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1 Introduction

The algebraic structure of groups lends itself to multitudes of connections between

groups with different definitions. Naturally, some groups are easier to visualize,

understand, or represent. Thus, finding relations between known groups and lesser

known groups can help bridge the gap of understanding to these lesser understood

groups. In this paper, we will discuss a few double coverage relations between groups

(or direct products of groups) and how it can be applied to spinor representations.

The following is based on my second lecture for Kapitza Spring 2020.

2 The Lorentz Group

As it is important in later sections, we will briefly review the Minkowski Metric and

Lorentz transformations.

Utilizing Einstein summation notation, we can express The Minkowski Metric as

follows:

ds2 = ηµνdx
µdxν ηµν =


1 µ = ν = 0

−1 µ = ν > 0

0 µ 6= ν

ds2 = dt2 − d~x2 (1)
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By convention, the time component of the four vector is indexed by 0. Thus, the

matrix indices for η are one lower than usual matrix indices. Regardless of rotations

and boosts of the frame, the length of ds2 remains constant, for all frames. Thus,

if we find a group that shows this invariance, we can conclude that it is part of the

Lorentz Group.

The algebra of the Lorentz Group can be summarized by two operators:

J±n =
1

2
(Jn ± iKn) J±n = (J±n)† (2)

The Jn component represents a rotation, while the Kn component represents a

Lorentz boost. We can arrange these compound operators in three ways to get the

commutation relations for the algebra, which are the following, derived in a previous

lecture:

[J+n, J+m] = iεmnpJ+p [J−n, J−m] = iεmnpJ−p [J+n, J−m] = 0 (3)

The last relation is the most important as it suggests a near independence between

the two operators, creating two distinction algebras.

3 SU(2) & SO(4)

We will start by determining the relation between SU(2) and SO(4).

Recall the 2 by 2 Pauli Matrices:

σ1 =

[
0 1

1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0

0 −1

]
(4)

Let us define the following matrix. The dot symbol in this case represents scalar

multiplication of each Pauli matrix by the respective component of ~x, and not right

matrix multiplication with a vector. (x4, ~x) is a four vector, with ~x having three

components.

XE = x4I + i~x · ~σ XE =

[
x4 + ix3 ix1 + x2

ix1 − x2 x4 − ix3

]
(5)
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Now we impose the following restriction:

(x4)2 + ~x2 = 1 (6)

Applying the above restriction, the determinant is 1.

detXE = (x4 + ix3)(x4 − ix3)− (ix1 + x2)(ix1 − x2) (7)

(x4)2 + (x3)2 + (x1)2 + (x2)2 = (x4)2 + ~x2 = 1

Invoking rotational invariance, let ~x = x3 with x1 = x2 = 0

X∗EXE =

[
x4 − ix3 0

0 x4 + ix3

][
x4 + ix3 0

0 x4 − ix3

]
(8)

X∗EXE =

[
(x4 − ix3)(x4 + ix3) 0

0 (x4 + ix3)(x4 − ix3)

]
=

[
1 0

0 1

]
= I

The above utilizes the fact that there is only an x3 component of ~x and thus after

multiplying the binomials out, (x4)2 + (x3)2 = (x4)2 + ~x2 = 1

Since the determinant of XE is 1 and the matrix is unitary, we can conclude that

XE defines an element in SU(2). Under closure, a new transformed version of XE

can be created by simultaneous right and left multiplication of matrices in SU(2).

Thus XE can be transformed into some X ′E. This transformation is SU(2)⊗ SU(2).

A,B ∈ SU(2) =⇒ A∗XEB = X ′E ∈ SU(2) (9)

(A,B) ∈ SU(2)⊗ SU(2)

However, there is something else happening at the same time. Within the matrix,

XE there exists the four vector, (x4, ~x). Similarly, within X ′E there exists another

four vector, (x4′, ~x′) of transformed coordinates. Thus when we simultaneously right

and left multiply by matrices in SU(2) we are transforming a unit four vector into

another unit four vector. This is 4 dimensional rotation and the same as an SO(4)

transformation.

Upon further inspection, cancellation of negatives will cause (A,B) and (−A,−B)

to correspond to the same four dimensional rotation, meaning that there is only a

local isomorphism between these two groups, and twice as many transformations
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exists than are needed to cover all of SO(4). Because of this, we can conclude the

following statement of double coverage:

SU(2)⊗ SU(2)

Z2

= SO(4) (10)

4 Lorentz Group & Special Linear Group over C
Of course double coverage applies between other groups as well. We can now repeat

essentially the same steps, but this time finding the relation for SO(3, 1).

For distinction, x4 becomes x0.

XM = x0I + ~x · ~σ XM =

[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
(11)

Taking the determinant of this matrix, we find the following:

detXM = (x0 + x3)(x0 − x3)− (x1 − ix2)(x1 + ix2) = (x0)2 − ~x2 (12)

Once again, the scalar component is expressed on its own, but this time the

squared vector is subtracted instead of added.

Let us now consider another 2 by 2 matrix with a unit determinant, M . Simul-

taneous matrix multiplication by M and its adjoint transform XM into some new

matrix X ′M . This transformation corresponds to SL(2,C).

M ∈ SL(2,C) =⇒ M †XMM = X ′M (13)

Once again under the guise of the matrices, while XM → X ′M , at the same time

the four vectors from which these matrices are devised are transforming as well.

(x0, ~x)→ (x0′, ~x′). If we take the determinant of the transformation:

det(M †XMM) = detX ′M (14)

det(M †M)detXM = detX ′M

detXM = detX ′M
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With the determinants of XM and X ′M being the same and both matrices taking

the same general form, albeit built from different four vectors, we can express the

following:

(x0)2 − ~x2 = (x0′)2 − ~x′2 (15)

The above expression is a satisfaction of the Minkowski Metric and because of

this we know that XM ∈ SO(3, 1). This matrix is part of the Lorentz Group.

Once again, this matrix is connected to other groups as well. By applying an

SL(2,C) transformation to XM we transform one element of SO(3, 1) into another

element of SO(3, 1). However, just as before, by virtue of the how the transformation

M is applied to XM , the matrix M corresponds to the same transformation as −M .

Thus, we can make the following statement of double coverage:

SL(2,C)

Z2

= SO(3, 1) (16)

A well known instance of double coverage is SU(2) and SO(3). Using the above

relation, we can actually derive this as a specific instance. If we restrict SL(2,C) to

its SU(2) subgroup then M ∈ SU(2) and the transformation will not longer effect the

x0 component of the four vector. The remaining components will change in the same

fashion as previous. With no transformation occurring to the x0 component, SO(3, 1)

becomes restricted to SO(3). Alternatively, M ∈ SU(2) means that M †M = I and

the transformation is just a 3 dimensional rotation. Thus we get the familiar double

coverage relation:

SU(2)

Z2

= SO(3) (17)

5 Using Double Coverage on Lorentz Algebra

The existence of double coverage allows us to extract representations of new groups

from the representations of groups we are already familiar with. In this specific case,

if we already know how to express the irreducible representations of SU(2), we can

find the irreducible representations of SO(3, 1).
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We can return back to the final commutation relation of Equation 3, and the fact

that these operators form two distinct SU(2) operators. Two distinct group algebras

of this group can be expressed as SU(2)⊗ SU(2) which has already been referenced

in Section 2.

Assuming we already know how to create irreducible representations in SU(2),

the double coverage relation in Equation 10, allows a quick way of discovering the

irreducible representation of SO(4) and by extension the Lorentz Group.

Representations of SU(2) are defined by the half integers starting from 0. Each

representation can be indexed by values ranging from the negative value of the num-

ber that defines its representation up, to the same number in the positives. Thus the

dimension of the nth representation has dimension 2n + 1. The 1 is added because

of the inclusion of 0 in the range. By extension, a direct product representation can

be expressed by a set of two of these numbers. Iterating over all possible values,

representations of the Lorentz Group can be expressed as the following sequence:

(0, 0),

(
1

2
, 0

)
,

(
0,

1

2

)
,

(
1

2
,
1

2

)
, (1, 0), (0, 1),

(
3

2
, 0

)
,

(
0,

3

2

)
. . . (18)

Similarly, the dimension each of these representations will just be the product

of the dimensions of the two sub representations that comprise it. In essence, the

dimension is (2n + 1)(2m + 1). With n and m standing for the representations in

the sets described

6 Weyl Spinors

Plucking out the second and third representations from the above equation, we can

restrict this SO(3, 1) representation to the SO(3) rotation group. We can decompose

these two representations by computing m⊗ n. This can be accomplishes by taking

the direct sum of a sequence of representations, each with a value one less than

the previous, spanning from the complete sum to the complete difference of the two

values:

(n+m)⊕ (n+m− 1)⊕ (n+m− 2) + . . .+ (n−m) (19)

Using the above, both (1
2
, 0) and (0, 1

2
) decompose into 1

2
. This implies that the
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double set of values used to describe a representation of SO(3, 1) decomposes into a

2 dimensional spinor.

We now describe two two-indexed objects, u and v respective to (1
2
, 0) and (0, 1

2
).

Both u and v have two components.

Starting with (1
2
, 0) we can return to Equation 2. J+ corresponds to the first

entry 1
2

while J− corresponds to the second entry 0. Similiarly, (0, 1
2
) means J+

corresponds to the first entry 0 while J− corresponds to the second entry 1
2
. Adding

in the Pauli matrix, we can summarize the results with the following:

(
1

2
, 0

)
→ J+n =

1

2
(Jn + iKn) =

1

2
σn J−n =

1

2
(Jn − iKn) = 0 (20)

(
0,

1

2

)
→ J+n =

1

2
(Jn + iKn) = 0 J−n =

1

2
(Jn − iKn) =

1

2
σn (21)

To isolate the Jn and Kn operators, we can add the two relations together, and

then subtract them apart.(
1

2
, 0

)
→ J+n + J−n = Jn =

1

2
σn J+n − J−n = iKn =

1

2
σn (22)(

0,
1

2

)
→ J+n + J−n = Jn =

1

2
σn J+n − J−n = −iKn =

1

2
σn (23)

This allows us to see some of the similar, and more importantly, contrasting be-

haviour of the denotations u and v. We see that in both cases, the Jn operator comes

out to be defined the same way, however, Kn varies between the two denotations by

a negative sign. This implies that the spinors u and v transform exactly the same

under rotation, but oppositely over Lorentz boost.

The spinors, u and v both supply representations for the Lorentz group and are

known as the Weyl Spinors.
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7 Conclusion

Due to the relations between differing groups, representations of more complex groups

can be expressed through the understanding of simpler, more well understood groups.

Double covers are one such relation that arises between these group structures and

can be utilized inn the case of the Lorentz Group. The Lorentz Group can be

expressed into the direct product of SU(2) with itself, as decomposing this further

leads to expressing a representation of the Lorentz Group with rotational algebra as

two indexed spinors known as the Weyl Spinors.
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