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Abstract 

In this paper, Feynman diagrams are presented as depictions of particle paths through 

spacetime. This is done in the context of the fourth-order anharmonic modification of 

the free field theory. After presenting the rules that relate a Feynman diagram to its 

corresponding mathematical term, we provide a glimpse of the importance of Green’s 

functions in this context. To conclude the paper, we prove the logarithm property of the 

generating functional, which shows a deep relation between connected and 

disconnected diagrams.  

 

Introduction 

In Quantum Field Theory, Feynman diagrams provide a visual representation of terms in 

the series expansion of probability amplitude quantities. Equivalently, they illustrate 

how particles appear and, after propagating for some distance and possibly interacting 

with other particles, disappear. We will introduce Feynman diagrams from the 

formalism of path integrals. Of course, the specific relation between the physical 

quantities appearing in the path integrals and the features characterizing the 

corresponding Feynman diagrams will be explained and explored. The work presented 

is based on chapter I.7 from Zee’s Quantum Theory in a Nutshell (2010, pp. 43-55).  
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From separated to intertwined paths 

Feynman diagrams are most easily understood through a particular example. It is 

especially convenient to consider an anharmonic modification of the free field or 

Gaussian theory. In the pure free field model, the equation of motion is linear. This 

impllies that two independent fields coinciding in space, 𝜑1  and 𝜑2, will propagate 

without affecting each other. This is, each mode of vibration behaves as if the other 

were not present at all. Now, with the purpose of studying interaction between different 

solutions of our theory –which is the mathematical requirement for our theory to 

include collisions between particles-, we add the anharmonic potential term −
𝜆

4!
𝜑4 to 

the free field Lagrangian. 

As usual, let 𝐽(x) represent the source function, which indicates the locations in 

spacetime of sources and sinks of particles, 𝜑(x) be the field, and 𝑚 be the characteristic 

mass of the particles studied –or, alternatively, the mass appearing in the free field 

Lagrangian. Then, path integral formulation of Quantum Field Theory dictates that, to 

calculate the probability amplitude 𝑍(𝐽) for a given displacement, it is enough to 

evaluate the corresponding integral: 

𝑍(𝐽) =  ∫ 𝐷𝜑 𝑒 𝑖 ∫ 𝑑4𝑥{
1

2
[(𝜕𝜑)2−𝑚2𝜑2]−

𝜆

4!
𝜑4+𝐽𝜑} [1] 

Where the 𝜆 dependence of 𝑍 is suppressed; this is, the scattering amplitude 𝜆 is fixed, 

so that 𝑍 is regarded a function only of 𝐽. 
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Integrating in series 

This section is devoted to the step-by-step computation of Eq. [1]. After all, the charm 

of the path integral formulation is that it reduces the prediction of physical outcomes to 

the evaluation of integrals, like the one at hand. Of course, this is easier said than done. 

In this case, the main trick is to express the exponential in Eq. [1] as the product of 

simpler exponential terms, which are then expanded by means of an infinite Taylor 

series. More concretely, we begin with the following manipulations: 

𝑒 𝑖 ∫ 𝑑4𝑥{
1

2
[(𝜕𝜑)2−𝑚2𝜑2]−

𝜆

4!
𝜑4+𝐽𝜑} =  𝑒 𝑖 ∫ 𝑑4𝑥{

1

2
[(𝜕𝜑)2−𝑚2𝜑2 ]+𝐽𝜑}𝑒 𝑖 ∫ 𝑑4𝑥{−

𝜆

4!
𝜑4} 

= 𝑒 𝑖 ∫ 𝑑4𝑥{
1

2
[(𝜕𝜑)2−𝑚2𝜑2]+𝐽𝜑} · [1 −

𝑖𝜆

4!
∫ 𝑑4𝑥 𝜑4 −

1

2
(

𝑖𝜆

4!
)

2

(∫ 𝑑4𝑥 𝜑4)2 + ··· ] 

After applying this expansion to the integrand of Eq. [1], we are left with the sum of 

infinitely many integrals that can be evaluated one by one: 

𝑍(𝐽) =  ∫ 𝐷𝜑 𝑒
𝑖 ∫ 𝑑4𝑥{

1

2
[(𝜕𝜑)2−𝑚2𝜑2]+𝐽𝜑}

[1 −
𝑖𝜆

4!
∫ 𝑑4𝑥 𝜑4 +

1

2
(

𝜆

4!
)

2

(∫ 𝑑4𝑥 𝜑4)2 − ··· ] [2] 

Look closely to the particular term ∫ 𝐷𝜑 𝑒 𝑖 ∫ 𝑑4𝑥{
1

2
[(𝜕𝜑)2−𝑚2𝜑2]+𝐽𝜑} · (∫ 𝑑4𝑥 𝜑4). Note it 

which can be written as (∫ 𝑑4 𝑤 [
𝛿

𝑖𝛿𝐽(𝑤)
]

4

) ∫ 𝐷𝜑 𝑒 𝑖 ∫ 𝑑4𝑥{
1

2
[(𝜕𝜑)2−𝑚2 𝜑2]+𝐽𝜑}, since each 

variational derivative with respect to 𝐽(𝑤) brings down one 𝜑 from the exponent. Then, 

Eq. [2] becomes: 

𝑍(𝐽) = [1 −
𝑖𝜆

4!
(∫ 𝑑4 𝑤 [

𝛿

𝑖𝛿𝐽(𝑤)
]

4

)

2

+
1

2
(

𝜆

4!
)

2

(∫ 𝑑4 𝑤 [
𝛿

𝑖𝛿𝐽(𝑤)
]

4

)

3

− ··· ] 

∫ 𝐷𝜑 𝑒
𝑖 ∫ 𝑑4𝑥{

1
2

[(𝜕𝜑)2−𝑚2𝜑2]+𝐽𝜑}
=  
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𝑒
𝑖𝜆
4! ∫ 𝑑4𝑤[

𝛿
𝑖𝛿𝐽(𝑤)

]
4

∫ 𝐷𝜑 𝑒 𝑖 ∫ 𝑑4𝑥{
1
2

[(𝜕𝜑)2−𝑚2𝜑2]+𝐽𝜑}  [3] 

Undoing in the last step the series expansion to recover the exponential form of the 𝜆 

term. Just like in a magic trick, the 𝜆 dependence of 𝑍 was decomposed and then rebuilt 

outside the integral. At this point, the remaining integral in Eq. [3] looks conveniently 

familiar. It can be considered a generalized case of a Gaussian integral, of the kind 

introduced step by step (from the scalar to the mattress to the continuous model) in 

Zee’s chapter I.3 (2010, pp.17-24). In fact, equation number 18 in that chapter gives its 

explicit value, which we now substitute in Eq. [3]: 

𝑍(𝐽) =  Z(0, 0)𝑒
𝑖𝜆
4! ∫ 𝑑4𝑤[

𝛿
𝑖𝛿𝐽(𝑤)

]
4

𝑒
−(

𝑖
2

) ∫ ∫ 𝑑4𝑥𝑑4𝑦 𝐽(𝑥)𝐷(𝑥−𝑦)𝐽(𝑦)
[4] 

Where the overall factor Z(0, 0) ≡  Z(J = 0, 𝜆 = 0)  is not important for our current 

purposes and 𝐷(𝑥 − 𝑦) = ∫
𝑑4𝑘

(2𝜋)4  
𝑒 𝑖𝑘(𝑥−𝑦)

𝑘2 −𝑚2+𝑖𝜀
 is the propagator function. In a general d-

dimensional spacetime, the factor 
𝑑𝑑𝑘

(2𝜋)𝑑 would replace 
𝑑4𝑘

(2𝜋)4. For the derivation of this 

result, check Zee’s chapter I.3 (2010, pp.17-24). Finding Eq. [4] was our only objective 

until now. However, the obtained result requires itself a suitable interpretation in 

physical terms, which will be the topic of the remaining of this paper. 
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Series terms as Feynman Diagrams 

We have just experienced how useful can be the correspondence between exponentials 

and their equivalent Taylor series.  In particular, from Eq. [4], 𝑍(𝐽) can be expressed as 

a double series expansion in 𝜆 and the double integral whose integrand goes as 𝐽2; for 

convenience I will use the terminology “the term goes as 𝐽𝑘” to mean, specifically, that 

said integral in that term contains the product of k different 𝐽 factors: 𝐽(𝑥1) · ··· ·  𝐽(𝑥𝑘). 

As can be checked directly, the net effect of the operator [
𝛿

𝑖𝛿𝐽(𝑤)
]

𝑘

 when it acts on a 𝐽𝑙  

integral is to reduce the number of 𝐽 factors to 𝑙 − 𝑘 (if 𝑙 ≥ 𝑘) or bringing the integral 

to zero (if 𝑙 < 𝑘). Just like in an ordinary 𝑘’th derivative with respect to 𝑥 applied to a 

term proportional to 𝑥 𝑙. Therefore, the double expansion of 𝑍(𝐽) mentioned earlier 

contains a term going as 𝜆𝑛𝐽2𝑚−4𝑛 , for all 𝑛, 𝑚 = 0, 1, 2 … such that 2𝑚 ≤ 4𝑛. To put 

it differently, we have products of a 𝜆 exponential and a 𝐽 exponential; the exponents 

of 𝜆 can be any integers greater or equal to 0, while those of 𝐽 are restricted to even 

integers also starting at 0. All combinations consistent with these restrictions are 

present in the series; take 𝜆1𝐽2or  𝜆5𝐽20 as unpretentious examples. 

Without further introduction, we are now ready to understand Feynman diagrams. They 

are, in short, pictures or schemes that conveniently represent terms in the double 

expansion of 𝑍(𝐽). However, it is important to keep in mind that, because of the direct 

connection between the quantities appearing in Eq. [4] and physical quantities, 

Feynman diagrams express in turn concrete processes, like the collision between two or 

more given particles. What’s more, the diagrams can be used to calculate the probability 

amplitude of such processes, as we will see with more detail in the next section. For 
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now, we simply present the basic rules to be followed when associating diagrams with 

terms in the expansion of 𝑍.  

For a term of the form −𝜆𝑛𝐽2𝑚−4𝑛 , the corresponding Feynman diagram: (1) is made of 

lines and vertices at which four lines meet; (2) has 𝑛 vertices; (3) has 𝑚 lines; and (4) 

presents 2𝑚 − 4𝑛 external ends. (Zee. 2010, p.45).  

Remember: the introduction to the path integral formulation showed that 𝐽(𝑥) is 

related to sources and sinks of the field 𝜑, which are simply particles that interact with 

𝜑. This insight allows us to interpret rule number (4) in physical terms: the external ends 

or lines stand for incoming or outcoming particles in the physical process studied. An 

important remark, note that here the scattering ϕ + ϕ → ϕ + ϕ is counted as a process 

involving four particles; in general, the total number of particles is the sum of the 

incoming and the outcoming ones.  Furthering the correspondence, lines reproduce of 

the trajectories of particles through spacetime, and vertices (which correspond to the 

power of 𝜆) are the expression of the collisions where more than one particle coincide. 

In particular, note how the introduction of the anharmonic factor 𝜆 led to the presence 

of particle scattering. In the pure free field theory, there are no 𝜆 and all the terms in 

𝑍(𝐽) correspond to diagrams in which particles can propagate independently, but not 

affect each other or, in other words, diagrams constituted of straight, unconnected lines. 

It is clear then why the introduction of 𝜆 was needed to make things more interesting, 

and why it is usually referred to as “the coupling constant”.  

Finally, we understand how these funny diagrams full of wiggles and crossings represent 

interactions between real (and/or not so real) particles in the universe. The next section 

will elaborate on this relation. 
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Green’s functions and collisions of particles 

For many purposes, it is convenient to express 𝑍(𝐽) as a power series in 𝐽. This is done 

directly by expanding Eq. [4] in the double series form, applying the variational 

derivatives to the 𝐽-depending terms, and rearranging the resulting terms in groups by 

common power of 𝐽. In this way, Eq. [4] becomes: 

𝑍(𝐽) =  Z(0, 0) ∑
𝑖𝑠

𝑠!
∫ 𝑑𝑥1 · ··· ·  𝑑𝑥𝑠 𝐽(𝑥1) · ··· 

∞

𝑠=0

·  𝐽(𝑥𝑠) ∫ 𝐷𝜑 𝑒
𝑖 ∫ 𝑑4𝑥{

1
2

[(𝜕𝜑)2−𝑚2𝜑2]−
𝜆
4!

𝜑4}
𝜑(𝑥1) ··· 𝜑(𝑥𝑠)

≡  Z(0, 0) ∑
𝑖 𝑠

𝑠!
∫ 𝑑𝑥1 · ··· ·  𝑑𝑥𝑠𝐽(𝑥1) · ··· ·  𝐽(𝑥𝑠) 𝐺(𝑠)(𝑥1,···, 𝑥𝑠)

∞

𝑠=0

 [5] 

Note that the above can be interpreted as a rearrangement of the Feynman diagrams in 

order of increasing number of external ends, because this number is proportional to the 

power of 𝐽. The function 𝐺(𝑠) just defined is called the 𝑠-point Green’s function. It follows 

from the rules in the last section that 𝐺(𝑠) is closely related to diagrams including a total 

of 𝑠 external ends. Consider again the connection between 𝐽(𝑥) and physical particles, 

and note how the integral of the 𝑠’th term in the series above contains 𝑠 different 𝐽(𝑥) 

terms and hence depends on 𝑠 particles. This implies in turns that the probability 

amplitude of an interaction (or, in concrete terms, a collision) between 𝑠 given particles 

is directly proportional to 𝐺(𝑠), and in fact completely determined by it (up to the 

normalization constant). So the conclusion is that Green’s functions represent the 

propagation of possibly interacting particles from some initial locations to some other 

points in spacetime. For instance, 𝐺(𝑥1, 𝑥2) describes the propagation of a single particle 



 
 

 
8 
 

from 𝑥1 to 𝑥2, while 𝐺(𝑥1, 𝑥2, 𝑥3, 𝑥4) represents the scattering of two particles that start 

in 𝑥1, 𝑥2 and end up in 𝑥3, 𝑥4. Therefore, by translational invariance, 𝐺(𝑠)(𝑥1,···, 𝑥𝑠) only 

depends on the differences between the arguments, 𝑥𝑖 − 𝑥𝑗 (𝑖, 𝑗 in [1, 𝑠], 𝑖 ≠ 𝑗), and not 

directly on the individual 𝑥𝑖, because the probability of these kind of processes must 

obviously be a function of the distances between the points rather than the points 

themselves. 

To sum up, Feynman diagrams are a convenient representation of terms in the 

expansion of  Z(J) and, at the same time, depictions of the trajectories and interactions 

undergone by particles that travel through spacetime. In addition, they allow us to 

calculate the probability amplitude related to each physical process in the most 

straightforward way known. Several examples, such as the collision between two 

mesons, are worked out in great detail in chapter I.7 of Zee’s textbook (2010, pp. 51-

57). 

 

Disconnected graphs from connected components 

In this last section, we are interested in characterizing the connectedness of Feynman 

diagrams. A graph is said to be connected if any two vertices in the graph are linked by 

a sequence of one or more lines, which is called a path. If this is not true, the graph is 

disconnected, and clearly formed by more than one disconnected pieces. In order to 

determine which diagrams are connected, we rewrite Eq. [4] in yet another form: 

Z(J, 𝜆) = Z(J = 0, 𝜆)𝑒𝑊(𝐽,𝜆) = Z(J = 0, 𝜆) ∑
(𝑊(𝐽, 𝜆))𝑁

𝑁!

∞

𝑁=0

 [6] 
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 This is simply a way of distributing the terms in two disjoint groups, determined by the 

presence or absence of any power of 𝐽, that are multiplied together. Note that Eq. [6] 

constitutes itself the definition of 𝑊(𝐽, 𝜆). In this sense, the terms encompassed by 

Z(J = 0, 𝜆) are related, by definition, to diagrams with no J dependence and hence, by 

rule (4), no external legs. These diagrams are constituted by one or several connected 

loops that close on themselves. In contrast, all diagrams that are part of 𝑊(𝐽, 𝜆) must 

all include a number of external sources.  

Now, we prove that 𝑍 is a set composed by connected and disconnected diagrams, while 

𝑊(𝐽, 𝜆) contains only connected diagrams. This derivation is based on Srednicki (2007, 

pp. 74-76). To begin with, we know that diagrams represent terms in the series. So each 

different addend of the infinite sum of [6] corresponds to an independent diagram. That 

is why, in essence, 𝑍 is a set of many diagrams, rather than a single, complex diagram 

built from (infinitely) many pieces. 𝑊(𝐽, 𝜆) is formed by a sum of several terms too, so 

the same applies to it. Alternatively, multiplying two terms together renders another 

term whose powers of  𝐽 and 𝜆 are the sum of the powers of the original factors. 

Therefore, the multiplication operation corresponds to merging two diagrams into a 

new one in any way such that the total number of lines, vertices, and of external lines is 

conserved. So we see that the (𝑊(𝐽, 𝜆))𝑁 term in the Taylor series of Eq. [6] represents 

all possible diagrams constructed from combinations of 𝑁 isolated diagrams of 𝑊, 

repetition allowed. Now, by definition, Z(J) is proportional (up to a normalization 

constant) to the sum (or the set) of all possible diagrams. Express this by:  

Z(J) ∝  ∑ 𝐷𝑛𝑖

𝑛𝑖

 [7] 
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We already mentioned that any diagram can be decomposed into its connected factors. 

This is: 

𝐷𝑛𝑖
=  

1

𝑆𝐷
 ∏(𝐶𝑖)𝑛𝑖  [8]

𝑖

 

Where 𝑆𝐷 is a symmetry normalization factor which accounts for the number of  

different combinations of times 𝐶𝑖s  that can be combined to obtain 𝐷𝑛𝑖
. For 𝑛𝑖 identical 

𝐶𝑖 factors, there exist 𝑛𝑖! identical rearrangements. So overall, counting over all 𝑖, we 

find:   

𝑆𝐷 =   ∏ 𝑛𝑖! [9]

𝑖

 

And the last three equations together render: 

Z(J) ∝  ∑ 𝐷𝑛𝑖

𝑛𝑖

∝  ∑ ∏
1

𝑛𝑖 !
(𝐶𝑖)𝑛𝑖  

𝑖𝑛𝑖

 ∝  ∏  

𝑖

∑
1

𝑛𝑖!
(𝐶𝑖)𝑛𝑖

𝑛𝑖

=   ∏  𝑒𝐶𝑖

𝑖

=  𝑒∑ 𝐶𝑖𝑖  [10] 

So 𝑍 is proportional to the exponential of all connected diagrams. But, by Eq. [6], 𝑍 is 

also proportional to the exponential of 𝑊(𝐽, 𝜆). It makes sense to impose the 

normalization constraint Z(J = 0, 𝜆) = 1 –which amounts, in physical terms, to disregard 

the diagrams with no sources, called vacuum diagrams. This sets the proportionality 

constant in Eq. [7], and hence in Eq. [10], to 1, if the sum is over all diagrams 𝐶𝑖 except 

to vacuum diagrams, while Eq. [6] reduces to the same statement for 𝑊 in place of the 

sum of 𝐶𝑖. That does the job! We are led to the conclusion that 𝑊(𝐽, 𝜆) constitutes 

indeed the set of connected diagrams, excluding vacuum ones. In other words, the 

knowledge of the connected parts is enough to characterize all diagrams, connected or 

disconnected. For this reason, it is enough to calculate 𝑊 instead of 𝑍. This statement, 
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which is not trivial and even counterintuitive at first, receives the following name: 

“logarithm property of the generating functional” (𝑍 is the functional and the statement 

can be expressed as ln 𝑍 = 𝑊). In any case, this property constitutes an extremely 

important theoretical result in Quantum Field Theory. 

 

Conclusion 

 

When the prominent physicist Richard Feynman invented his famous diagrams, he made 

the study of particle propagations and scattering processes much more accessible. In a 

manner of speaking, a kid could understand the meaning of the lines and vertices 

displayed in a simple Feynman diagram. A kid who knows a surprising amount of 

mathematics could use the diagram to calculate probability amplitudes and make 

predictions in a very straightforward way.  In fact, field theorist see Feynman diagrams 

as the most efficient tools available to them for their computational work. In this paper, 

we have derived the basic results needed for a basic understanding of Feynman 

diagrams and their useful applications. 

  



 
 

 
12 

 

References 

Zee, A. Quantum Field Theory in a Nutshell, Second Edition. Princeton University Press. 

(February 21, 2010). 

Srednicki, M. Quantum Field Theory. Cambridge University Press. (2007). 

 

http://historical.library.cornell.edu/math/index.html

