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Decoherence induced by non-unitary evolution in a qubit subsystem 
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0. Abstract. 

This paper illustrates the relation between non-unitary time evolution of one part of a 

bipartite system and the onset of entanglement between the two parts. From the point 

of view of one of the system’s parts, this process of entanglement with the other part 

can be interpreted as an increase of decoherence due to interaction with the 

environment. This correspondence is particularly simple in the context of one qubit 

which is considered as part of a two-qubit system undergoing unitary evolution; and can 

be understood through the concepts of quantum channel and Schmidt number. 

 

1. Operator-sum representation of quantum channels 

Quantum channels are linear transformations on the set of density matrices 

corresponding to a given Hilbert space of quantum states. Since the density matrices are 

themselves operators on the Hilbert space, i.e. they are linear transformations mapping 

quantum states to quantum states, quantum channels can be thought of as maps acting 

on operators instead of states; for this reason, they are also known as “superoperators”. 

In this section, we introduce the operator-sum representation of quantum channels by 

considering how unitary evolution of a bipartite system generally transforms a single 

one of the component subsystems. This presentation is based on Section 3.2.1 of Lecture 

Notes for Physics 229, Quantum Information and Computation, by John Preskill (Ref. [1]). 

To begin with, let our bipartite system be 𝐴 ⊗ 𝐵, and imagine that we as observers only 

have access to the information contained in 𝐴 alone. Also assume that we know the 

initial state of subsystem 𝐵 to be a pure state, which we label |0⟩𝐵; then, the initial 

density matrix on the bipartite system has the following tensor-product form: 

𝝆𝐴 ⊗ |0⟩𝐵 ⟨0| 𝐵
               [ 1 ] 

where 𝝆𝐴 represents an arbitrary density matrix on the subsystem 𝐴. Next, we allow the 

combined system to evolve for some time under the action of a unitary time evolution 

operator 𝑈𝐴𝐵: 

𝝆𝐴 ⊗ |0⟩𝐵 ⟨0|𝐵
 →  𝑼𝐴𝐵(𝝆𝐴 ⊗ |0⟩𝐵 ⟨0|𝐵

 )𝑼𝐴𝐵
† .            [ 2 ] 

After performing the partial trace over the Hilbert space 𝐻𝐵 of subsystem 𝐵, this 

expression reduces to the density matrix giving the final state of system 𝐴: 

𝝆′
𝐴

= 𝑡𝑟𝐵 (𝑼𝐴𝐵(𝝆𝑨 ⊗ |0⟩𝐵 ⟨0|𝐵
 )𝑼𝐴𝐵

† ) 

= ∑ ⟨𝜇𝐵
 |𝑼𝐴𝐵|0⟩𝐵 𝝆𝑨 ⟨0|𝑼𝐴𝐵

† |𝜇⟩𝐵𝐵
 

𝜇           [ 3 ] 
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expressed in terms of a given orthonormal basis |𝜇⟩𝐵 of 𝐻𝐵. Note that ⟨𝜇|𝐵
 𝑼𝐴𝐵|0⟩𝐵 

is an operator on 𝐻𝐴 which does not necessarily inherit the unitary property from 𝑈𝐴𝐵. 

Now, label this operator 𝑴𝜇 = ⟨𝜇|𝐵
 𝑼𝐴𝐵|0⟩𝐵, in order to rewrite Eq. [3] as 

𝓛(𝝆𝐴) = 𝝆′
𝐴

= ∑ 𝑴𝜇 𝝆𝐴 𝑴𝜇
†

.𝜇                  [ 4 ] 

This gives the state obtained from 𝝆𝐴 after the unitary evolution of the combined 

system, defining the linear map 𝓛 that takes linear operators to linear operators. 

Besides, this map has the important property that   ∑ 𝑴𝜇 𝑴𝜇
†

𝜇 = 𝑰𝐴, which follows 

directly from the unitarity of 𝑼𝐴𝐵 : 

∑ 𝑴𝜇  𝑴𝜇
†

𝜇 =  ∑  ⟨0|𝑼𝐴𝐵
† |𝜇⟩𝐵𝐵

  ⟨𝜇𝐵
 |𝑼𝐴𝐵|0⟩𝐵𝜇  = ⟨0𝐵

 |𝑼𝐴𝐵𝑼𝐴𝐵
† |0⟩𝐵          [ 5 ] 

since the |𝜇⟩𝐵 form a basis (so ∑  |𝜇⟩𝐵 ⟨𝜇𝐵
 | = 𝑰𝐵⊗𝐵 𝜇 ). A map on linear operators that 

satisfies this property is known as quantum channel or superoperator. Similarly, Eq. [4] 
is called the operator-sum representation or Kraus representation of the quantum 

channel 𝓛 (and the 𝑴𝜇 are the Kraus operators). Of course, we have to check that the 

outputs of 𝓛 always satisfy the properties required of density matrices: hermiticity, unit 

trace, and positivity. This check is straightforward and available in Preskill’s notes. 

Similarly, Preskill shows that the converse direction is also true: for any given 

superoperator in operator-sum there is a corresponding unitary representation; this is 

the essence of the Kraus representation theorem. We omit the proof because we will 

not need to use this fact explicitly here. Instead, the next section focuses on the relation 

between the non-unitary evolution of system 𝐴, mediated by a quantum channel map, 

and the increase of decoherence in system 𝐴 (this is, increase of its entanglement with 

system 𝐵). 

 

2. Evolution of two-qubit system 

In this section, we focus on a two-qubit system as an illustrative example of the general 

dynamics introduced in the previous section. More concretely, we will show how unitary 

evolution of the two-qubit system can transform a pure state in 𝐴 into a mixed state, 

which means that decoherence increases in the process. Thus, let both 𝐴 and 𝐵 

represent single qubits, and consider a pure, uncorrelated initial state of the form: 

(𝛼|0⟩ + 𝛽|0⟩)𝐴 ⊗ |0⟩𝐵                    [ 6 ] 

where |𝛼|2 + |𝛽|2 = 1. This state is uncorrelated because of its simple tensor-product 

structure and, of course, follows from the initial state in the previous section simply by 

choosing 𝝆𝐴 to be a general pure state for a qubit. Now, an interaction between the two 

qubits is represented by some unitary transformation of the combined system, and 

example of which is: 

𝑈{(𝛼|0⟩ + 𝛽|1⟩)𝐴 ⊗ |0⟩𝐵} =  𝛼|0⟩
𝐴 ⊗ |0⟩𝐵 + 𝛽|1⟩

𝐴 ⊗ |1⟩𝐵.          [ 7 ] 
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This transformation is clearly unitary, because the length of the state |𝛼|2 + |𝛽|2 is 

conserved, so it is related to a particular quantum channel as derived in the previous 

section. In addition, we can see directly that the final state is in fact entangled, by noting 

that the outcome of a measurement in the {|0⟩𝐵 , |1⟩𝐵} basis will also project the final 
state |𝜓′⟩

𝐴
 of subsystem 𝐴 to a definite post-measurement result. This statement will 

be made quantitative in the next section, by calculating the increase in Schmidt number 

from the initial to the final density matrix. For now, note that the measurement induced 

in 𝐴 would be orthonormal in this scenario. But we can pick a different basis in 𝐵 for the 

expansion above, such that the measurement induced in 𝐴 is given by a non-orthogonal 

POVM; this alternative basis expansion will make it easier to rewrite the final state in 

terms of the Kraus operators, for consistency with the previous section. Clearly, an 

adequate choice of basis for these purposes is {|±⟩𝐵 =  
1

√2
(|0⟩𝐵  ± |1⟩𝐵)}. In fact, a 

measurement of 𝐵 in this basis is related to the following possible outcomes in 𝐴: 

𝛼|0⟩𝐴  ± 𝛽|1⟩𝐴 

which are only orthogonal to each other if |𝛼| =  |𝛽|. We can rewrite Eq. [7] in the new 

basis as: 

|𝜓′⟩
𝐴𝐵

=  𝑴+|𝜓⟩
𝐴

⊗ |+⟩𝐵 +  𝑴−|𝜓⟩
𝐴

⊗ |−⟩𝐵               [ 8 ] 

for the Kraus operators 𝑴+ =  
1

√2
[
𝟏 𝟎
𝟎 𝟏

] =
1

√2
𝑰 and 𝑴− =  

1

√2
[
𝟏 𝟎
𝟎 −𝟏

] =
1

√2
𝝈𝟑 . The 

explicit calculation is provided next in matrix notation:  

𝑴+|𝜓⟩
𝐴

=  
1

√2
[
𝟏 𝟎
𝟎 𝟏

] (𝛼 [
0
1

] + 𝛽 [
1
0

])  =  
𝛼

√2
[
1 · 0 + 0 · 1
0 · 0 + 1 · 1

] +  
𝛽

√2
[
1 · 1 + 0 · 0
0 · 1 + 1 · 0

] 

=
1

√2
[
𝛽
𝛼

] 

and similarly 𝑴−|𝜓⟩
𝐴

=
1

√2
[

𝛽
−𝛼

]. Therefore:  

𝑴+|𝜓⟩
𝐴

⊗ |+⟩𝐵 + 𝑴−|𝜓⟩
𝐴𝐵

⊗ |−⟩𝐵 =  
1

2
([

𝛽
𝛼

] ⊗ [
1
1

] + [
𝛽

−𝛼
] ⊗ [

1
−1

]) 

=
1

2
[

𝛽 + 𝛽
𝛽 − 𝛽
𝛼 − 𝛼
𝛼 + 𝛼

] =  [

𝛽
0
0
𝛼

] =  [
0
𝛼

] ⊗ [
0
1

] + [
𝛽
0

] ⊗ [
1
0

] =   𝛼|0⟩
𝐴 ⊗ |0⟩𝐵 + 𝛽|1⟩

𝐴 ⊗ |1⟩𝐵,  [ 9 ] 

as claimed above. 

3. Quantifying entanglement with the Schmidt number 

From Section 2.4 of Preskill’s Notes, we know that any state of a bipartite system can be 

put in the Schmidt decomposition form, which is especially convenient to compute the 

degree of entanglement between the two parts. In this section, we apply this procedure 

to the initial and final states examined for the two-qubit system in the previous section. 
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This will serve to compute exactly the amount of entanglement introduced by the 

unitary transformation 𝑈. 

First we remind the general procedure for representing a state through Schmidt 

decomposition. Remember that a general vector |𝜓⟩
𝐴𝐵

 in 𝐻𝐴 ⊗ 𝐻𝐵 can be written in 

terms of a basis formed by all tensor-product combinations of basis {|𝑖⟩
𝐴} for 𝐴 and 

{|𝜇⟩
𝐵

} for B: 

|𝜓⟩
𝐴𝐵

=  ∑ 𝑎𝑖𝜇|𝑖⟩
𝐴 ⊗ |𝜇⟩

𝐵𝑖,𝜇 = ∑ |𝑖⟩
𝐴 ⊗ |𝑖⟩

𝐵𝑖,𝜇               [ 10 ] 

 

where we absorb the coefficients into the basis elements from B, by defining |𝑖⟩
𝐵  ≡

∑ 𝑎𝑖𝜇|𝜇⟩
𝐵𝜇 . Besides, noting that we are interested in pure states of the combined 

system, we choose |𝑖⟩
𝐴  to be the basis that diagonalizes 𝝆𝐴. There is no reason a priori 

to believe that the new basis |𝑖⟩
𝐵 is still orthonormal. However, we previously showed 

(Preskill Section 2.4), by comparing the eigenvalue expansion of 𝝆𝐴 with its computation 

as a partial trace over 𝐵 of |𝜓⟩
𝐴𝐵

⟨𝜓𝐴𝐵
 |, that they are in fact orthogonal; and can be 

made orthonormal through the rescaling: |𝑖′⟩𝐵 =  𝑝𝑖
−1/2, where 𝑝𝑖  are the eigenvectors 

of 𝝆𝐴. This led us to the Schmidt decomposition of |𝜓⟩
𝐴𝐵

 relative to the particular basis 

for 𝐴 and 𝐵 that we started with: 

|𝜓⟩
𝐴𝐵

= ∑ √𝑝𝑖|𝑖⟩
𝐴 ⊗ |𝑖′⟩𝐵𝑖 .          [ 11 ] 

We also showed in a similar way that 𝝆𝐵 has the same non-zero eigenvalues than 𝝆𝐴. 

Then, we reasoned that, if 𝝆𝐴 and 𝝆𝐵 do not have non-zero degenerate eigenvalues, the 

Schmidt decomposition of |𝜓⟩
𝐴𝐵

 above is uniquely determined by the subsystem 

density matrices. This is because the expression above tells us to pair up the basis 

vectors that correspond to the same eigenvalues. In other words, in this case the 
arbitrary state |𝜓⟩

𝐴𝐵
 itself is determined exactly by the states of the two subsystems, 

given by 𝝆𝐴 and 𝝆𝐵.  

When both 𝝆𝐴 and 𝝆𝐵 represent pure states, the situation just described corresponds 

to no entanglement between the subsystems. More generally, we define the Schmidt 

number of |𝜓⟩
𝐴𝐵

 to be the number of non-zero eigenvalues of 𝝆𝐴 (or 𝝆𝐵), and say that 

the bipartite pure state is entangled or separable if and only if this number is greater 

than one. The reason for this definition is that, then, a separable bipartite pure state will 

always be given by the direct product of pure states in the individual subsystems: 

|𝜓⟩
𝐴𝐵

= |𝜑⟩
𝐴

⊗ |𝜒⟩
𝐵 

such that the reduced density operators will be pure: 𝝆𝐴 =  |𝜑⟩𝐴 ⟨𝜑|𝐴
  and 𝝆𝐵 =

 |𝜒⟩𝐵 ⟨𝜒|𝐵
 . In contrast, a state that cannot be expressed as such a direct product is 

entangled, and then the reduced density matrices represent mixed states.  

Now, let us go back to our two-qubit example in order to confirm that our initial states 

is indeed unentangled:  
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|𝜓⟩
𝐴𝐵

= (𝛼|0⟩ + 𝛽|0⟩)𝐴 ⊗ |0⟩𝐵 → 

𝝆𝐴 =  [(𝛼|0⟩ + 𝛽|0⟩)𝐴 ⊗ |0⟩𝐵][ ⟨0|𝐵
 ⊗ (𝛼∗⟨0| + 𝛽∗⟨0|)𝐵

 ] 

=  [(
0

𝛼 + 𝛽
) ⊗ (

0
1

)] [(0 1) ⊗ (0 𝛼∗ + 𝛽∗)] 

=  [

0
0
0

𝛼 + 𝛽

] [0 0 0 𝛼∗ + 𝛽∗] =  [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ |𝛼|2 + |𝛽|2 + 𝛼𝛽∗ + 𝛽𝛼∗

]        [ 12 ] 

Where the omitted entries equal zero, so that 𝝆𝐴 is already diagonal and has only |𝛼|2 +

|𝛽|2 + 𝛼𝛽∗ + 𝛽𝛼∗ as a non-zero (diagonal) entry. Therefore, the Schmidt number of the 

initial state is 1, and the state is unentangled.  

In a similar way, we find the Schmidt number corresponding to the final state obtained 

after applying the unitary time evolution: 

|𝜓′⟩
𝐴𝐵

= 𝛼|0⟩
𝐴 ⊗ |0⟩𝐵 + 𝛽|1⟩

𝐴 ⊗ |1⟩𝐵 → 

𝝆′𝐴 = [𝛼|0⟩
𝐴 ⊗ |0⟩𝐵 + 𝛽|1⟩

𝐴 ⊗ |1⟩𝐵][𝛼|0⟩
𝐴 ⊗ |0⟩𝐵 + 𝛽|1⟩

𝐴 ⊗ |1⟩𝐵]
†
 

=  [

𝛽
0
0
𝛼

] [𝛽∗ 0 0 𝛼∗] = [
|𝛽|2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ |𝛼|2

]           [ 13 ] 

where again we omit the zero entries, and we have used the result 𝛼|0⟩
𝐴 ⊗ |0⟩𝐵 +

𝛽|1⟩
𝐴 ⊗ |1⟩𝐵 =  [

𝛽
0
0
𝛼

]   found in Eq. [9] in the previous section. Again, we can simply read 

out that 𝝆′𝐴  has two non-zero eigenvalues (|𝛽|2 and |𝛼|2). This confirms that the 

Schmidt number of the final state is two, so that the qubits are now entangled to each 

other as a result of the unitary evolution.  

4. Conclusion 

The simple example in this paper illustrates how quantum channels that transform a 

subsystem in a non-unitary way have the potential to introduce decoherence in the 

subsystem, due to interactions with the environment. Indeed, preventing this 

decoherence in a variety of systems in a major current research topic in quantum 

information, especially in the context of engineering hardware for quantum 

computation that can operate without “becoming classical” due to interactions with the 

environment. In this sense, small systems of a few degrees of freedom are easier to 

isolate and in fact represent every existing quantum computer existing to this day; while 

scaling these systems to a size large enough for powerful computations is a major 

challenge for the field in which technological progress is currently being made. 
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