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Abstract

Given certain symmetries present in a covariant metric, it is possible to derive a formula for a general case

of the Ricci Tensor components and the Ricci Scalar. The following is based off of my second Kapitza lecture,

and supplemented by my experimentation with personally written computational techniques that can solve for

the left hand side of the Einstein equations.

1 Introduction

The crux of general relativity can be summarized by the famous Einstein equations. In essence this collection

of equations relates the shape of spacetime to the distribution of matter and energy. Matter-energy ‘directs’ the

curvature of space-time, and space-time ‘directs’ the movement of matter-energy.

Rµν −
1

2
gµνR+ gµνΛ = 8πGTµν

Rµν ≡ Ricci Tensor R ≡ Ricci Scalar Λ ≡ Cosmological Constant gµν ≡ Covariant Metric

G ≡ Gravitational Constant Tµν ≡ Energy Momentum Stress Tensor

The above equation is actually a combination of 16 different equations. However, there are really only 10

equations since the above tensors are all symmetric. With the exception of the cosmological constant, Λ, the

entire left hand side (LHS) of the above expression can be computed if given a covariant metric, gµν .

The process of computing the LHS of the Einstein equations can generally be broken down into three steps:

1. Calculate the Christoffel Symbols

Γβµν =
1

2
gβα

{
∂gαµ
∂xν

+
∂gαν
∂xµ

− ∂gµν
∂xα

}
(1)
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The Christoffel Symbols can be thought of as a combination of four matrices (mainly over β) that encode

the correction terms for tensor derivatives. The Christoffel Symbol itself is not a tensor.

2. Calculate the components of the Ricci Tensor

Rµν =
∂

∂xα
Γαµν −

∂

∂xν
Γαµα + ΓαβαΓβµν − ΓαβνΓβµα (2)

(The Rieman Tensor is a rank 4 tensor shown here as the right hand side. However, given the Einstein

summation notation, the indices α and β must be summed over, and the Riemann Tensor becomes the

Ricci Tensor. This is a higher dimensional analog of the trace.)

3. Calculate the Ricci Scalar

R = gµνRµν (3)

The Ricci Scalar is computed, simply by contracting the contravariant metric witht the Ricci Tensor.

While it is possible to solve for an individual µν component of the Ricci Tensor (and therefore a large part

of the respective Einstein Equation), the Ricci Scalar requires all elements of the Ricci Tensor in order to be

computed. Thus, most of the time it makes sense to calculate all components of the Ricci Tensor to start with.

2 Solving for the LHS with a General Case Metric

gµν =


f0(~x) 0 0 0

0 f1(~x) 0 0

0 0 f2(~x) 0

0 0 0 f3(~x)


2.1 Diagonal Metrics

If the metric can be expressed diagonally (through a change of coordinate basis) then several key simplifications

can be made to compute the resultant Ricci Tensor and Ricci Scalar.

As an initial step, we need to calculate the contravariant metric. Knowing gµν , we can compute the con-

travariant metric by solving gµνgνi = δµi , or by finding the inverse. However, if the original metric is diagonal,

its inverse can be constructed from the individual inverses of the components. Let fγ represent functions of time

and space.

gµν = diag(f0, f1, f2, f3) =⇒ gµν = diag

(
1

f0
,

1

f1
,

1

f2
,

1

f3

)
This means that gββ = fβ where fβ can be one of the four functions of time and space along the principle

diagonal of the covariant metric.
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Now we can move on to the Christoffel Symbols. Using equation (1) it is evident that for any given β, all

components of gµν will vanish, except for when α = β. We then have the following:

Γβµν =
1

2
gββ

{
∂gβµ
∂xν

+
∂gβν
∂xµ

− ∂gµν
∂xβ

}
=

1

2fβ

{
∂gβµ
∂xν

+
∂gβν
∂xµ

− ∂gµν
∂xβ

}
The above expression can be further broken down into five branches, depending on which of the values β, µ, ν

are equivalent.

(a) Γβµν =
1

2fβ

{
∂fβ
∂xβ

+
∂fβ
∂xβ

− ∂fβ
∂xβ

}
if µ = ν = β (4)

(b) Γβµν = − 1

2fβ

∂fµ
∂xβ

if µ = ν 6= β

(c) Γβµν =
1

2fβ

∂fβ
∂xµ

if µ 6= ν = β (d) Γβµν =
1

2fβ

∂fβ
∂xν

if β = µ 6= ν

(e) Γβµν = 0 if µ 6= ν 6= β

2.2 g11 = g22 = g33 Diagonal Metrics

gµν =


`(~x) 0 0 0

0 h(~x) 0 0

0 0 h(~x) 0

0 0 0 h(~x)


If the metric is identical in its spacial diagonals, then we can solve for the Christoffel Symbols even more

exactly. In the case where g11 = g22 = g33 = h(~x) and g00 = `(~x) we can split the computations of the Christoffel

Symbols given in equation (4) into spacial and temporal parts. Considering only non zero components:

Γ0
00 =

1

2`

{
∂`

∂x0
+

∂`

∂x0
− ∂`

∂x0

}
=⇒ Γ0

00 =
1

2`

∂`

∂x0

Γ0
ii = − 1

2h

∂h

∂x0

Γ0
i0 =

1

2`

∂`

∂xi
, Γ0

0i =
1

2`

∂`

∂xi
=⇒ Γ0

i0 = Γ0
0i =

1

2`

∂`

∂xi

Γiii =
1

2h

{
∂h

∂xi
+
∂h

∂xi
− ∂h

∂xi

}
=⇒ Γiii =

1

2h

∂h

∂xi
(5)

Γiµµ = − 1

2fµ

∂fµ
∂xi

=⇒ Γi00 = − 1

2`

∂`

∂xi
, Γijj = − 1

2h

∂h

∂xi
i 6= j
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Γiµi =
1

2h

∂h

∂xµ
, Γiiν =

1

2h

∂h

∂xν
=⇒ Γi0i = Γii0 =

1

2h

∂h

∂x0
, Γiji = Γiij =

1

2h

∂h

∂xj
i 6= j

Moving on to the Ricci Tensor, it is once again helpful to split the computation into spatial and temporal

parts. Form equation (2) we arrive at:

(case 1) R00 =
∂

∂xα
Γα00 −

∂

∂x0
Γα0α + ΓαβαΓβ00 − Γαβ0Γβ0α

(case 2) R0i = Ri0 =
∂

∂xα
Γα0i −

∂

∂xi
Γα0α + ΓαβαΓβ0i − ΓαβiΓ

β
0α (6)

(case 3) Rii =
∂

∂xα
Γαii −

∂

∂xi
Γαiα + ΓαβαΓβii − ΓαβiΓ

β
iα

(case 4) Rij =
∂

∂xα
Γαij −

∂

∂xj
Γαiα + ΓαβαΓβij − ΓαβjΓ

β
iα i 6= j

2.3 Aside: Python Expression Solver

Computing these components of the Ricci Tensor is rather contrived, as thus it may be useful to develop a

technique with with to solve these calculations computationally.

I developed a python notebook that could do these calculations. You can find it here on my GitHub:

https://github.com/SorenHelhoski/LHS-Einstein-Solver I accomplished this by utilizing list object

editing, and by converting Laurent series strings into multidimensional arrays. For example, I would express the

polynomial 1 + 2x+ xy2 as the array [ [1, [ ], [ ]], [2, [′x′], [1]], [1, [′x′,′ y′], [1, 2]] ]. Each element of the array is a

term in the polynomial represented as another array. The first term in this array is the coefficient, the second

list contains the names of all the variables in the term, and the final list contains the respective powers of the

variables.

Once I had decomposed any expression into this form, I could add, multiply, and partial differentiate any

expression by adding and multiplying the powers and the coefficients in certain ways. The only difficulty

was implementing functions of other variables. Functions add and multiply like variables, but require extra

information to partial differentiate. I added in a system of defining the chain rules of any given function to solve

this issue.

2.4 Computing the Ricci Tensor

Using the software described above, we can compute the solutions to equations (6). For this, we adapt a new

notation in which f,µ = ∂f
∂xµ Recall that the metric is diag(`(~x), h(~x), h(~x), h(~x))

Tradiational summation notation is adopted here in order to clarify that the summations over k are performed

only once — even though some terms are indexed by k twice.
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R00 = −3h,00
2h

+
3(h,0)2

4(h)2
+

3`,0h,0
4`h

+
∑
k

(
−`,kk

2h
− `,kh,k

4(h)2
+

(`,k)2

4`h

)

R0i = Ri0 =
h,0h,i
(h)2

− h,0i
h

+
`,ih,0
2`h

(7)

Rii =
`,0h,0
4(`)2

−h,00
2`
− (h,0)2

4`h
+

1

4

(
`,i
`

)2

−1

2

`,ii
`

+
3

4

(
h,i
h

)2

−1

2

h,ii
h

+
1

2

`,ih,i
`h

+
∑
k

(
1

4

(
h,k
h

)2

− 1

2

h,kk
h
− 1

4

`,kh,k
`h

)

Rij = Rji =
3h,ih,j
4(h)2

− h,ij
2h

+
`,i`,j
4(`)2

− `,ij
2`

+
`,ih,j
4`h

+
`,jh,i
4`h

i 6= j

2.5 Computing the Ricci Scalar

R = gµνRµν = g0νR0ν + giνRiν

Computing the Ricci Scalar is done by contracting the Ricci Tensor with the contravariant metric. Since we

are only dealing with diagonal metrics, this contraction can be expressed as a simpler sum.

R = g00R00 +
∑
i

giiRii

:

Recalling that g00 = 1/`(~x) and gii = 1/h(~x)

g00R00 = −3h,00
2`h

+
3(h,0)2

4`(h)2
+

3`,0h,0
4(`)2h

+
∑
k

(
−`,kk

2`h
− `,kh,k

4`(h)2
+

(`,k)2

4(`)2h

)

∑
i

giiRii =
1

h

∑
i

Rii

Adding up the two expressions above will yield the Ricci Scalar for a spatially identical diagonal matrix.

When simplified, the Ricci Scalar is:

R = −3h,00
`h

+
3`,0h,0
2(`)2h

+
∑
k

(
−`,kk
`h
− `,kh,k

2`(h)2
+

(`,k)2

2(`)2h
+

3(h,k)2

2(h)3
− 2h,kk

(h)2

)
(8)

2.6 Sanity Check with the Flat Metric

We can test the above formulas to find the Ricci Tensor and Ricci Scalar in the case of the flat metric. In this

specific case, the functions h(~x) and `(~x) are both constant. Since equations (7) and (8) only contain terms

which have numerators that are composed of derivatives of ` and h, both the Ricci Tensor and Ricci Scalar will

be zero.

5



3 The Friedman Robertson Walker Metric

We can now apply this method to the Friedman Robertson Walker metric. This metric describes a homogeneous,

isotropic, expanding, path connected universe.

gµν = diag(−1, a2(t), a2(t), a2(t)) =⇒ gµν = diag(−1, a−2(t), a−2(t), a−2(t))

Right away we can compute the Ricci Tensor and Scalar with equations (7) and (8). To make things simpler,

` is a constant, and h is only a function of time. This means that we can immediately eliminate all terms that

contain any derivative of `, or a spatial derivative of h. Also note that h = a2 =⇒ h,00 = 2(aä+ ȧ2)

R00 = −3h,00
2h

+
3(h,0)2

4(h)2
= −3ä

a

R0i = Ri0 = 0

Rii = −h,00
2`
− (h,0)2

4`h
= aä+ 2ȧ2

Rij = Rji = 0

R = −3h,00
`h

=
6ä

a
+

6ȧ2

a2

4 The Perturbed Metric

Starting with the Friedman Robertson Walker metric again, we can now add slight temporal and spatial pertur-

bations, called Ψ and Φ respectfully.

gµν = diag(−1− 2Ψ, a2(1 + 2Φ), a2(1 + 2Φ), a2(1 + 2Φ))

Meaning that the covariant metric is:

gµν = diag

(
1

−1− 2Ψ
,

1

a2(1 + 2Φ)
,

1

a2(1 + 2Φ)
,

1

a2(1 + 2Φ)

)
Under the assumption that the spacial and temporal perturbations are small, the rational functions given

by the covariant metric above can be rewritten in first order. This approximation can also be applied to the

derivatives of Φ and Ψ.

gµν = diag(−1 + 2Ψ, a2(1− 2Φ), a2(1− 2Φ), a2(1− 2Φ))
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The method we used to derive equations (7) and (8) will not be completely altered by this change. The

components of the contravariant metric only appear in the denominators of every term, meaning that we can

easily identify when to use components of the covariant versus the contravariant metric.

However, making a first order approximation at this stage of the computation will require us to continue

considering only first order terms.

∂

∂xµ
`(~x) =

∂

∂xµ
(−1 + 2Ψ) = 2

∂

∂xµ
Ψ

∂

∂xi
h(~x) =

∂

∂xi
(a2 − 2a2Φ) = 2a2

∂

∂xi
Φ

∂

∂x0
h(~x) =

∂

∂x0
(a2 − 2a2Φ) = 2aȧ+O(1) Let h̄ = 2aȧ

First derivatives of ` will be first order, and first spacial derivatives of h will also be first order. Additionally,

the time derivative of h is first order, except for one zeroth order term. Keeping this in mind, we can simplify

equations (7) and (8) slighlty, by eliminating products of the above derivatives. We begin by only considering

the numerators of all the terms.

R00 = −3h,00
2h

+
3h̄2

4(h)2
+

3`,0h̄

4`h
+
∑
k

(
−`,kk

2h

)

R0i = Ri0 =
h̄h,i
(h)2

− h,0i
h

+
`,ih̄

2`h
(9)

Rii =
`,0h̄

4(`)2
− h,00

2`
− (h,0)2

4`h
− 1

2

`,ii
`
− 1

2

h,ii
h

+
∑
k

(
−1

2

h,kk
h

)

Rij = Rji = −h,ij
2h

+
`,i`,j
4(`)2

− `,ij
2`

i 6= j

R = −3h,00
`h

+
3`,0h̄

2(`)2h
+
∑
k

(
−`,kk
`h
− 2h,kk

(h)2

)
(10)

At this point, the numerators are all at least first order terms. This means that if we exchange out 1/` and

1/h for the respective terms in the contravariant metric, we only need to multiply by the zeroth order terms for

every 1/` and 1/h.

R00 = −3

2
h,00a

2 +
3

4
h̄2a4 − 3

4
`,0h̄a

2 +
∑
k

(
−1

2
`,kka

2

)

R0i = Ri0 = h̄h,ia
4 − h,0ia2 − `,ih̄a2 (11)

Rii =
1

4
`,0h̄+

1

2
h,00 +

1

4
(h,0)2a2 +

1

2
`,ii −

1

2
h,iia

2 +
∑
k

(
−1

2
h,kka

2

)
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Rij = Rji = −1

2
h,ija

2 +
1

4
`,i`,j +

1

2
`,ij i 6= j

R = 3h,00a
2 +

3

2
`,0h̄a

2 +
∑
k

(
`,kka

2 − 2h,kka
4
)

(12)

We can make one final simplification for this metric, that being the following. When i is not an index it

represents the imaginary number

∂Ψ

∂xi
= ikiΨ

∂Φ

∂xi
= ikiΦ H =

ȧ

a

Using these simplifications, we could plug the results back into the equations given in (7). Most of these

expressions will be very large, so for sake of space, I’ll only include the R00 term below.

−1Ψa−2k2x − 1Ψa−2k2y − 1Ψa−2k2z − 3a−1ä− 3Φ,00 + 3Ψ,0a
−1ȧ− 6Φ,0a

−1ȧ

Plugging in and simplifying equation (12); the final form of the Ricci Scalar for the Perturbed Friedman

Robertson Walker metric can be expressed as the following.

R = 2Ψa−2k21 + 2Ψa−2k22 + 2Ψa−2k23 + 6a−1ä+ 6Φ,00 − 6Ψ,0a
−1ȧ+ 24Φ,0a

−1ȧ+

−12Ψa−1ä+ 6H2 − 12ΨH2 + 4Φa−2k21 + 4Φa−2k22 + 4Φa−2k23

5 Remarks on the Method

It is clear that for more complicated covariant metrics, the computations required to achieve the Ricci Scalar

and Ricci Tensor become increasingly complex. This reaches a point where deriving the Einsteins equations by

hand is almost impossible to do in a reasonable amount of time. Fortunately, most metrics will at least have

some symmetries that greatly simplify the process.

In most well-known cases, the covariant metric can be diagonalized, and thus the equations given in (4) can

easily be used to calculate the Christoffel symbols.

Further, if the spatial components of a diagonal metric are identical, then we can go a step further and use

equation (7) and (8) directly to calculate Ricci Scalars and Ricci Tensors. Unfortunately, this simplification is a

result the coordinate system, thus, some symmetrical metrics will not be able to use the formulas derived.
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