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1 Introduction

Not only does God play dice but... he sometimes throws them
where they can’t be seen.

Stephen Hawking

Despite Albert Einstein’s insistence that the world is deterministic, quan-
tum mechanics introduces a probabilistic world view. Measuring a quantum
becomes a delicate task: measurements inherently affect the system in ques-
tion. In this paper, based on a lecture given to fellow Kapitza members on
December 3rd, 2017, I discuss the formulation of measurement in a noisy
quantum system.

2 A New Description of Measurement

Measurement is commonly described by defining a set of projection op-
erators that are complete, i.e. ∑

j

Πj = I

Introducing a probe system, we can get information about the original system
from the probe. Measurement can be described by the unitary interaction of
the system with the probe, with operator USP .

Suppose we have a system S in state |Ψ〉S and a probe P with dimension d
and orthonormal basis {|0〉P , |1〉P , ..., |d− 1〉P}. Defining the probe’s initial
state as |0〉P , we can write the initial state of the whole system as

|Ψ〉S ⊗ |0〉P

and measurement operators

{|j〉〈j|P}j∈{0,1,...,d−l}

The operator can be written in the probe’s basis as

USP =
∑
j,k

M j,k
S ⊗ |j〉〈k|P (1)

for operators {M j,k
S }. The probability of outcome j from the probe is

pJ(j) = [〈Ψ|S ⊗ 〈0|P U
†
SP ](IS ⊗ |j〉〈j|P )[USP |Ψ〉S ⊗ |0〉P ] (2)
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and the state of the system after measurement is

(IS ⊗ |j〉〈j|P )(USP |Ψ〉S ⊗ |0〉P )√
pJ(j)

(3)

Note that IS ⊗ |j〉〈j|P is the measurement operator on the full system, since
only the probe is measured.

Since USP is unitary, we have U †SPUSP = ISP = IS ⊗ IP . Consider the
case k = 0. For clarity, define M j ≡M j,0

S .

U †SPUSP
k=0−−→

(∑
j′

M j′† ⊗ |0〉〈j′|P
)(∑

j

M j ⊗ |j〉〈0|P
)

=
∑
j

∑
j′M j′†M j ⊗ |0〉 〈j′|j〉 〈0|P

=
∑
j

M j†M j ⊗ |0〉〈0|P (4)

But U †SPUSP
k=0−−→ IS ⊗ |0〉〈0|P . Using (4), we conclude that

IS =
∑
j

M j†M j (5)

Using the definition of USP , we can simplify (2) and (3). Substituting (1)
into (2):∑

j

pJ(j) =

[
〈Ψ|S ⊗ 〈0|P

(∑
j′,k

M j′,k†
S ⊗ |k〉〈j′|P

)]
(IS ⊗ |j〉〈j|P )[(∑

j′,k

M j′,k
S ⊗ |j′〉〈k|P

)
|Ψ〉S ⊗ |0〉P

]
=

[∑
j′,k

〈Ψ|SM
j′,k†
S ⊗ 〈0|k〉 〈j′|P

]
(IS ⊗ |j〉〈j|P )[∑

j′,k

M j′,k
S |Ψ〉S ⊗ |j

′〉 〈k|0〉P
]

=

[∑
j

〈Ψ|SM
j†IS ⊗ 〈j|P

][∑
j′

M j′ |Ψ〉S ⊗ |j
′〉P
]

=
∑
j

〈Ψ|M j†M j|Ψ〉
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and therefore
pJ(j) = 〈Ψ|M j†M j|Ψ〉 (6)

Similarly, we can simplify the post-measurement state to

M j |Ψ〉S ⊗ |j〉P√
pJ(j)

(7)

The state of S can be read off from (7) easily, since S and P are in a pure
product state. Measurement can therefore be described as a set of measure-
ment operators {M j

S}, instead of {Πj}, that satisfy (5). See Appendix A for
discussion on the application of this process to ensembles.

When transferring classical data over a quantum channel, the receiver
doesn’t need the post-measurement state to process the information in a
quantum fashion. The relevant probability is the probability of error. For
any such situation where the probability of an outcome matters and the post-
measurement state does not, we can describe a positive operator-valued mea-
sure (POVM) with a set of operators {Λj} = {M †

jMj} that are non-negative
and complete. Clearly, projection is a type of POVM. The probability of
success of the POVM is ∑

x∈X

pX(x) Tr [Λxρx]

where ρx is the density matrix for state |ψx〉.

3 Composite Systems

Suppose we have two indepedent ensembles, εA = {pX(x), |ψx〉} and εB =
{pY (Y ), |φy〉}. The density matrix for the joint state |ψx〉 ⊗ |φy〉 is

EX,Y [(|ψX〉 ⊗ |φY 〉)(〈ψX | ⊗ 〈φY |)] = EX,Y [|ψX〉〈ψX | ⊗ |φY 〉〈φY |]

=
∑
x,y

pX(x)pY (y) |ψx〉〈ψx| ⊗ |φy〉〈φy|

=
∑
x

pX(x) |ψx〉〈ψx| ⊗
∑
y

|φy〉〈φy|

= ρ⊗ σ (8)

where ρ and σ are the density matrices for εA and εB respectively.
Now suppose we have a joint ensemble in which systems A and B are

correlated classically. We’d like a formulation to express this ensemble sim-
ilarly to the independent situation above. To do this, we introduce a new
random variable Z that X and Y are conditioned on. The two ensembles
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are εA = {pX|Z(x|z), |ψx,z〉} (density matrix ρz) and εB = {pY |Z(y|z), |φy,z〉}
(density matrix σz), and X|Z and Y |Z are independent. Using the same
procedure as we did with (8), we obtain the density matrix of the total state:

(9)
EX,Y,Z [(|ψX,Z〉 ⊗ |φY,Z〉)(〈ψX,Z | ⊗ 〈φY,Z |)]

=
∑
x,y,z

pZ(z)pX|Z(x|z)pY |Z(y|z) |ψx,z〉〈ψx,z| ⊗ |φy,z〉〈φy,z|

Define a new random variable W = X ∧ Y ∧ Z. We can write the density
matrix in (9) as ∑

w

pW (w) |φw〉〈φw| ⊗ |φw〉〈φw| (10)

So, we can write any state with the properties discussed in this paragraph as
a product of pure states. This type of state is termed separable, and contains
no entanglement. In other words, a separable state can always be prepared
classically. See Appendix B for an application involving separable states.

4 Local Density Operators

Suppose systems A and B are in an entangled Bell state |Φ+〉AB. Take a
POVM Λj

j on A. The measurement operators for the system are Λj
A ⊗ IBj.

The probability of outcome j is

pJ(j) =
〈
Φ+
∣∣Λj

A ⊗ IB
∣∣Φ+

〉
AB

=
1

2

1∑
k,l=0

〈kk|Λj
A ⊗ IB|ll〉AB

=
1

2

1∑
k,l=0

〈k|Λj
A|l〉A 〈k|IB|l〉B

= Tr

[
Λj
A

1

2

1∑
k=0

(
|k〉〈k|A

)]
= Tr

[
Λj
AπA

]
(11)

where the “local density operator” for A is the maximally mixed state πA =
1
2

∑1
k=0 |k〉〈k|A. This process goes similarly for B. Thus, the following global

state gives the same predictions in local measurements as |Φ+〉AB:

πA ⊗ πB
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We’d like to define what we mean by a local density operator in order to
describe the results of local measurements. To do this, we need to define the
partial trace operation.

Suppose {|k〉A} and {|l〉B} are orthonormal bases for the Hilbert spaces
of A and B. Then {|k〉A ⊗ |l〉B} is an orthonormal basis for the product of
the Hilbert spaces. For density operator ρAB, the probability of outcome j is

pJ(j) = Tr
[
(Λj

A ⊗ IB)ρAB
]

=
∑
k,l

[〈k|A ⊗ 〈l|B][(Λj
A ⊗ IB)ρAB][|k〉A ⊗ |l〉B]

=
∑
k,l

〈k|A [IA ⊗ 〈l|B][(Λj
A ⊗ IB)ρAB][IA ⊗ |l〉B] |k〉A

=
∑
k

〈k|A Λj
A

∑
l

[
(IA ⊗ 〈l|B)ρAB(IA ⊗ |l〉B)

]
|k〉A

= Tr

[
Λj
A

∑
l

[
(IA ⊗ 〈l|B)ρAB(IA ⊗ |l〉B)

]]
(12)

So, we define the partial trace for B as

TrB[XAB] =
∑
l

[
(IA ⊗ 〈l|B)XAB(IA ⊗ |l〉B)

]
(13)

and the local density operator for A as

ρA = TrB[ρAB] (14)

Therefore, (12) becomes

pJ(j) = Tr
[
Λj
AρA

]
(15)

Alice can predict the outcome of local measurements with (15).

5 Classical-Quantum Ensembles

Suppose Alice prepares a quantum system with density matrix ρxA and
probability distribution pX(x). She passes this ensemble to Bob, who must
learn about it. There is a loss of information in X after preparation which
is minimized if the state is pure. ρA =

∑
x px(x) |x〉〈x|A for an orthonormal

basis {|x〉}x∈X . For a mixed state, ρA =
∑

x pX(x)ρxA is more difficult to
extract information from.
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One solution is for Alice is to prepare a classical-quantum ensemble:

{pX(x), |x〉〈x|X ⊗ ρ
x
A}x∈X

This ensemble is so-called because system X is classical, while system A is
quantum. The density operator for the entire system is

ρXA =
∑
x

pX(x) |x〉〈x|X ⊗ ρ
x
A (16)

Suppose Bob makes a measurement of the system with {IX ⊗ Λj
A}. This

is akin to Bob measuring an isolated system A with {Λj
A}. Why?

Tr
[
ρXA(IX ⊗ Λj

A)
]

= Tr

[
(
∑
x

pX(x) |x〉〈x|X ⊗ ρ
x
A)(IX ⊗ Λj

A)

]

= Tr

[∑
x

pX(x)(|x〉〈x|X IX ⊗ ρ
x
AΛj

A)

]
=
∑
x

Tr[|x〉〈x|X IX ] Tr
[
pX(x)ρxAΛj

A

]
=
∑
x

Tr
[
pX(x)ρxAΛj

A

]
= Tr

[
ρAΛj

A

]
So Bob can extract information about A from the whole system with a local
measurement on A.

6 Conclusion

At the heart of quantum mechanics is a rule that sometimes gov-
erns politicians or CEOs - as long as no one is watching, anything
goes.

Lawrence M. Krauss

Measurement of quantum systems is tricky, and matters only get more
complicated when you consider composite quantum systems. With judicious
choices of measurement operators and careful preparation of a system or
composite system, one can make quantum measurement seem more akin to
the classical case.
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Appendix A: Redefining Measurement for En-

sembles

Suppose we have an ensemble

{pX(x), |ψx〉}x∈X

with density operator

ρ =
∑
x∈X

pX(x) |ψx〉〈ψx|

Using the same procedure as outlined in section 2:∑
j

pJ(j) =
∑
x∈X

pX(x)

[
〈ψx|S ⊗ 〈0|P

(∑
j′,k

M j′,k†
S ⊗ |k〉〈j′|P

)]
(IS ⊗ |j〉〈j|P )[(∑

j′,k

M j′,k
S ⊗ |j′〉〈k|P

)
|ψx〉S ⊗ |0〉P

]
=
∑
x∈X

pX(x)

[∑
j′,k

〈ψx|SM
j′,k†
S ⊗ 〈0|k〉 〈j′|P

]
(IS ⊗ |j〉〈j|P )[∑

j′,k

M j′,k
S |ψx〉S ⊗ |j

′〉 〈k|0〉P
]

=
∑
x∈X

pX(x)

[∑
j

〈ψx|SM
j†IS ⊗ 〈j|P

][∑
j′

M j′ |ψx〉S ⊗ |j
′〉P
]

=
∑
x∈X

pX(x)
∑
j

〈ψx|M j†M j|ψx〉

pJ(j) =
∑
x∈X

pX(x) 〈ψx|M j†M j|ψx〉

=
〈
M j†M j

〉
= Tr

[
M j†M jρ

]
This is a reformulation of the Born Rule. The post-measurement state is

M jρM j†

pJ(j)
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Appendix B: The CHSH Game

Consider a game with two players, Alice (A) and Bob (B). Alice and
Bob cannot communicate with each other, but they can communicate with a
referee. The referee sends out two bits: x to Alice and y to Bob. Each player
sends a bit back to the referee (a and b respectively). The win condition is

x ∧ y = a⊕ b
It is known that the maximum probability of success for any strategy that
Alice and Bob agree to use beforehand is 0.75 for classical strategies and
cos2(π/8) ≈ 0.85 for quantum strategies. The form of a classical strategy is

pAB|XY (a, b|x, y) =

∫
dλpΛ(λ)pA|ΛX(a|λ, x)pB|ΛY (b|λ, y)

where Λ is a continuous index for their strategies.
The density operator for the state of the system is

ρAB =

∫
dλpΛ(λ) |ψλ〉〈ψλ| ⊗ |φλ〉〈φλ|

In this case, the classical strategy is

pAB|XY (a, b|x, y) = Tr
[
(Π(x)

a ⊗ Π
(y)
b )ρAB

]
= Tr

[∫
dλpΛ(λ) Π(x)

a |ψλ〉〈ψλ|A ⊗ Π
(y)
b |φλ〉〈φλ|B

]
=

∫
dλpΛ(λ) 〈φλ|Π(x)

a |φλ〉 〈φλ|Π
(y)
b |φλ〉

Therefore, we have

pA|ΛX(a|λ, x) = 〈φλ|Π(x)
a |φλ〉 and pB|ΛY (b|λ, y) = 〈φλ|Π(y)

b |φλ〉
The above are classical strategies that simulate quantum strategies, pro-
vided that the initial system is in a separable state. This implies that the
upper limit on the probability of winning for a separable states is 0.75, not
cos2(π/8).
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