the total distance traveled by the light beam
in the non primed frame would be 2/y? + (Az/2)? which is equivalent to cAt where ¢ is the
speed of light. Therefore, for the non-primed frame, we have:

A2 — Ax? = (2y)?
In the primed frame, the total distance that light traveled is just 2y which implies:

As a result, the interval measured in any frame is the same as the interval measured in the
frame where the events happen in the same place (primed). Thus, the interval is the same
for any frame. We can also note that (2y)? is constant since y is unaffected by the motion of
the mirrors in any frame (since its perpendicular to the separation of the mirrors), thus the
spacetime interval is the same in every frame.

In the infinitesimal limit,
(cdt’)2 - (alac')2 = (cdt)? — (dz)? (4)
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We replace the Galilean transformation from Equation 3 by:

t'=w (t + Cux/c?
AR 9
' = k(ut + x)
Where w, k, and ¢ are three unknown dimensionless functions of %. We plug 5 into 4 and
solve for w, k, and (. We obtain:

t
I —i—u:n/: (6)
1-&
and,
t
o = Li (7)
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To recover the Galilean transformation, we can simply take ¢ to co. From now on, we will
use ¢ = 1 since it is more convenient to use ct than ¢ in equation 6 for instance.

3.2 Derivation 2

Let dz denote the column vector < th

> and let 1 represent the 2-by-2 matrix known as the

1 0
0 -1
Therefore, we can write (dt)? — (dx)? as dz”ndz.

/
We also denote the Lorentz transformation by L such that: ( di > =1L < di >

Minkowski metric such that : n = < > = o3 for (1 + 1) dimensional spacetime.

da' dz

As a result, we can write equation 4 of the invariant space interval as

de'Tndx’ = de LTnLdz = dzTndx

For an arbitrary dz, this implies that:
LTnL = (8)
Consider an infinitesimal transformation with:
L~T+ipK

Where ¢ is an infinitesimal real parameter and k is a generator that we will solve for. Notice
that this is similar to our discussion of the rotation group with the equivalence: R — L and
I - nand thus, R~IT+i0J - L~ 1+ ipK .



Plugging in equation 8, we obtain K77+ nkK = 0 which implies K71 = —nK. We know that
1 = o3 and that {01, 03} = 0 therefore

’iszl

Thus, an immediate solution is:

3.3 Derivation 3

We introduce the light cone coordinates: &+ = t + . Notice that if the spacetime interval
is left invariant if either dx™ or dz™ is multiplied and the other one divided by the same
quantity. We obtain the Lorentz transformation if we let this quantity be e¥. For instance,
we have t = (2 4+ 2~) which becomes

(e?(t+x) + e #(t — x)) = cosh pt + sinh gz (10)
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We can say that the Lorentz transformation stretches and compresses the light cone coordi-
nates by the same quantity.

In summary, the Lorentz tranformation , to leading order, is:

()=umn(D)-(20)() o

v > is an approximate representation of the additive group since:

1

which is the addition matrix if we ignore the quadratic terms.

Where < 1
2

4 Reconstruction of Finite Transformations

We build up to finite transformations the same way we did with rotations in a previous lecture
using the group’s multiplicative structure. Reproducing:

We replace L ~ (I +ipK) by L = ¢#X. We expand the exponential as a Taylor series and
separate the expansion into even and odd terms to obtain the finite transformation as follows:



L(p) = K = i O"(iK)"/n! = (i cka/(Qk)!) I+ (i o2k + 1)!) iK
n=0 k=0

k=0
= cosh ¢l + sinh pi K (12)

[ coshy sinhy
~ \_sinhy coshyp

Where we used (iK)? = I.

As a result, we have:

t’ coshp sinh t
r) = . (13)
x sinh¢ coshe x
This implies that 2’ = sinh ¢t + cosh px. By comparison with equation 7 we have:

inh
y= 1% = tanh ¢
cosh ¢

Vi

cosh¢ sinhe

sinh¢ coshy

see that by writing e“1Kiv2K — cilv1+92)K Note that the matrix from 11 is the small angle
coshp sinh

sinh¢ coshp > ’

u

V1—u?2

which means cosh ¢ = and sinh ¢ = in line with equations 6 and 7.

The matrix ( ) is the exact representation of the additive group. We can

approximation of (

5 SO(m,n)

In the previous sections, we noticed parallels between our discussion of the Lorentz trans-
formations in (1 + 1) dimensional spacetime and our discussion of rotation in 2 dimensional
space. Consider the following;:

Rotations Lorentz transformations

di’ = RdZ di’ = Ldi

where: d7 = (da!,da?,- -+ da) | where dZ = (da!,da?,--- | dx(™t™)

ds? = >°1 | (d2')” is unchanged | ds® = Y7 (da®)” — >7H"  (da?)” is unchanged

The invariant quantity for the rotation transformation represents the distance squared be-
tween two nearby points while the invariant quantity of the Lorentz transformation repre-
sents the generalized distance squared. This set of Lorentz transformations defines the group
SO(m,n) that satisfies all the group axioms.



Prior to this section we worked with the (1 + 1) dimensional spacetime which is SO(1,1)
which analytically continues from SO(2) if you set t = iy yielding —dt? + dz? = dy? + dx?.
By setting ¢ = i6, we can continue the Lorentz transformation

t' = cosh ¢t + sinh gz, 2’ = sinh ¢t + cosh px
to
y' = cos @y + sin Oz, 2’ = — sin Oy + cos Oz

which is the rotation transformation.

6 SO(3,1)

SO(3,1) refers to the (3 4+ 1) dimensional spacetime with 3 spatial coordinates. We already
know that we can boost or rotate in/w.r.t each spatial coordinate. The Lie Algebra SO(3,1)
consists of six generators: three rotational generators J,,.Jy,.J, and three Lorentz boost
generators K, K,, K. From the rotation group lecture, we know the explicit form of J;, J,,

and J,.

Let J, = —iJy,Jy = —iJy,J. = —iJ. which makes them antisymmetric and hermitian.
Recall:
0 0 O 0 0 -1 0 10
J=10 0 1|, J=1020 0 , J.=| -1 00 (14)
0 -1 0 1 0 O 0 00

For the Lorentz boost generators, we generalize 9 to:

iKy = K, = . ik, = (15)

O O = O
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iK; is real symmetric and therefore hermitean. Thus, K; is imaginary symmetric and thus
antihermitean which makes L = e = ¢#(iK) not unitary but obeys equation 8.

In the following discussion, we will use differential operators instead of matrices, as introduced
in previous lectures. For our purposes, we have

o 0 o 0 o 9 o 0
= a2 ik, =t 2 42l ik, =t 2 4y and K, =t2 422
£ z<yaaz x@y) ' or "oy v Tl Vg AT FEREY

As demonstrated in a previous lecture, the rotational generators commute as follows:

(i, Jj] = ieijn i (16)



We try commuting a rotational generator with a Lorentz boost generator as follows:

. | o o 0 d
[J., 1Kz =1 [yam - xa—y,ta—x + x@t}
. o 0 0 ,0
= ([pazwai] [ "

[ 0 0 s
=1 <y8t —l—t%) =i (iKy)

In general,

[Ji, Kj] = isiijk (18)

Therefore, the J’ s rotate the three K’s into one another. We expect the commutators between
K’s to produce J’ s since the algebra closes, we try:

(Ko, Ky = (i) [ta + :cg t2 + yaat]

Ox ot’ Oy
o 0 o 0
([0 ,0] [0 90 19
<[y8t’t8x] [xat’tayD (19)
0 0 )
=Yg, ~ :L‘a—y = —iJ;
In general,
(K, K| = —iegjrJy (20)

We learned in a previous lecture that SO(4) falls apart into two pieces which is also manifested
in SO(3,1) since this latter can be obtained analytically from SO(4). We start by defining:

1
Jii= 3 (J; £1K;)

which is hermitian since J; and K; are both hermitian. Using equations 16, 18, and 20 we
write:
1\2
[t J— 4] = (2> [Ji +iK;, Jj — iKj]

(5) a1
=\ 5 ) (i Jjl —ildi, Kj] = i[J;, Ki] + [K, Kjj) (21)

1 2
= () 1€jk (Jp —iKp + 1K — Jp) =0

and,



1

2
[J+,i7 J—l—,j] = <2> [J; + 1K, Jj + Z'Kj}

- (;) (i, J3] + i [, K] — i [, Ki] — [KG, K]) (22)

12 L .
= <2> €45k (Jk + 1Ky + 1K + Jk) = Z(C:iij+,k-
Using a similar calculation, we also have:

[J_,i, J_’j] = iEiij,7k (23)

We verified that the six generators Ji; divide into two sets of three generators each: the
Jis and the J_s where each set of generators commute past the other one. Therefore, the
Lorentz algebra falls apart into two pieces. This observation is important in the upcoming
discussion of the Dirac equation.

7 Conclusion

We started by introducing the role of transformations and began our discussion with the
Galilean transformation. We showed how Einstein helped us transition into the Lorentz
transformations which we outlined the derivation for. Finally, we formulated the Lorentz Lie
algrebra and discussed some of its properties. This lecture is but the begining of our journey
towards discussing the Dirac equation.
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