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In the early universe, particle interactions would occur at high rates,
which kept most particle pairs in constant equilibrium. As the universe
cooled there were several points where reaction rates dropped low enough
for equilibrium to be broken. These points are of significant interest to
cosmologists. We begin with an exploration of the Boltzmann equation,
and follow by investigating three cases of interest: Big bang nucleosynthesis,
protons and electrons forming neutral hydrogen, and dark matter formation.

1 The Boltzmann Equation

Suppose we have a pair of particles 1 and 2, which can annihilate, producing
particles 3 and 4 (e.g. an electron and a proton forming a neutron and an
electron neutrino). The reverse process can also occur, so we can write this
reaction as 1+2↔ 3+4. The Boltzmann equation in an expanding universe
is:

a−3
d (n1a

3)

dt
=

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

∗ (2π)4δ3(p1 + p2 − p3 − p4)δ(E1 + E2 − E3 − E4)|M|2

∗ (f3f4[1± f1][1± f2]− f1f2[1± f3][1± f4])

(1)

If no reactions occur, the right-hand side of this equation is constant,
meaning that number density falls off as a−3 as the universe expands. We
now examine the right-hand side from the bottom line up. The last line,
if we ignore the 1 ± f terms for now, this line indicates that the rate of
generation for species 1 is proportional to f3and f4, the occupation numbers
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for species 3 and 4. The 1 ± f terms, where plus is used for Bosons and
minus for Fermions, account for Bose enhancement and Pauli exclusion. It
should be noted that the occupation numbers fi are in fact dependent on the
respective momenta pi. On the second line the Dirac δ’s enforce energy and
momentum conservation, and the factors of 2π drop out of turning Kronecker
δ’s into Dirac δ’s. M is a constant dependent on the specifics of the reaction.
Typically it has the same value for 1 + 2→ 3 + 4 and 3 + 4→ 1 + 2. The top
line integrates over all momenta. The factors of (2π)3 are actually (2πh̄)3,
and represent one unit of volume in phase space. The 2E terms come from the
fact the integrals should be done over all four components of the momentum
4-vector, but are constrained on the sphere E2 = p2 +m2.

The full Boltzmann equation, as given in Eq. 1, is certainly very compli-
cated, but we can simplify it somewhat via certain approximations. Scatter-
ing processes will follow kinetic equilibrium, meaning the distributions will
be either Bose-Einstein or Fermi-Dirac. This allows us to put all our po-
tentials into a single variable µ. For reactions in equilibrium, µ is simply
the chemical potential. For reactions not in chemical equilibrium, µ is the
solution to an ordinary differential equation.

In the systems which we will be examining, we typically have T < E−µ,
so the exponential terms in the Bose-Einstein and Fermi-Dirac distributions
dominate the ±1. This means both distributions can be approximated as:

f(E) ≈ eµ/T e−E/T (2)

We can also drop the [1± f ] terms in the last line of Eq. 1, so instead we
can write:

(f3f4[1± f1][1± f2]− f1f2[1± f3][1± f4])
≈ e−(E1+E2)/T

(
e(µ3+µ4)/T − e(µ1+µ2)/T

) (3)

Where energy conservation, i.e. E1 +E2 = E3 +E4 is assumed. In place
of µ we use number density, which is related to µ by:

ni = gie
µi/T

∫
d3p

(2π)3
e−Ei/T (4)

Where gi is the species degeneracy. We also define equilibrium number
density as:
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n
(0)
i ≡

∫
d3p

(2π)3
e−Ei/T (5)

Which allows us to rewrite the last line of Eq. 1 again as:

〈σν〉 ≡ 1

n
(0)
1 n

(0)
2

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

e−(E1+E2)/T

∗ (2π)4δ3(p1 + p2 − p3 − p4)δ(E1 + E2 − E3 − E4)|M|2
(6)

So the Boltzmann equation further reduces to:

a−3
d (n1a

3)

dt
= n

(0)
1 n

(0)
2 〈σν〉

(
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

)
(7)

Lastly for this section we introduce a useful concept. When reaction rates
are high, we have

n1n2

n
(0)
1 n

(0)
2

=
n3n4

n
(0)
3 n

(0)
4

(8)

This relation is called by a number of names, such as chemical equilibrium,
nuclear statistical equilibrium, or the Saha equation.

2 Big Bang Nucleosynthesis

When the universe’s temperature was roughly 1MeV, the cosmic plasma was
composed of:

• Relativistic particles in equilibrium (photons, electrons, and positrons):
These are kept in equilibrium by EM interactions, and have mostly the
same abundances.

• Decoupled relativistic particles (neutrinos): Neutrinos are uncoupled
from the cosmic plasma at this time, but keep roughly the same energy.
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• Nonrelativistic particles (baryons): Due to the initial baryon/anti-
baryon asymmetry, all anti-baryons have by this point annihilated,
leaving a baryon abundance of:

ηb =
nb
nγ

= 5.5× 10−10
(

Ωbh
2

.02

)
(9)

As energy drops nuclear reactions do not occur fast enough to keep the par-
ticles in equilibrium. To avoid having to solve the Boltzmann equation for
all possible nuclei, we can make a few simplifications. Firstly that Hydrogen
and Helium are the only elements produced in considerable amounts, and
secondly that above .1 MeV no nuclei form at all, allowing us to solve for
neutron/proton ratio and use that as a starting point. Both these simplifica-
tions follow from the fact the photon:baryon ratio is very high, so all nuclei
that form are split apart by a photon not long after.

2.1 Neutron Abundance

Protons can be converted to neutrons (and vise-verse) via weak interactions
such as p + e− ↔ n + νe. These reactions keep neutrons and protons in
equilibrium until T 1 MeV. Afterward we have:

n
(0)
p

n
(0)
n

=
emp/T

∫
dpp2e−p

2/2mpT

emn/T
∫
dpp2e−p2/2mnT

(10)

The integrals are proportional to (mp/mn)3/2, which is approximately 1,
so we can discard this term. We define Q = mp −mn, so

n
(0)
p

n
(0)
n

= eQ/T (11)

This means that the ratio gets larger as temperature drops. We define

Xn ≡
nn

nn + np
(12)

So Xn is the ratio of neutrons to total baryons. We define equilibrium
ratio:

Xn,EQ ≡
1

1 +
(
n
(0)
p /n

(0)
n

) (13)
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So we can fill out the Boltzmann equation where 1 is neutron, 3 is proton,
and 2 and 4 are leptons in equilibrium:

a−3
d (nna

3)

dt
= n

(0)
l 〈σν〉

[
npn

(0)
n

n
(0)
p

− nn

]
(14)

We make the identification n
(0)
l 〈σν〉 = λnp, and make the substitution

nn = (nn + np)Xn to rewrite this as:

dXn

dt
= λnp

[
(1−Xn)eQ/T −Xn

]
(15)

We further define x ≡ Q/T , so the left-hand side becomes (dXn/dx)(dx/dt).
Because T ∝ a−1, we have

1

T

dT

dt
= −H = −

√
8πGρ

3
(16)

As nucleosynthesis occurs in the radiation era, ρ comes largely from rel-
ativistic particles, so

ρ =
π2

30
T 4g∗ (17)

Where g∗ is effective relativistic degrees of freedom, which is dependent
on temperature. For the period of interest g∗ ≈ 10.75. We can then rewrite
the Boltzmann equation again, this time as

dXn

dx
=

xλnp
H(x = 1)

[
e−x −Xn

(
1 + e−x

)]
(18)

where

H(x = 1) =

√
10.75

4π3GQ4

45
= 1.13s−1 (19)

We also need an approximation for the conversion rate λnp. Under our
approximations we have:

λnp =
255

τnx5
(
12 + 6x+ x2

)
(20)

Where τn = 886.7s is neutron lifetime. When T = Q, x = 1, the conversion
rate will be 5.5 s−1, above the expansion rate. As T drops x increases, so λnp

5



drops as x5, rapidly falling below the expansion rate. Below .1 MeV neutron
decay (n→ p+ e− + ν̄) and deuterium production (n+ p→ D + γ) become
significant. Taking these into account we have that the neutron fraction when
nucleosynthesis begins is:

Xn(Tnuc) = 0.11 (21)

2.1.1 Light Elements

We can approximate light element production as occuring instantly at T =
Tnuc. Consider deuterium for example. If the universe were always in equi-
librium, all baryons would eventually form deuterium. So we have:

ln (ηb) +
3

2
ln

(
Tnuc
mp

)
∼ − BD

Tnuc
(22)

Which suggests that deuterium production occurs at T ≈ .07MeV , and
depends weakly on ln(ηb). Since helium has greater binding energy than
deuterium, it is favored and almost all remaining neutrons become 4He. As
each helium has two neutrons, this gives us:

X4 ≡
4n4He

nb
= 2Xn(Tnuc) (23)

3 Recombination

At ∼ 1 eV, photons, electrons and, protons remain tightly coupled, so at this
point in time there is very little neutral hydrogen. Any that does form is
quickly ionized by the high number of photons. While the reaction e−+ p↔
H + γ is in equilibrium, we have the relation:

nenp
nH

=
n
(0)
e n

(0)
p

n
(0)
H

(24)

Since the universe is neutrally charged, we also have ne = np, so we can
define electron fraction as:

Xe ≡
ne
nenH

=
np
npnH

(25)

Evaluating the integrals hidden in Eq. 24, we get
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X2
e

1−Xe

=
1

ne + nH

[(
meT

2π

)3/2

e−[me+mp−mH ]/T

]
(26)

Where we neglect the mass difference between H and mp in the non-
exponential terms. The term in the exponential is ε0/T (Where ε0 is hydrogen
binding energy, not free space permeability). Since helium is only produced
in small amounts, we can approximate the total nuclei density np + nH by
total baryon density, ηbnγ ∼ 10−9T 3. When T is on the order of ε0, the right-
hand side is of order 1015, which requires Xe to be approximately 1, meaning
almost all hydrogen is ionized. As T falls the fraction of neutral hydrogen
rises, but does so out of equilibrium, so we must solve the Boltzmann equation
for the electron density:

a−3
d(nea

3)

dt
= n(0)

e n(0)
p 〈σν〉

[
nH

n
(0)
H

− n2
e

n
(0)
e n

(0)
p

]

= nb〈σν〉

[
(1−Xe)

(
meT

2π

)3/2

e−ε0/T −X2
enb

] (27)

We can define the ionization rate β and recombination rate α(2) by:

β ≡ 〈σν〉
(
meT

2π

)3/2

e−ε0/T (28)

α(2) ≡ 〈σν〉 (29)

Where the superscripted (2) reflects the fact that any ionization to the
ground state will produce a photon that will ionize another atom, leading to
no net change in Xe. With these identifications we can rewrite Eq. 27 as:

dXe

dt
=
[
(1−Xe)β −X2

enbα
(2)
]

(30)

We can obtain the time evolution of Xe in detail via numerical integration
of this equation. Free electron abundance is highly relevant to observational
cosmology, because it affects the anisotropies is backgroud radiation observ-
able today through rates of decoupling. Decoupling occurs when Compton
scattering begins to happen at a lower rate than the expansion rate. The
scattering rate is given by
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neσT = XenbσT (31)

Where σT is the Thompson cross-section. The ratio of the baryon density
nb to the critical density ρcr is given by mpnb/ρcr = Ωba

−3, so we can put nb
in terms of Ωb:

neσT = 7.477× 10−30cm−1XeΩbh
2a−3 (32)

So if we divide by the expansion rate we get:

neσT
H

= .0692a−3XeΩbh
H0

H
(33)

At early times the main contribution to the Hubble rate is either matter
or radiation, so H/H0 = (Ωm)1/2a−3/2[1 + aeq/a]1/2, so our final equation is:

neσT
H

= 113Xe

(
Ωbh

2

.02

)(
.15

Ωmh2

)1/2(
1 + z

1000

)3/2 [
1 +

1 + z

3600

.15

Ωmh2

]−1/2
(34)

Photons decouple when Xe drops below 10−2, so this occurs during re-
combination.

4 Dark Matter

Observational evidence suggests the existence of non-baryonic dark mat-
ter with Ωdm ≈ .3. The most popular candidate is some sort of weakly-
interacting massive particle, or WIMP. According to the theory, WIMPs
interacted with the cosmic plasma in the early universe, but failed to keep
in equilibrium as temperature dropped. Our goal will be to solve the Boltz-
mann equation for such a particle, to find what mass and cross-section will
produce Ωdm = .3.

The generic WIMP model goes as follows: Consider the interaction be-
tween two heavy particles X, which annihilate and produce two nearly mass-
less particles l. The l ’s remain coupled to the plasma, which keeps them in
equilibrium, nl = n

(0)
l . We can then use the Boltzmann equation to solve for

the abundance of particle X, nX :

a−3
d(nXa

3)

dt
= 〈σν〉

[(
n
(0)
X

)2
− n2

X

]
(35)
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As T typically scales with a−1, we can rewrite the left-hand side as
T 3d(nX/T

3)/dt. We define a new variable

Y ≡ nX
T 3

(36)

Giving us a differential equation in terms of Y:

dY

dt
= T 3〈σν〉[Y 2

EQ − Y 2] (37)

Where YEQ ≡ n
(0)
X /T 3 We can reparameterize in terms of a variable x ≡

m/T , where m is the mass of X. We use the Jacobian dx/dt = Hx to make
this change. Dark matter is produced mostly in the radiation era, when
energy density scales with T 4, so H = H(m)/x2, so our equation becomes:

dY

dx
= − λ

x2
(
Y 2 − Y 2

EQ

)
(38)

Where λ is defined as:

λ ≡ m3〈σν〉
H(m)

(39)

Many theories hold λ to be constant, though in some it has temperature
dependence. The following calculations assume the former case.

The differential equation we are interested in has no analytic solution
in general. However we can analytically find the final abundance after the
freeze-out. We define Y∞ ≡ Y (x = ∞). For x ∼ 1, the left-hand side of
Eq. 37 is of order Y, while the right-hand side is of order λY 2, which as λ is
typically large forces YEQ ≈ Y . After the freeze-out YEQ drops quickly, as X
falls out of equilibrium. So for late times we can approximate Eq. 37 as

dY

dx
≈ −λY

2

x2

Which we can integrate analytically from the freeze-out time xf to x =∞,
which gives us:

1

Y∞
− 1

Yf
=

λ

xf
(40)

As Yf is typically far greater than Y∞, we can approximate this as
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1

Y∞
≈ λ

xf
(41)

The freeze-out time xf is typically thought to be of order 10, a good
enough approximation for our purposes.

After the freeze-out, density of X falls off as a−3, so its energy density
is m(a1/a0)

3, where a1 is a time sufficiently late such that Y = Y∞. The
number density is then Y∞T

3
1 (by definition of Y), so we have

ρX = mY∞T
3
0

(
a1T1
a0T0

)3

≈ mY∞T
3
0

30
(42)

Finally to obtain ΩX we simply divide our expression for Y∞ by ρcr:

ΩX =
xf
λ

mT 3
0

30ρcr

=
H(m)xfT

3
0

30m2〈σν〉ρcr

=

[
4π3Gg∗(m)

45

]1/2
xfT

3
0

30〈σν〉ρcr

(43)

Note that ΩX has no explicit m-dependence, so we only need to solve for
cross-section. In the eras of interest, g∗ takes contributions from all standard
model particles, and is thus of order 100. Normalizing g∗ and xf we get

ΩX = .3h−2
(xf

10

)(g∗(m)

100

)1/2
10−39cm2

〈σν〉
(44)

Which suggests a cross section of order 10−39, which is predicted by several
theories.
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