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Abstract  

The flat Friedman-Robertson-Walker universe is the simplest approximation to the 

expanding nature of our Cosmos, but it fails to account for the anisotropies and 

inhomogeneities existing in it. The departing from this smoothness is important only at 

the correction level, and is therefore incorporated in the theory through first-order 

perturbations to the metric. In this paper, the general form of such perturbations, 

characterized by only four independent scalar functions, will be introduced. Then, the 

transformation relations for these functions under a change of reference frame, also 

referred to as gauge transformations, will be derived. 

 

Introduction 

The study of a universe model begins with the specification of its metric. One example is 

the expanding metric developed by Friedman, Robertson, and Walker during the 1920s 

and 1930s, which can be obtained from the Minkowski analogue through scaling of 

spatial distances by the variable parameter 𝑎(𝑡), as illustrated by Fig. 1 below, taken 

from [1] Scott Dodelson’s Modern Cosmology (2003), page 26.  Clearly, the flatness 

property is inherited in this way by the new metric -as can be shown by a straightforward 

application of Einstein’s applications to find the associated energy-stress tensor.  

 

 

 

Fig.  1. Matrix representation of the FRW metric. From Dodelson [1]. 
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Of course, the Universe that we inhabit today is far from smooth (at least up to the 

galactic scale), as illustrated by the extensions of nearly void space that separate planets, 

stellar systems, and so on, or by the fluctuations of the CMB radiation (even though, at 

larger scales, the relative irregularities become smaller and smaller). Following linear 

perturbation theory, our objective then is to introduce small scalar perturbations (from 

now on, simply “perturbations”) that account for the aforementioned irregularities in 

the cosmic distribution of energy. This approach is depicted by [2] Fig. 2 below (Kurki-

Suonio. 2020), and it is mathematically well-defined by [3]; for a Robertson-Walker 

universe, solutions of the linearized field equations may be interpreted as linearizations 

of corresponding solutions for the nonlinear equations.  

 I will show first that four independent and arbitrary functions suffice to describe all 

possible perturbations in a general way. Being scalar quantities, these are not affected 

by coordinate transformations; but the metric tensor is. To retain the same four-

perturbation structure of the metric, we have to adjust for this change through an 

appropriate redefinition of all four scalar functions. 

 

Fig.  2. Comparison between the flat and the perturbed spacetimes. From Kurki-Suonio [2]. 

In short, fixing a specific reference frame determines the value of the scalar functions 

and corresponds to a choice of gauge. Since different areas of Cosmology have distinct 

preferred gauges (because of the relative simplicity of resultant equations or complexity 

of related numeral calculations), these coordinate transformations become extremely 

useful tools as bridges between unequal gauges.  
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General form of first-order perturbations 

We begin our derivation with the addition to the FRW metric of generic perturbations, 

but only those that are independent, i.e., which number cannot be reduced through the 

redefinition of a product or sum of more than one perturbations into a single one. For 

example, if 𝐶 and 𝐷 are scalar functions, their product 𝐶𝐷 can be combined into another 

generic function 𝑁 ≡ 𝐶𝐷, so 𝐶 and 𝐷 are not independent from this most efficient point 

of view. We will show that this consideration greatly limits the number of ways in which 

such quantities might enter the metric above. To do that, we follow the work of [4] 

Mukhanov, Feldman, and Brandenberger (1991), pp. 210-212. 

For a start, the extension of the purely time component, 𝑔00 =  −1, to general first-

order perturbations requires the introduction of a single function 𝐴 . Then, our 

expression becomes 𝑔00 =  −(1 + 2𝐴). The correction term is 𝛿𝑔00 =  −2𝐴, with the 

negative sign and factor of 2 being merely notational convention. Note that 𝐴 =

𝐴(𝑥0, 𝑥̅) is a function of time and space, so it shifts (slightly) the value of 𝑔00 possibly by 

a different amount at each point. The same applies to the remaining three functions, to 

be defined next, and their corresponding metric components.  

In the exact same way, each of the terms 𝑔0𝑖 = 0  (and 𝑔𝑖0, by symmetry of the metric 

tensor) can be most generally perturbed using one function. However, we note that 

these three terms can be expressed as the three covariant derivatives of a single scalar 

function 𝐵, which therefore suffices to accommodate all perturbations relevant to the 

spatial-time components 𝑔0𝑖  (and 𝑔𝑖0). These covariant derivatives, denoted by 𝐵|𝑖, are 

taken along the 𝑖’th coordinate and over the hypersurface obtained by fixing a constant 

time with respect to the underlying FRW metric; they can also be interpreted as Lie 

derivatives, but in our case (derivative taken over flat background space, here FRW) they 

simplify into ordinary partial derivatives.  The corresponding components are 

accordingly updated by 𝛿𝑔0𝑖 =  −𝐵|𝑖 to 𝑔0𝑖 =  0 + 𝛿𝑔0𝑖 =  −𝐵|𝑖 .  

Having worked out in detail the first two cases above, we can directly identify the 

corresponding operations to be performed on the components of the type 𝑔𝑖𝑗. Simply 
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observe that scalar quantities might be added in two independent ways: by multiplying 

the non-zero diagonal components, as in 𝑔00 with 𝐴, or by adding the partial derivatives 

of a scalar function, as in 𝑔0𝑖  with 𝐵. In this case, however, the derivatives will have to 

be of second order in order to accommodate the nine different components required for 

the nine 𝑔𝑖𝑗  definitions. Generality requires us to take both of these extensions into 

account, and we accordingly define the functions ψ , to be multiplied, and 𝐸 , to be 

differentiated, which enter the metric as follows:  𝑔𝑖𝑗 = 𝑎2(𝛿𝑖𝑗[1 + ψ] − 2𝐸|𝑖𝑗). The rest 

of the paper deals with the resulting metric, summarized compactly by Eq. [1] below: 

𝑔00 =  −(1 + 2𝐴) 

𝑔0𝑖 =  −𝑎𝐵|𝑖                                                    

𝑔𝑖𝑗 = 𝑎2(𝛿𝑖𝑗[1 + ψ] − 2𝐸|𝑖𝑗) 

 

Gauge transformations 

In this section, we are interested in studying how the functions A, B, ψ, E just introduced 

must be adapted to accommodate the transformation of the metric under an arbitrary 

change of reference frame. Following chapter 5.5 of Dodelson [1], we consider an 

infinitesimal change of reference frame, which can be immediately exponentiated to 

generate the non-infinitesimal case. We observe that the most general expression of this 

type can be written in terms of the derivatives of a four-dimensional function Ɛ, taken 

to be of the same order of magnitude as the scalar functions in the metric: 

𝑥𝜇 → 𝑥̃𝜇 = 𝑥𝜇 + Ɛ|𝜇(𝑥0, 𝑥̅)  

We can easily differentiate these equations to find how the transformed coordinates 

depend on the base coordinates:  

𝜕𝑥̃𝜇

𝜕𝑥𝜈
= 𝛿𝜇

𝜈 + Ɛ|𝜇𝑣 
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At this point, we need a relation between the original and the transformed metric 

tensors, 𝑔𝛼𝛽  and 𝑔̃𝛼𝛽 , which we can find by remembering that the space-time distance 

given by the metric is an invariant quantity. In this way we get the equality:  

𝑔𝛼𝛽(𝑥̃)𝑑𝑥̃𝛼𝑑𝑥̃𝛽 =  𝑔𝜇𝜈(𝑥)𝑑𝑥𝜇𝑑𝑥𝜈                    

Now, we can replace the differential elements of the transformed coordinates on the 

left-hand side, by means of the chain rule together with an application of Eq. [2]: 

𝑔𝜇𝜈(𝑥)𝑑𝑥𝜇𝑑𝑥𝜈 =  𝑔𝛼𝛽(𝑥̃) (
𝜕𝑥̃𝛼

𝜕𝑥𝜇 𝑑𝑥𝜇) (
𝜕𝑥̃𝛽

𝜕𝑥𝑣 𝑑𝑥𝑣) 

=  𝑔𝛼𝛽(𝑥̃) [(𝛿𝛼
𝜇 + Ɛ|𝛼𝜇)𝑑𝑥𝜇  ][(𝛿𝛽

𝑣 + Ɛ|𝛽𝑣)𝑑𝑥𝑣  ]  

→     𝑔𝜇𝜈(𝑥) =  𝑔𝛼𝛽(𝑥̃) (𝛿𝛼
𝜇 + Ɛ|𝛼𝜇)(𝛿𝛽

𝑣 + Ɛ|𝛽𝑣)        

Distributing all the terms and then neglecting the last one for being of second order: 

𝑔𝜇𝜈(𝑥) =  𝑔𝜇𝜈(𝑥̃) + 𝑔𝜇𝛽(𝑥̃) Ɛ|𝛽𝑣 +  𝑔𝛼𝜈(𝑥̃) Ɛ|𝛼𝜇 + 𝑔𝛼𝛽(𝑥̃) Ɛ|𝛼𝜇 Ɛ|𝛽𝑣 

= 𝑔𝜇𝜈(𝑥̃) + 𝑔𝜇𝛽(𝑥̃) Ɛ|𝛽𝑣 +  𝑔𝛼𝜈(𝑥̃) Ɛ|𝛼𝜇       

The above formula relates in a simple way 𝑔𝜇𝜈(𝑥) and 𝑔̃𝜇𝜈(𝑥̃). However, note that the 

argument of these two tensors are different. In order to compare the tensors, we want 

to express them as functions of a common set of coordinates, say 𝑥. With this in mind, 

we use a Fourier expansion on 𝑔̃𝜇𝜈(𝑥̃) around 𝑥 and retain only the first two terms (the 

rest have order greater than one): 

𝑔𝜇𝜈(𝑥̃) =  𝑔𝜇𝜈(𝑥) +   
𝜕𝑔𝜇𝜈

𝜕𝑥𝛾
(𝑥̃𝛾 − 𝑥𝛾)  

=  𝑔𝜇𝜈(𝑥) + Ɛ|𝛾

𝜕𝑔𝜇𝜈

𝜕𝑥𝛾   

Substituting this back into Eq. [6], we get the final transformation law to be evaluated: 

𝑔𝜇𝜈(𝑥) =  𝑔𝜇𝜈(𝑥) + 𝑔𝜇𝛽(𝑥̃) Ɛ|𝛽𝑣 +  𝑔𝛼𝜈(𝑥̃) Ɛ|𝛼𝜇 +  Ɛ|𝛾

𝜕𝑔𝜇𝜈

𝜕𝑥𝛾  



  

6  

  

Recall that the definitions of our functions A, B, ψ, and E are incorporated in the above 

expression through the term 𝑔𝜇𝜈, as shown in Eq. [1]. Similarly, we want to express the 

transformed metric 𝑔̃𝜇𝜈  in the exact same form by using adequate redefinitions of the 

scalar functions: Ã , B̃ , ψ̃ , and Ẽ . The different components of Eq. [8] can then be 

evaluated explicitly to relate the new scalars to the original ones, and this will be the 

topic of the remaining of the paper.  

 

Transformation of A 

For this first computation, we must focus on the  00  component of Eq. [8], so that 𝐴 

appears.  The left-hand side of this equality becomes – (1 + 2𝐴). On the right-hand side, 

the first term is given, accordingly, by −(1 + 2𝐴̃). The second one is:  𝑔̃0𝛽(𝑥̃) Ɛ|𝛽0 =

−(1 + 2𝐴̃)(Ɛ|00 ) − 𝑎𝐵|𝑖 Ɛ|𝑖0  = −Ɛ|00, where we ignore higher-order terms in the last 

step; moving forward, I will do this without further comment. The two remaining terms, 

from left to right, are given by 𝑔̃𝛼0(𝑥̃) Ɛ|𝛼0 = −(1 + 2𝐴̃)(Ɛ|00 ) − 𝑎𝐵|𝑖 Ɛ|0𝑖 =  −Ɛ|00 

and Ɛ|𝛾
𝜕𝑔̃00

𝜕𝑥𝛾 =  −Ɛ|𝛾
𝜕(1+2𝐴̃)

𝜕𝑥𝛾 =  −Ɛ|𝛾
𝜕(2𝐴̃)

𝜕𝑥𝛾 =  0 . The final transformation relation 

follows:    

– (1 + 2𝐴) =  −(1 + 2𝐴̃) − Ɛ|00 − Ɛ|00  

𝐴 →  𝐴̃ = 𝐴 − Ɛ|00 

 

Transformation of 𝐵 

We now consider the  0i equation, whose left hand side is simply 𝑔0𝑖 =  −𝑎𝐵|𝑖.  Evaluate 

the other side: 

𝑔0𝑖(𝑥) + 𝑔0𝛽(𝑥̃) Ɛ|𝛽𝑖 +  𝑔𝛼𝑖(𝑥̃) Ɛ|𝛼0 +  Ɛ|𝛾

𝜕𝑔0𝑖

𝜕𝑥𝛾
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= −𝑎B̃|𝑖 − [(1 + 2𝐴̃)Ɛ|0𝑖 + 𝑎B̃|𝑗  Ɛ|𝑗𝑖] 

−[𝑎B̃|𝑖 Ɛ|00 − 𝑎2(𝛿𝑗𝑖[1 + ψ] − 2𝐸|𝑗𝑖)Ɛ|𝑗0 ] +  Ɛ|𝛾

𝜕(− 𝑎B̃|𝑗)

𝜕𝑥𝛾
 

=  −𝑎B̃|𝑖 −  Ɛ|0𝑖 + 𝑎2Ɛ|𝑖0 

First, note that Ɛ is a smooth function, so that  Ɛ|𝑖0 =  Ɛ|0𝑖, and make this substitution. 

Then, equate the resulting expression to 𝑔0𝑖 =  −𝑎𝐵|𝑖, and integrate both sides over the 

𝑖′th coordinate. It is very important to notice that, in this case, knowledge of the three 

spatial derivatives of 𝐵 (given by the three independent equations contained in the 

general expression above) is enough to characterize the transformation. The reason is 

that, by definition, only the derivatives of 𝐵  are physically meaningful, so that the 

constant of integration is irrelevant and can be taken to be zero. A bit of simplification 

then leads to the following result: 

𝐵 →  𝐵̃ = 𝐵 + Ɛ|0 [𝑎 −  
1

𝑎
 ] 

Transformation of 𝐸 

There are two kinds of metric elements involving the spatial partial derivatives of the 

function 𝐸: the spatial diagonal entries and the spatial off-diagonal ones. For now, we 

can avoid the apparent coupling with the function ψ (which we relegate to the last 

section) by choosing the off-diagonal components ( 𝑖 ≠ 𝑗 ), that are worked out as 

follows: 

−2𝑎2𝐸|𝑖𝑗 =  𝑔𝑖𝑗(𝑥) + 𝑔𝑖𝛽(𝑥̃) Ɛ|𝛽𝑗 +  𝑔𝛼𝑗(𝑥̃) Ɛ|𝛼𝑖 +  Ɛ|𝛾

𝜕𝑔𝑖𝑗

𝜕𝑥𝛾
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=  −2𝑎2𝐸̃|𝑖𝑗 − [𝑎B̃|𝑖 Ɛ|0𝑗 − 𝑎2(𝛿𝑖𝑘[1 + ψ̃] − 2𝐸̃|𝑖𝑘)Ɛ|𝑘𝑗]

−  [𝑎B̃|𝑗 Ɛ|0𝑖 − 𝑎2(𝛿𝑘𝑗[1 + ψ̃] − 2𝐸̃|𝑘𝑗)Ɛ|𝑘𝑖]

+ Ɛ|𝛾

𝜕

𝜕𝑥𝛾
[𝑎2(𝛿𝑖𝑗[1 + ψ̃] − 2𝐸̃|𝑖𝑗) ] 

= −2𝑎2𝐸̃|𝑖𝑗 − 2𝑎2Ɛ|𝑖𝑗 

where we have again used the fact that Ɛ|𝑖𝑗 =  Ɛ|𝑗𝑖  to combine the two terms 

proportional to these factors. Consequently, we can integrate directly (sanity check: we 

have here 3x3 = 9 equations for the same number of second-order derivatives) to see 

that the scalar function 𝐸 must be redefined as:  

𝐸 →  𝐸̃ = 𝐸 + Ɛ  

Transformation of ψ 

At this point, we have but one choice left: we have already studied all the components 

except those diagonal and spatial.  

𝑎2([1 + ψ] − 2𝐸|𝑖𝑖) =   𝑔𝑖𝑖(𝑥) + 𝑔𝑖𝛽(𝑥̃) Ɛ|𝛽𝑖 +  𝑔𝛼𝑖(𝑥̃) Ɛ|𝛼𝑖 +  Ɛ|𝛾

𝜕𝑔𝑖𝑖

𝜕𝑥𝛾
 

= 𝑎2(1 + ψ̃ − 2𝐸̃|𝑖𝑖) − [𝑎B̃|𝑖  Ɛ|0𝑖 − 𝑎2(𝛿𝑖𝑗[1 + ψ̃] − 2𝐸̃|𝑖𝑗)Ɛ|𝑗𝑖]

−  [𝑎B̃|𝑖 Ɛ|0𝑖 − 𝑎2(𝛿𝑗𝑖[1 + ψ̃] − 2𝐸̃|𝑗𝑖)Ɛ|𝑗𝑖]   

+ Ɛ|𝛾

𝜕

𝜕𝑥𝛾
(𝑎2[1 + ψ̃ − 2𝐸̃|𝑖𝑗]) 

=  𝑎2(1 + ψ̃ − 2𝐸̃|𝑖𝑗) + 2𝑎2Ɛ|𝑖𝑖 + Ɛ|0(2𝑎
𝜕𝑎

𝜕𝑥0
) 

The term 2𝑎2𝐸|𝑖𝑖  on the left-hand side together and 2𝑎2Ɛ|𝑖𝑖  on the right-hand side 

cancel out with −2𝑎2𝐸̃|𝑖𝑗  if we apply Eq. [13] to the latter. Finally, we let 𝐻 ≡
1

𝑎
 
𝜕𝑎(𝑥0)

𝜕𝑥0  
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denote the Hubble expansion constant, and use it in the presentation of the last gauge 

transformation: 

ψ →  ψ̃ = ψ − 𝐻 Ɛ|0 

 

Conclusion and final remarks 

This last section emphasizes the physical interpretation of the results obtained above. 

Besides, a glimpse of the general picture of linear perturbation and gauge theory will be 

provided. To begin with, we collect the laws derived in the last half of the paper to 

present them in a more compact form:  

𝐴 →  𝐴̃ = 𝐴 − Ɛ|00 

𝐵 →  𝐵̃ = 𝐵 + Ɛ|0 [𝑎 −  
1

𝑎
 ] 

𝐸 →  𝐸̃ = 𝐸 + Ɛ 

ψ →  ψ̃ = ψ − 𝐻 Ɛ|0 

The analysis of these equations begins with the importance contributions of Ɛ and its 

derivatives. Indeed, Ɛ  depends on the specific coordinate transformation, so it is 

straightforward to go from any current frame of reference to a different one that 

simplifies one or more of the gauge functions above. The clearest example is given by 

the 𝐸 function: if it is different than zero, we may switch to another frame through a 

transformation characterized by Ɛ =  −𝐸, so that  𝐸̃ = 0 in the new system. But only the 

spatial derivatives of Ɛ are relevant in this case (for the third of the equations), because 

𝐸  itself is determined by 𝐸|𝑖𝑗 . Hence, the time derivative Ɛ|0  represents another 

independent degree of freedom that we can adjust to simplify the gauge. It is clear then 

that only 4 − 2 = 2 independent gauge choices exist: the four coming from 𝐴, 𝐵, 𝐸, and 
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ψ; the two, from Ɛ, Ɛ|0. In fact, it is possible to combine directly our four functions in 

order to construct pairs of gauge-independent values − see [4] Bardeen (1980). 

Next, let’s consider the reason why we could ignore vector and tensor perturbations in 

this paper, and still get sensible laws for their scalar counterparts. In short, the 

decomposition theorem states that these three different categories of perturbations 

evolve independently of each other, so that the results found would have been in no way 

affected had we added, for instance, a tensor perturbation to the metric in Eq. [1]. 

Finally, address the essential question about these equations. How do the scalar 

functions represent anisotropies and inhomogeneities, exactly? A quick glance to Eq. [1] 

provides the answer: they are present in different components of the metric, which 

therefore, for most combinations of values for the scalar functions will have different 

expressions in different directions. Consequently, distances will be contracted or 

expanded in a non-uniform way. In turn, this means that there exist irregularities in the 

underlying energy distribution, which curves space-time (giving rise to the metric) in the 

first place. In other words, our scalar functions are the mathematical representation of 

physical perturbations, such as the irregularities in the CMB radiation visible in Fig. 3. 

 

 

 

 

Fig.  3. CMB anisotropies measured by NASA’s COBE. From [5]. 
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