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Abstract

In this paper, we construct the irreducible representations of the Lie Algebra SO(3) as a
powerful example to be able to deal with more complex algebras. We introduce the ladder
operators and address how to multiply two irreducible representations of SO(3) together
through the Clebsh-Gordan decomposition.

1 Representation of SO(3)

In the previous lecture, we constructed the irreducible representation of the group SO(3).
In this section, we will do so for the Lie algebra of SO(3). Although the two are different,
we will use the same notation SO(3). We found that rotations are exponentials of linear
combinations of the generators of the SO(3) group which satisfy the following commutation
relations, as seen in an earlier lecture,

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy (1)

Recall that representing an algebra means finding the generators Jx, Jy, Jz such that
equation 1 is satisfied. Note that we will done both the abstract operators and their matrix
representation by Ji where i = x, y, z
The new generators do not commute per equation 1, therefore they can no be diagonalized
simultaneously. Thus, we work in a basis where one of them is diagonal; Jz by convention.
Let J± = Jx ± iJy and let f be a test function, we have,

[Jz, J±] f = JzJ±f − J±Jzf
= Jz(Jxf ± iJyf)− (Jx ± iJy)(Jzf)

= [Jz, Jx]f ± i[Jz, Jy]f

= iJy ± i2Jx
= ±J±

(2)

Similarly, we can show that
[J+, J−] = 2Jz (3)

In what follows, we will use Dirac’s notation instead of working with matrices. Jz is an
eigenvector with eigenvalue m, we write

Jz |m〉 = m |m〉

Since Jz is hermitian, its eigenvalues are real, thus m is real. Note that since J± is not
commutative with Jz, J± is not diagonal in the basis where Jz is diagonal. Consider,
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JzJ+ |m〉 = (J+Jz + [Jz, J+]) |m〉
= (J+Jz + J+) |m〉
= (mJ+ + J+) |m〉
= (m+ 1)J+ |m〉

(4)

Where we used both equation 1 and 3. Thus, J+ |m〉 is an eigenstate of Jz with eigenvalue
m+1. Therefore, the state J+ |m〉 is equal to the state |m+ 1〉 multiplied by a normalization
constant. We can write,

J+ |m〉 = cm+1 |m+ 1〉 (5)

Similarly,

JzJ− |m〉 = (J−Jz + [Jz, J−]) |m〉
= (J−Jz + J−) |m〉
= (m− 1)J− |m〉

(6)

By the same logic, we have,

J− |m〉 = bm−1 |m− 1〉

We can think about ..., |m− 1〉 , |m〉 , |m+ 1〉 , ... as rungs of a ladder. J+ acts as a raising
operator that allows us to climb one rung of the ladder each time we use it. Similarly, J−
can be thought of as lowering operator. Thus, J± are the ladder operators.
Since Jx, Jy. Jz are hermitian operators, they are equal to their conjugate transpose, thus,

(J+)† = (Jx + iJy)†

= J†x − iJ†y
= Jx − iJy
= J−

(7)

Where † denotes the conjugate transpose. if we multiply equation 5 by 〈m+ 1|, we obtain,

〈m+ 1|J+|m〉 = cm+1 〈m+ 1|m+ 1〉 = cm+1

Taking the conjugate,

(cm+1)
? = (〈m+ 1|J+|m〉)?

= 〈m|J†+|m+ 1〉
= 〈m|J−|m+ 1〉 using (7)

= 〈m|bm|m〉
= bm 〈m|m〉
= bm

(8)
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Therefore, we proved that bm−1 = (cm)?. Thus,

J− |m〉 = bm−1 |m− 1〉 = (cm)? |m− 1〉 (9)

If we act on equation 9 by J+ we obtain,

J+J− |m〉 = (cm)?J+ |m− 1〉 =| cm |2 |m〉

. Similarly, if we act on J+ |m〉 by J−, we obtain,

J−J+ |m〉 =| cm+1 |2 |m〉

2 Ladder termination

Since the representation of SO(3) is finite dimensional, the ladder must terminate. Let
max(m) = j thus, there is a state |j〉 where J+ |j〉 = 0 that represents the top of the ladder.
This implies that

J+ |j〉 = cm+1 |m+ 1〉 = 0

Thus,

〈j|J−J+|j〉 = 〈j|J+J− − [J+, J−]|j〉
= |j〉 (J+J− |j〉 − 2Jz |j〉)
= |j〉 (| cj |2 |j〉 − 2j |j〉)
=| cj |2 −2j

= 0

(10)

Thus | cj |2= 2j. Additionally,

〈m |[J+, J−]|m〉 = 〈m |(J+J− − J−J+)|m〉 = |cm|2 − |cm+1|2 = 〈m |2Jz|m〉 = 2m (11)

Thus, we have both | cm |2=| cm+1 |2 +2m and | cj |2= 2j. These two equations allows to
determine | cm | as follows,

|cj−1|2 = |cj |2 + 2(j − 1) = 2(2j − 1)

Let m = j − 2:
|cj−2|2 = |cj−1|2 + 2(j − 2) = 2(3j − 1− 2)

In general, we can write,

|cj−s|2 = 2[(s+ 1)j −
s∑

i=1

i]

By Gauss’s law
∑s

i=1 i = 1
2s(s+ 1) so,

|cj−s|2 = 2

(
(s+ 1)j − 1

2
s(s+ 1)

)
= (s+ 1)(2j − s) (12)
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Substituting s = 2j yields |cj−s|2 = 0 thus,

J−| − j〉 = c∗−j | − j − 1〉 = 0

This implies the the min(m) = −j. s counts the number of rungs climbed down, it is there-
fore an integer. Since the ladder terminates at s = 2j, j is either an integer or half integer
depending on whether s is even or odd. Since our states are |−j〉,....,|j〉, the total number of
states is 2j + 1. To emphasize the j dependence we denote a state |n〉 by |j,m〉.

We have shown that the representation of SO(3) are 2j + 1 when j is an integer. There-
fore, the methods of tensors(previous lecture) and Lie algebra agree. What about the case
when j is a half integer?

When j = 1
2 , 2j + 1 = 2 thus we have a 2−D representation consisting of |−1

2〉,
1
2 states.

This will be solved in an upcoming lecture when discussing SU(2) especially in the context
of electron spin.

By equation 12, for s = j −m = 1, we have j − s = j − j +m = m thus,

|cm|2 = (j +m)(j + 1−m)

which implies,
J+|m〉 = cm+1|m+ 1〉 =

√
(j + 1 +m)(j −m)|m+ 1〉 (13)

Similarly,
J−|m〉 = c∗m|m− 1〉 =

√
(j + 1−m)(j +m)|m− 1〉 (14)

3 Multiplying two SO(3) representations

Using the tensor approach introduced in the previous lecture, suppose we have two SO(3)
tensors; a symmetric traceless tensor Sij and a vector T k. They furnish the 5-dimensional
and 3-dimensional irreducible representations, respectively. Thus, the product P ijk = SijT k

is a 3-indexed tensor with 15 components. Note that P ijk is not necessarily symmetric and
traceless. However since the irreducible representations of SO(3) are furnished by symmet-
ric traceless tensors, we can write P ijk as a linear combination of symmetric traceless tensors.

We can construct the symmetric tensor:

U ijk = SijT k + SjkT i + SkiT j

The trace is Uk = δijU ijk = 2SikT i. To make it traceless, we define:

Ũ ijk = SijT k + SjkT i + SkiT j

which furnishes a 7-dimensional irreducible representation.
To extract the antisymmetric part of SijT k, we contract it with the antisymmetric symbol
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V il = SijT kεjkl. The symmetric and antisymmetric parts of V il are W il = V il + V li and
Xil = V il − V l respectively.
We can write,

Xil =
1

2
Xilεmil

= SijT kεjklεmil

= SijT k
(
δjmδki − δjiδkm

)
= SimT i

=
1

2
Um

(15)

This furnishes a 3-dimensional irreducible representation.
We can see that the symmetric part is traceless by setting i = l in

W il = SijT kεjkl + SljT kεjki

This has 1
2(3.4)− 1 = 5 components. We have, therefore, showed that:

5⊗ 3 = 7⊕ 5⊕ 3 (16)

In the general case, the product of Si1···ij and T k1···kj′ is a tensor with j + j′ indices. If
we symmetrize and take out its trace as shown above, we get the irreducible representation
labeled by j + j′.

If we contract it with εikl,, we trade two indices, i and k, for one index l, which results in a
tensor with j + j′− 1 indices. We get the irreducible representation labeled by j + j′− 1. We
can keep repeating this process. If we let j ≥ j′. , without loss of generality, we have shown
that j⊗ j′ contains the irreducible representations (j + j′)⊕ (j + j′ − 1)⊕ (j + j′ − 2)⊕· · ·⊕
(j − j′ + 1)⊕ (j − j′) . Using the absolute value, we can write:

j ⊗ j′ =
(
j + j′

)
⊕
(
j + j′ − 1

)
⊕
(
j + j′ − 2

)
⊕ · · · ⊕

(∣∣j − j′∣∣+ 1
)
⊕
∣∣j − j′∣∣ (17)

The number of components in (17) is:

j+j′∑
|j−j′|

(2k + 1) =
(
j + j′ + 1

)2 − (j − j′)2 = (2j + 1)
(
2j′ + 1

)
(18)

4 Conclusion

We have used our definition of the algebra SO(3) to construct the irreducible representations
of the Lie Algebra SO(3). We introduced the Ladder operators and proved their most impor-
tant properties. Finally, we showed how to multiply together two irreducible representations
of SO(3).

6



References

Zee, A. (2016). Group theory in a nutshell for physicists. Princeton and Oxford: Princeton
University Press.

7


