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1 Introduction

The Schrödinger equation, successful as it is for describing non-relativistic
quantum particles, fails in the relativistic regime. By using special relativity,
one can derive a relativistic version of the Schrödinger equation, known as
the first quantization of the Klein-Gordon equation. Unfortunately, this has
its own problems: negative energy and probability solutions, nonphysical
entities that could spell the end for a theory. Moving from quantum theory
to quantum field theory, fields are introduced as fundamental. Quantizing
the Klein-Gordon equation in quantum field theory leads to a model known
as the second quantization, which avoids many of the problems of the first
quantization.

2 Second Quantization of the Klein-Gordon
Equation

2.1 The Klein-Gordon Field

We can write the Klein-Gordon field operator as

�(x) = C

Z
d3k

✓
e(�ik·x)a(k) + e(ik·x)a†(k)

◆
(1)

where

C =
1p

2k0(2⇡)3
(2)

and k0 = Ek. The field operator satisfies the Klein-Gordon equation, i.e.

(@µ@
µ +m2)� = 0 (3)

This can be split into positive and negative energy components as follows:

�(x) = �(+)(x) + �(�)(x)

�(+)(x) = C

Z
d3k e(�ik·x)a(k)

�(�)(x) = C

Z
d3k e(ik·x)a†(k)

(4)

The conjugate momentum for the field operator is therefore

⇧(x) = �̇(x)

= �ik0C

Z
d3k

✓
exp(�ik · x)a(k)� exp(ik · x)a†(k)

◆
(5)
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Inverting equations 1 and 5 and solving for the annihilation and creation
operators a and a†:

a(k) = C

Z
d3x eik·x

✓
k0�(x) + i⇧(x)

◆

= iC

Z
d3x

✓
eik·x@t�(x)� @te

ik·x�(x)

◆
(6)

a†(k) = C

Z
d3x e�ik·x

✓
k0�(x)� i⇧(x)

◆

= �iC

Z
d3x

✓
e�ik·x@t�(x)� @te

�ik·x�(x)

◆
(7)

Taking the time derivative of equation 6:

@ta(k) = iC@t

Z
d3x

✓
eik·x@t�(x)� @te

ik·x�(x)

◆

= iC

Z
d3x

✓
@te

ik·x@t�(x) + eik·x@2
t �(x)� @te

ik·x@t�(x)� @2
t e

ik·x�(x)

◆

= iC

Z
d3x

✓
eik·x@2

t �(x)� @2
t e

ik·x�(x)

◆

� must satisfy the Klein-Gordon equation, so

@ta(k) = iC

Z
d3x

✓
eik·x(r2 �m2)�(x) + (k0)2eik·x�(x)

◆

= iC

Z
d3x

✓
(k0)2 � k2 �m2

◆
eik·x�(x)

= 0

since (k0)2 � k2 = m2. The same procedure follows for a†, meaning that the
annihilation and creation operators are time independent.

The commutation relations between the annihilation and creation op-
erators can be deduced from the already-known relations between the field
operator and the conjugate momentum when imposing the contraint x0 = y0.

To reduce clutter, we define C 0 ⌘ C

����
k0!k00

.
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[�(x),�(y)] = CC 0
ZZ

d3k d3k0
✓
e�i(k·x+k

0·y)[a(k), a(k0)]

+ e�i(k·x�k

0·y)⇥a(k), a†(k0)
⇤
+ e�i(�k·x+k

0·y)⇥a†(k), a(k0)
⇤

+ e�i(�k·x�k

0·y)⇥a†(k), a†(k0)
⇤◆

(8)= 0

[⇧(x),⇧(y)] = �k0k
00CC 0

ZZ
d3k d3k0

✓
e�i(k·x+k

0·y)[a(k), a(k0)]

� e�i(k·x�k

0·y)⇥a(k), a†(k0)
⇤� e�i(�k·x+k

0·y)⇥a†(k), a(k0)
⇤

+ e�i(�k·x�k

0·y)⇥a†(k), a†(k0)
⇤◆

(9)= 0

(10)

[�(x),⇧(y)] = �ik
00CC 0

ZZ
d3k d3k0

✓
e�i(k·x+k

0·y)[a(k), a(k0)]

� e�i(k·x�k

0·y)⇥a(k), a†(k0)
⇤
+ e�i(�k·x+k

0·y)⇥a†(k), a(k0)
⇤

� e�i(�k·x�k

0·y)⇥a†(k), a†(k0)
⇤◆

= i�3(x� y)

The commutation relations between the annihilation and creation operators
can be calculated from equations 6 and 7, knowing equations 2.1, 2.1, and
10:

[a(k), a(k0)] = CC 0
ZZ

d3x d3yei(k·x+k

0·y)
✓
k0k

00[�(x),�(y)]

+ ik0[�(x),⇧(y)] + ik
00[⇧(x),�(y)]� [⇧(x),⇧(y)]

◆

=CC 0
ZZ

d3x d3yei(k·x+k

0·y)
✓
ik0[�(x),⇧(y)]+ik

00[⇧(x),�(y)]

◆

= �CC 0(k0 � k
00)

ZZ
d3x d3yei(k·x+k

0·y)�3(x� y)

= �CC 0(k0 � k
00)

Z
d3xei(k+k

0)·x

= �CC 0(k0 � k
00)ei(k

0+k
00)·x�3(k� k0)

(11)= 0
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In the last step, we use the fact that k0 = k
00. Similarly, we find that

⇥
a†(k), a†(k0)

⇤
= 0 (12)

⇥
a(k), a†(k0)

⇤
= �3(k� k0) (13)

So the creation and annihilation operators commute with themselves for any
two k and k0, but do not commute with each other.

2.2 Relationship with the Harmonic Oscillator

The Hamiltonian is the integral of the Hamiltonian density H over all
space:

H =

Z
d3x H

=
1

2

Z
d3x

✓
m2�2 + (r�) · (r�) + ⇧2

◆
(14)

Recall that k0 = k
00. Using equation 1:

Z
d3x �2(x) =

1

2(2⇡)3

Z
d3x

ZZ
d3kp
k0

d3k0
p
k00

✓
e�i(k+k

0)·xa(k)a(k0)

+ e�i(k�k

0)·xa(k)a†(k0) + e�i(�k+k

0)·xa†(k)a(k0)

+ e�i(�k�k

0)·xa†(k)a†(k0)

◆

=
1

2

ZZ
d3kp
k0

d3k0
p
k00

✓
e�i(k0+k

00)x0
a(k)a(k0)�3(k+ k0)

+ e�i(k0�k
00)x0

a(k)a†(k0)�3(k� k0) + e�i(�k0+k
00)x0

a†(k)a(k0)�3(�k+ k0)

+ e�i(�k0�k
00)x0

a†(k)a†(k0)�3(�k� k0)

◆

=
1

2k0

Z
d3k

✓
e�2ik0x0

a(k)a(�k) + e0a(k)a†(k)

+ e0a†(k)a(k) + e2ik
0x0

a†(k)a†(�k)

◆

(15)
=

1

2k0

Z
d3k

✓
e�2ik0x0

a(k)a(�k) + a(k)a†(k)

+ a†(k)a(k) + e2ik
0x0

a†(k)a†(�k)

◆

Similarly, using equation 5:
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Z
d3x ⇧2(x) = � 1

2(2⇡)3

Z
d3x

ZZ
d3k d3k0

p
k0k00

✓
e�i(k+k

0)·xa(k)a(k0)

� e�i(k�k

0)·xa(k)a†(k0)� e�i(�k+k

0)·xa†(k)a(k0)

+ e�i(�k�k

0)·xa†(k)a†(k0)

◆

(16)
= �(k0)2

2k0

Z
d3k

✓
e�2ik0x0

a(k)a(�k)� a(k)a†(k)

� a†(k)a(k) + e2ik
0x0

a†(k)a†(�k)

◆

The gradient of � is found from equation 1:

r�(x) = �iCk

Z
d3k

✓
e(�ik·x)a(k)� e(ik·x)a†(k)

◆
(17)

So, we see that

Z
d3x r�(x) ·r�(x) =

(i)2

2(2⇡)3

Z
d3x

ZZ
d3kp
k0

d3k0
p
k00

k

· k0
✓
e�i(k+k

0)·xa(k)a(k0)� e�i(k�k

0)·xa(k)a†(k0)

� e�i(�k+k

0)·xa†(k)a(k0) + e�i(�k�k

0)·xa†(k)a†(k0)

◆

(18)
=

k2

2k0

Z
d3k

✓
e�2ik0x0

a(k)a(�k) + a(k)a†(k)

+ a†(k)a(k) + e2ik
0x0

a†(k)a†(�k)

◆

Substituting equations 2.2, 2.2, and 2.2 into equation 14, we can derive an
equation for the Hamiltonian:

H =
1

4k0

Z
d3k


(m2 + k2 � (k0)2)

✓
e�2ik0x0

a(k)a(�k)

+ e2ik
0x0

a†(k)a†(�k)

◆
+ (m2 + k2 + (k0)2)

✓
a(k)a†(k) + a†(k)a(k)

◆�

=
1

4k0

Z
d3k


0⇥

✓
e�2ik0x0

a(k)a(�k)

+ e2ik
0x0

a†(k)a†(�k)

◆
+ 2(k0)2

✓
a(k)a†(k) + a†(k)a(k)

◆�
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=
1

2

Z
d3k k0

✓
a(k)a†(k) + a†(k)a(k)

◆

(19)=
1

2

Z
d3k Ek

✓
a(k)a†(k) + a†(k)a(k)

◆

Recalling the commutation relations from equations 2.1, 12, and 13, the
commutation relations of the annihilation and creation operators with the
Hamiltonian are easily calculated to be

[a(k), H] = Eka(k) (20)
⇥
a†(k), H

⇤
= �Eka

†(k) (21)

So the annihilation and creation operators annihilate and create a quantum
of energy Ek, respectively. This is identical in form to the harmonic oscillator.
Equations 20 and 21 therefore naturally lead to the description of the Klein-
Gordon field as an infinite set of uncoupled harmonic oscillators, one for each
point in space-time x.

2.3 Normal Ordering

The problem with the harmonic oscillator description of the Klein-Gordon
field is that harmonic oscillators have nonzero ground state energy due to
an additive constant. Clearly, a system consisting of an infinite number of
such oscillators will have infinite energy in its ground state alone, which is
nonphysical. The way around this thorny issue is to take advantage of the
fact that the infinite energy comes from an additive constant, and simply
shift the energy scale down to make the ground state have zero energy. We
accomplish this by imposing the normal order: ordering the annihilation and
creation operators a and a† such that a† is always left of a. It is denoted by
a superscript N.O. or surrounding colons.

✓
aa†

◆N.O.

=: aa† := a†a

The normal-ordered Hamiltonian is

HN.O. =
1

2

Z
d3k Ek

✓
: a(k)a†(k) : + : a†(k)a(k) :

◆

=

Z
d3k Eka

†(k)a(k) (22)

=

Z
d3k EkN(k) (23)
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where the number operator N(k) = a†(k)a(k). The total number operator
is

N =

Z
d3kN(k) (24)

The commutator relations follow easily:

[a(k), N(k0)] =
⇥
a(k), a†(k0)

⇤
a(k)

= �3(k� k0)a(k) (25)

[a(k), N ] = a(k) (26)
⇥
a†(k), N(k0)

⇤
= a†(k)

⇥
a†(k), a(k0)

⇤

= ��3(k� k0)a†(k) (27)
⇥
a†(k), N

⇤
= �a†(k) (28)

2.4 Operations on Eigenstates

Consider an energy eigenstate |Ei. We would like to see how the annihila-
tion and creation operators interact with the Hamiltonian on this eigenstate.
Applying the commutator of a and H to |Ei, we obtain

[a(k), H] |Ei = Eka(k) |Ei
�Ha(k) |Ei = Eka(k) |Ei � a(k)H |Ei
H(a(k) |Ei) = (E � Ek)(a(k) |Ei) (29)

using the fact that H |Ei = E |Ei. Similarly,
⇥
a†(k), H

⇤ |Ei = Eka
†(k) |Ei

H(a†(k) |Ei) = (E + Ek)(a
†(k) |Ei) (30)

So annihilation lowers the energy of the system by Ek and creation raises
the energy by Ek. Since the ground state of the system has zero energy, the
energy must be nonnegative. So, there must exist a minimum energy state
|Emini such that

a(k) |Emini = 0

Define |0i ⌘ |Emini. The ground state is such that H |0i = N |0i = 0.
Consider a one-particle state with nonzero energy:

|ki = a†(k) |0i (31)
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We can construct any higher state in a similar way: with repeated applica-
tions of the creation operator. With normalization, these higher states can
be formed by

|⌅i = (a†(k
1

))n1

p
n1!

(a†(k
2

))n2

p
n2!

. . .
(a†(k

l

))nl

p
nl!

|0i (32)

where there are ni particles with momentum k
i

. It is clear that there should
be

Pl
i=1 ni particles in this state, so

N |⌅i = (n1 + n2 + · · ·+ nl) |⌅i (33)

Moreover, using the identity [A,Bn] =
Pn�1

i=0 Bn�i�1[A,B]Bi and equation
13, we can see that there are indeed ni particles with momentum k

i

, as we
expect.

⇥
N(k), (a†(k

j

))nj
⇤
= a†(k)

⇥
a(k), (a†(k

j

))nj
⇤

= a†(k)

nj�1X

i=0

(a†(k
j

))nj�i�1
⇥
a(k), a†(k

j

)
⇤
(a†(k

j

))i

= a†(k)

nj�1X

i=0

(a†(k
j

))nj�1�3(k� k
j

)

= nj(a
†(k

j

))nj�3(k� k
j

) (34)

N(k) |⌅i = N(k)
(a†(k

1

))n1

p
n1!

(a†(k
2

))n2

p
n2!

. . .
(a†(k

l

))nl

p
nl!

|0i

=
(a†(k

1

))n1

p
n1!

✓
n1�

3(k� k
1

) +N(k)

◆
(a†(k

2

))n2

p
n2!

. . .
(a†(k

l

))nl

p
nl!

|0i

=
(a†(k

1

))n1

p
n1!

(a†(k
2

))n2

p
n2!

✓
n1�

3(k�k
1

)+n2�
3(k�k

2

)+N(k)

◆
. . .

(a†(k
l

))nl

p
nl!

|0i

=
(a†(k

1

))n1

p
n1!

(a†(k
2

))n2

p
n2!

. . .
(a†(k

l

))nl

p
nl!

✓
n1�

3(k� k
1

)

+ n2�
3(k� k

2

) + · · ·+ nl�
3(k� k

l

) +N(k)

◆
|0i

(35)
=

(a†(k
1

))n1

p
n1!

(a†(k
2

))n2

p
n2!

. . .
(a†(k

l

))nl

p
nl!

✓
n1�

3(k� k
1

)

+ n2�
3(k� k

2

) + · · ·+ nl�
3(k� k

l

))

◆
|0i
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We can also introduce a momentum operator

P =

Z
d3k kN(k) (36)

The actions of the Hamiltonian and momentum operators on our state |⌅i
can be determined easily from equations 35:

H |⌅i =
Z

d3kEkN(k) |⌅i

=
lX

i=1

niEki |⌅i (37)

P |⌅i =
Z

d3kkN(k) |⌅i

=
lX

i=1

niki

|⌅i (38)

The energy and momentum of the state, the eigenvalues of the Hamiltonian
and momentum operators, are simply the sum of the energies and momenta
of all of the particles in the state.

Consider the state in equation 14, |ki. This represents a one particle state
with four-momentum kµ = (Ek,k). Clearly,

N |ki = |ki
H |ki = Ek |ki
P |ki = k |ki

(39)

In a similar way, we can apply the field operator itself to the ground state:

|�(x)i = �(x) |0i = �(�)(x) |0i (40)

The phi(+) term is zero because it involves a and not a† (equation 4). The
projection onto |�i onto |ki is hk|�(x)i. This projection is a solution to the
Klein-Gordon equation, just like � itself:

(@µ@
µ +m2) hk|�(x)i = hk|(@µ@µ +m2)�(x)|0i

= 0 hk|0i
= 0 (41)
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So hk|�(x)i has a relation to the solutions of the Klein-Gordon equation.
What is this relation? We proceed by calculating h�(x)|ki = hk|�(x)i⇤.

h�(x)|ki = h0|a(k)�(�)(x)|0i⇤

=

✓
C 0

Z
d3k0 eik

0·x h0|a(k)a†(k0)|0i
◆⇤

= C 0
Z

d3k0 e�ik0·x
✓
h0|a†(k0)a(k)|0i+ h0|[a(k), a]†(k0)|0i

◆

= C 0
Z

d3k0 e�ik0·x�3(k� k0)

= Ce�ik·x (42)

This is recognized as the plane-wave solution of the Klein-Gordon equation
in the first quantization, connecting the two quantizations. Note that the
probability of the system being in the state |ki is

|hk|�(x)i|2 = hk|�(x)i h�(x)|ki
= C2 � 0 (43)

since k0 = Ek > 0. The probability for any composite state can also be found
to be nonnegative.

3 Conclusion

Framing the Klein-Gordon equation within quantum field theory results
in the second quantization. As we have seen, the field can be described
as an infinite set of uncoupled oscillators, one for each point in space-time.
Moreover, the probabilities to be in any state and the energies of those states
are all nonnegative. In this way, the second quantization of the Klein-Gordon
avoids many of the issues that plague the first quantization.
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