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1 Introduction

At this point in the course, we have discussed SO(N) in detail. We have de-
termined the Lie algebra associated with this group, various properties of the
various reducible and irreducible representations, and dealt with the specific
cases of SO(2) and SO(3). Now, we work to do the same for SU(N). We de-
termine how to use tensors to create different representations for SU(N), what
difficulties arise when moving from SO(N) to SU(N), and then delve into a few
specific examples of useful representations.

2 Review of Orthogonal and Unitary Matrices

2.1 Orthogonal Matrices

When initially working with orthogonal matrices, we defined a matrix O as
orthogonal by the following relation

OTO = 1 (1)

This was done to ensure that the length of vectors would be preserved after a
transformation. This can be seen by

v → v′ = Ov =⇒ (v′)2 = (v′)T v′ = vTOTOv = v2 (2)

In this scenario, matrices then must transform as A→ A′ = OAOT , as then we
will have

(Av)2 → (A′v′)2 = (OAOTOv)2 = (OAOTOv)T (OAOTOv) (3)

= vTOTOATOTOAOTOv = vTATAv = (Av)2

Therefore, when moving to unitary matrices, we want to ensure similar condi-
tions are met.

2.2 Unitary Matrices

When working with quantum systems, we not longer can restrict ourselves to
purely real numbers. Quite frequently, it is necessarily to extend the field we
are with with to the complex numbers. For instance, when working with a wave
function |ψ〉 =

∑
i

ψi|i〉 where ψi ∈ C, we need 〈ψ|ψ〉 =
∑
i

|ψi|2 to be invariant.

Transformations U must then satisfy

|ψ〉 → |ψ′〉 = U |ψ〉 =⇒ 〈ψ′|ψ′〉 = 〈Uψ|Uψ〉 = 〈ψ|U†U |ψ〉 = 〈ψ|ψ〉, (4)

where the last equality is satisfied if and only if U†U = 1. This is the condition
for a matrix to be unitary. We first confirm that these U do form a group. We
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can see that they are closed by taking A and B both unitary and showing their
product is in fact unitary.

(AB)†(AB) = B†A†AB = 1 (5)

Since 1†1 = (1)1 = 1, the identity matrix is unitary. To determine if each
element’s inverse is in the group, we need to show that the adjoint of each
unitary matrix is unitary,

(U†)†U† = UU† = 1 (6)

Since associativity of these matrices follows from the general associativity of
matrix multiplication, the unitary matrices are a group.

2.3 Special Unitary Matrices

When dealing with orthogonal transformations, to exclude reflection, we re-
quired that the determinant of any matrix detO = +1. This subset of O(N)
was designated as the special orthogonal matrices, SO(N). We require a similar
condition when dealing with unitary matrices. We can determine the determi-
nant of any unitary matrix by noting

det 1 = detU†U = detU† detU = (detU)∗ detU = |detU |2 = 1

=⇒ detU = eiϕ (7)

The determinant of U therefore reduces to some phase factor. We can require
that ϕ = 0, giving the special unitary matrices with detU = 1. We can then
break U(N) into two parts: SU(N), and the identity matrix scaled by eiϕ. Note
that there is an overlap between these two section of U(N), as if we have are
dealing with the group SU(d), e2πi

n
d 1 will both have determinant one and be a

scaling of the identity matrix if n ∈ Z.

3 Tensor Representations of SU(N)

We build higher dimensional representation of SU(N) by first starting with fun-
damental representation of the group, consisting of the N ×N special unitary
matrices. We then take some tensor m indices ϕi1i2···im . This tensor transforms
under under a unitary operation by ϕi1i2···im → ϕ′i1i2···im = U i1j1 · · ·U imjmϕj1···jm .
This tensor therefore will provide a representation of SU(N). To make this more
clear, we work through an example of a totally symmetric tensor ϕijk that we
will use to represent SU(3). This tensor has ten independent components. We
can count these components by noting there are 3 independent components
that correspond to each index being equal, 1 independent component that cor-
responds to each index being different, and 6 independent components that
correspond to two indices being the same.

This group solved a puzzle in particle physics in the 1960s. There were nine
baryonic particles of similar mass, which we can expect to be associated with
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some symmetry group. Gell-Mann knew that the strong interaction’s symmetric
group is SU(3), so he guessed that there must be a tenth particle that was
similar to these nine known particles to correspond to this ten dimensional
representation of SU(3). When he was proven correct, particle physicists began
to more uniformly embrace group theory.

3.1 Contractions of Tensors Used to Represent SU(N)

Naturally for such tensors, we may need to take a contraction over some collec-
tion of indices. However, we cannot do so in exactly the same way as we did
for the tensors representing SO(N). Recall for some tensor T ijk that furnishes
a representation of SO(N), we can contract over two of the indices by taking
T iik = δijT ijk. This quantity will then transform under a rotation as

δijT ijk → δijT ′ijk = δijOifOjgOkhT fgh = (δijOifOjg)(OkhT fgh)

= (OT )fiδijOjg(OkhT fgh) = (OTO)fg(OkhT fgh) (8)

= δfgOkhT fgh

However, the last inequality only holds because OTO = 1, which is not the
case for unitary matrices. Instead, we need to determine how to define the
contraction so that tensor transforms as it does in the case of SO(N).

To do this, we first define a contravariant and a covariant of our vector,
ψi = ψi∗. Then, the inner product in quantum mechanics can be defined as

〈φ|ψ〉 =

∑
j

〈j|φj∗
(∑

i

ψi|i〉

)
= ψiφi (9)

Now, when we do a transformation we take

ψi → ψ′i = U ij ψ
j , (10)

where we have lowered the second index to match the upper index on the ψj .
The covariant then transforms as

ψi → ψ′i = ψj(U
†)ji (11)

Note that the inner product is still preserved,

〈φ|ψ〉 → 〈φ′|ψ′〉 = 〈Uφ|Uψ〉 = φi(U
†)jiU

i
kψ

k = ψjδ
j
kψ

k = φiψ
i (12)

Generally speaking, we can now have a tensor with m upper and and n lower
indices, ϕi1···imj1···jn . Then the tensor will transform as

ϕijk → ϕ′ijk = U ilU
j
m (U†)nkϕ

lm
n (13)

We can now take a contraction on two of the indices. Note that under this
formalism, we must take the contraction over one upper and lower index.

ϕijj = U ijU
j
m (U†)njϕ

lm
n = U il δ

n
mϕ

lm
n = U ilϕ

lm
m (14)

3



3.2 Raising and Lowering Indices

We know by definition for any U ∈ SU(N), we must have detU = 1. However,
introducing contravariant and covariant vectors now mean there are two ways
to take the determinant

εi1i2···iNU
i1
1 U

i2
2 · · ·U

iN
N = 1, (15)

εi1i2···iNU1
i1U

2
i2 · · ·U

N
iN = 1 (16)

We can also express the first equation as

εi1i2···iNU
i1
j1
U i2j2 · · ·U

iN
jN

= εj1j2···jN (17)

If we multiply this by (U†)jNpN , then we can eliminate one of the matrices on the
right hand side to get

εi1i2···iN−1pNU
i1
j1
U i2j2 · · ·U

iN−1

jN−1
= εj1j2···jN (U†)jNpN (18)

By repeating this process, we can write the exact same relationship in Eq. (17)
using U† instead of U .

We can then use this to exchange upper and lower indices of tensors. For
instance, we can define a tensor ϕkpq = εijpqϕ

ij
k . When transforming this tensor,

we have

ϕkpq → ϕ′kpq = εijpqU
i
lU

j
m (U†)nkϕ

lm
n = (U†)sp(U

†)tp(U
†)nk(εlmstϕ

lm
n ) = (U†)sp(U

†)tp(U
†)nkϕnst,

(19)

which is exactly how we expect this tensor to transform.

3.3 Symmetric and Anti-Symmetric Tensor Representa-
tions

As we have defined it here, the symmetry or anti-symmetry of a tensor is not
changed by group transformations. For our purposes, we restrict our attention
to strictly tensors that are strictly symmetric or anti-symmetric under exchange
of upper or lower indices. Furthermore, since the contraction transforms like
a vector, we can subtract it off of any tensor we choose to provide our rep-
resentation. With these restrictions, we can determine the dimension of the
representation provided by, for example, a symmetric tensor Sijj = +Sjik to be
1
2N

2(N + 1)−N = 1
2N(N − 1)(N + 2). Similarly, we can determine the dimen-

sion of the representation provided by the antisymmetric tensorAijk = −Ajik to
be 1

2N
2(N − 1)−N = 1

N (N − 2)(N + 1).
These representation have several naming conventions. One such convention

labels representation by the number of indices above and below the tensor. For
example, a tensor with m upper indices and n lower indices would be labeled
as (m,n). Often, the symmetry of the tensor is denoted by using brackets for
antisymmetric tensors and curly braces for symmetric tensors. For instance, a
symmetric tensor Sijk would be labeled as {2,1}. If there are no upper or lower
indices, then that term may suppressed, with an asterisk added if there are no
upper indices. For instance, [2, 0] can be written as [2] and [0, 2] as [2]∗.
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4 Construction of the Lie Algebra

We begin the same way as in SO(N), by taking the infinitesimal transformation
U ≈ 1 + iH, where H is some matrix with complex entries. Then, using the
defining relation of the unitary matrices we have

U†U = 1 ≈ (1− iH†)(1 + iH†) ≈ 1− i(H† −H) (20)

=⇒ H† = H (21)

As before, we can use the infinitesimal transformations to determine that for
any unitary U , we can write U = eiH , for some Hermitian H. We can check
that any matrix of the form eiH is in fact unitary by evaluating its Taylor series

(eiH)† =

( ∞∑
k=0

(iH)k

k!

)†
=

∞∑
k=0

(−iH†)k

k!
=

∞∑
k=0

(−iH)k

k!
= e−iH (22)

=⇒ eiH(eiH)† = eiHe−iH = 1 (23)

We now want to determine what conditions we must impose on this form of U
to ensure detU = 1. To do this, we first note that we can write any matrix as
the product of its eigenvalues. If H has eigenvalues λj , then eiH has eigenvalues
eiλj . We can show this by evaluating the Taylor series expansion of eiH applied
to an eigenvector of H, say vj

eiHvj =

( ∞∑
k=0

(iH)k

k!

)
vj =

∞∑
k=0

(iH)kvj
k!

=

( ∞∑
k=0

(iλj)
k

k!

)
vj = eiλjvj (24)

We will also make use of the fact that the trace of any matrix is the sum of its
eigenvalues. We can then write the determinant of U as

detU = det eiH =

N∏
j=1

eiλj = e
i

N∑
j=1

λj

= ei trH (25)

For detU = 1, we can then require trH = 0. With this, we now know that we
only need to consider traceless, Hermitian matrices. For 2×2 matrices, this has
general form

H =

(
x3 x1 − ix2

x1 + ix2 −x3

)
, (26)

where the xi are all real numbers. We can also write this matrix in terms of the
Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(27)

Then write this matrix H can be written as

H = xiσ
i (28)
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If we take N = 3, then the equivalent of the Pauli matrices are the Gell-Mann
matrices. We can note in both cases, and in the general case, we have N2 − 1
matrices. To determine the number of independent components needed to char-
acterize one group, we count the number of such components on the diagonal.
Since there the diagonal must be real, each component contributes has only one
free real number, and the condition that the matrix is traceless give a total of
N − 1 free parameters from the diagonal. The off diagonal terms contribute
N(N − 1) real parameters, but since the lower diagonal is the complex conju-
gate of the upper diagonal, there are only 1

2N(N − 1) free terms. We then need
a total of N − 1 + 1

2N(N − 1) = N2 − 1 free real numbers to characterize the
group SU(N). Therefore, we can write any N ×N Hermitian, traceless matrix
in terms of N2 − 1 real numbers and and generators. The elements of SU(N)
can be then written as

U = eiθ
aTa

, (29)

where the θa are the real numbers and T a are the generators.1

5 Determining the Structure Constants of the
Lie Algebra

We can measure the commutativity of two arbitrary unitary matrices U1 ≈ 1+A
and U2 ≈ 1 +B by taking

U−12 U1U2 ≈ (1−B)(1 +A)(1 +B) ≈ 1 +A+AB −BA = U1 + [A,B] (30)

The quantity then deviates from U1 by [A,B]. We write A = i
∑
a θ

aT a and
B = i

∑
b θ
′bT b so the commutator takes the form

[A,B] = −
∑
a,b

θaθ′b[T a, T b] (31)

Since the all of the T are traceless, Hermitian matrices, the commutator is
traceless and antiHermitian. Therefore, there must be some linear combination
of the generators that can be used to write commutator,

[T a, T b] = ifabcT c (32)

These fabc are the fine structure constants of the Lie algebra. They are by
definition of the commutator antisymmetric.

We can think of these T a either as explicit matrices, or as any objects with
satisfy the above commutation relationship. The advantage of the latter is that

1Here, the superscripts a are simply labels to denote the θ and T , and therefore have no
associated notion of contravariance or covariance. I will generally use superscripts for such
objects, but there is no difference between θa and θa, Ta and Ta, etc. Einstein summation
notation is still assumed in these cases.
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it is easier to consider higher dimensional representations of SU(N) than the
fundamental N ×N representation. We can easily determine the generator T a

by taking the derivative of U = 1 + iθaT a with respect to θa. Also note we can
write the variation in a tensor as

δϕp = iθa(T a)pqϕ
q, (33)

where p and q are the indices of the matrix representing T a.

5.1 The Adjoint Representation

We can calculate the fine structure constants using the adjoint representation
of SU(N) as well. This adjoint representation is furnished by a tensor ϕij . This

representation will have a dimension of N2 − 1. To see this, we first note that
this representation transforms as

ϕij → ϕ′ij = U ilϕ
l
n(U†)nj , (34)

i.e., it transforms in the same way as a matrix. We note that if ϕij is traceless
and Hermitian, we can then also write

ϕij = Aa(T a)ij (35)

We know that there must be N2 − 1 total Aa, as there are N2 − 1 total T a.
However, since there are N2 − 1 such Aa, we can use these to provide another
representation for SU(N). We then want work out how these Aa transform.
First, we determine how a general representation ϕ transforms

ϕ→ ϕ′ ≈ (1 + iθaT a)ϕ(1 + iθaT a)† ≈ ϕ+ iθaT a − ϕiθaT a (36)

= ϕ+ iθa[T a, ϕ]

The variational in ϕ is then

δϕ = iθa[T a, ϕ] (37)

Now, to determine how these Aa specifically transform, we take

(δAb)T b = δ(AbT b) = iθa[T a, AcT c] = iθaAc[T a, T c] = iθaAcifacbT b (38)

However, from Eq. (35), we have

δAb = iθa(T a)bcA
c (39)

Therefore, we get

(T a)bc = −ifabc (40)

This means that to determine the fine structure constant, we simply need to
find the adjoint representation of the generators.
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6 Conclusion

We have effectively reproduced most of the results that were derived earlier for
SO(N), but now for SU(N). We see that many of the results carry directly over.
However, a few definitions such as the contraction must be adjusted in order
to account for the complex nature of the matrix entries. This is remedied by
the introduction of contravariant and covariant vectors which are the complex
conjugates of one another. The Lie algebra is formed by taking unitary matrices
infinitesimally close to the identity, and we can in turn develop its generators.
These generators have the defining relation [T a, T b] = ifabcT c. Lastly, we
determined we can calculate the fine structure constant by determining the
generators in the adjoint representation of SU(N).
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