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Abstract
In this paper, we focus on the subject of Schauder bases or simply

bases for infinite-dimensional Banach spaces and discuss various exam-
ples of such bases as well as several important generic properties and
characterizations. These are based on a collection of results contained in
an article written by Robert C. James [3].

1 Introduction
One of the important topics covered in an introductory linear algebra course is
the concept of real/complex vector space and the related notion of dimension,
which is almost exclusively discussed in the finite-dimensional setting. The only
exception are usually the vector space of polynomials for which

{1, x, x2, . . . , xn, . . .}

is indicated as a basis and the vector space of real or complex-valued continuous
functions defined on an interval of R for which the previous set is argued to be
linearly independent.

One of the goals of this paper is to look at particular infinite-dimensional
vector spaces and their bases, which are the Banach spaces and the related
Schauder bases. In this direction, we discuss a number of well-known, important
Banach spaces, for which we specify precise bases. The second goal here is
to present several characterizations and properties for generic Schauder bases,
which allow us to cover bases for other important functional, Banach spaces.

We start by recalling the classical terminology (e.g., definitions, notations)
associated to Banach spaces, as well as important well-known results which are
used later in the presentation. Next, we discuss several examples of canonical
Banach spaces (e.g., Hilbert spaces, c0, lp with 1 ≤ p < ∞) and their bases,
followed by a worked out nontrivial example of a basis for C([0, 1]) which relies
upon dyadic points. Following this, we present an abstract characterization
theorem for Schauder bases which involves a very specific inequality. As an
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application of this result, we show that the Haar system of functions forms a
basis for the Banach space Lp([0, 1]), for each 1 ≤ p < ∞. Finally, we discuss
a result which states that a sequence of points in a Banach space which is
“reasonably close” to a basis is itself a basis.

2 Preliminaries
First, we remember that:

Definition 2.1. X is a vector space over a field of scalars F = R or C if one
has two operations

+ : X ×X → X and · : F ×X → X

such that (X,+) is a commutative group and

(a · b) · v = a · (b · v), 1 · v = v, (∀) a, b ∈ F, v ∈ X,

a · (u+ v) = a · u+ a · v, (a+ b) · v = a · v + b · v, (∀) a, b ∈ F, u, v ∈ X.

Based on this concept, we introduce:

Definition 2.2. X is a Banach space if X is a vector space with

‖ · ‖ : X → R+

satisfying ‖v‖ = 0 iff v = 0,

‖av‖ = |a|‖v‖, ‖u+ v‖ ≤ ‖u‖+ ‖v‖, (∀) a ∈ F, u, v ∈ X,

and (X, d) is a complete metric space with

d(u, v) := ‖u− v‖, (∀)u, v ∈ X.

An important category of Banach spaces are the Hilbert spaces.

Definition 2.3. X is a Hilbert space if X is a Banach space with a inner product

〈·, ·〉 : X ×X → F

satisfying

〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉, (∀)u1, u2, v ∈ X,

〈au, v〉 = a〈u, v〉, (∀) a ∈ F, u, v ∈ X,

〈v, u〉 = 〈u, v〉, (∀)u, v ∈ X,

〈u, u〉 = ‖u‖2, (∀)u ∈ X.

Other important examples of Banach spaces are as follows.
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Example 2.1. X = c0 is the vector space of all real sequences u = {un}n≥1

for which
lim

n→∞
un = 0

and
‖u‖ = max

n≥1
{|un|}.

Example 2.2. X = lp with 1 ≤ p < ∞ is the vector space of all real sequences
u = {un}n≥1 for which ∑

n≥1

|un|p < ∞

and

‖u‖ =

∑
n≥1

|un|p
1/p

.

Example 2.3. X = C([a, b]) with a < b ∈ R is the vector space of continuous
functions f : [a, b] → R with

‖f‖ = max
x∈[a,b]

|f(x)|.

It is easily seen that the convergence in norm coincides with the uniform con-
vergence of functions on [a, b].

Example 2.4. By slight abuse, we let X = Lp([a, b]) with 1 ≤ p < ∞ and
a < b ∈ R be the vector space of Lebesgue measurable functions f : [a, b] →
R = [−∞,∞] for which ∫ b

a

|f(x)|p dλ(x) < ∞,

where λ is the restriction of Lebesgue measure to [a, b] and

‖f‖ =

(∫ b

a

|f(x)|p dλ(x)

)1/p

.

At some point, we will use the following fundamental result for mappings
between Banach spaces.

Theorem 2.1 (Inverse mapping theorem). Let T : X → Y be a continuous,
bijective linear mapping; i.e.,

T (u+ v) = T (u) + T (v), T (av) = aT (v), (∀) a ∈ F, u, v ∈ X,

and
‖T‖ := sup

∥u∥≤1

‖T (u)‖ < ∞.

Then T−1 : Y → X is also continuous.
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We end this section with another definition.

Definition 2.4. a ∈ R is called a dyadic point if

a =
m

2n

where m ∈ Z, n ∈ Z, and n ≥ 0.

3 Canonical examples of Schauder bases
Here we are starting in earnest our discussion of bases in Banach spaces.

Definition 3.1. Let X be a Banach space. A sequence {en}n≥1 ⊂ X is called
a Schauder basis or simply a basis for X if for any x ∈ X there exists a unique
sequence {xn}n≥1 ⊂ R such that

x =
∑
n≥1

xnen,

in the sense that

lim
n→∞

∥∥∥∥∥x−
n∑

i=1

xiei

∥∥∥∥∥ = 0.

The first example of a Schauder basis is in the context of Hilbert
spaces.

Proposition 1. Let {en}n≥1 ⊂ X be a complete orthonormal sequence in the
Hilbert space X; i.e.,

〈en, em〉 = δnm, (∀)n,m ≥ 1,

(〈u, en〉 = 0, (∀)n ≥ 1 =⇒ u = 0) .

Then {en}n≥1 represents a basis for X.

Proof. First, we show that for any x ∈ X,

x =
∑
n≥1

〈x, en〉 en. (1)

We fix k ≥ 1 and argue that〈
x−

∑
n≤k

〈x, en〉 en,
∑
n≤k

〈x, en〉 en

〉

=

〈
x,
∑
n≤k

〈x, en〉 en

〉
−

〈∑
n≤k

〈x, en〉 en,
∑
n≤k

〈x, en〉 em

〉
=
∑
n≤k

|〈x, en〉|2 −
∑

n,m≤k

〈x, en〉〈x, em〉δnm = 0.
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Hence, we can apply the Pythagorean theorem and deduce∥∥∥∥∥∥x−
∑
n≤k

〈x, en〉en

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
n≤k

〈x, en〉en

∥∥∥∥∥∥
2

= ‖x‖2. (2)

On the other hand, we have that∥∥∥∥∥∥
∑

k1≤n≤k2

〈x, en〉 en

∥∥∥∥∥∥
2

=
∑

k1≤n≤k2

〈x, en〉 〈x, en〉 =
∑

k1≤n≤k2

| 〈x, en〉 |2 (3)

for all 1 ≤ k1 ≤ k2. These two facts jointly imply that∑
n≥1

|〈x, en〉|2 < ∞

and, thus,
k 7→

∑
n≤k

|〈x, en〉|2

is a Cauchy sequence. Factoring in again (3), it follows that

k 7→
∑
n≤k

〈x, en〉en

is a Cauchy sequence in X and, hence, convergent.
If we let

lim
k→∞

∑
n≤k

〈x, en〉en = t,

then, for an arbitrary fixed j ≥ 1, we derive

〈x− t, ej〉 = lim
k→∞

〈x−
∑
n≤k

〈x, en〉en, ej〉 = 〈x, ej〉 − lim
k→∞

∑
n≤k

〈x, en〉δnj

= lim
k→∞

〈x, ej〉 − 〈x, ej〉 = 0.

Using the completeness of {en}n≥1, we obtain that t = x and the proof of (1)
is finished.

Secondly, we show the uniqueness of the representation of x as
∑

n≥1 xnen.
By linearity of the limits in normed spaces, it is enough to show that∑

n≥1

xnen = 0 =⇒ xn = 0, (∀)n ≥ 1.

By definition, the left-hand side is equivalent to

lim
k→∞

∥∥∥∥∥∥
∑
n≤k

xnen

∥∥∥∥∥∥
2

= 0.

5



However, one can obtain relatively easy that∥∥∥∥∥∥
∑
n≤k

xnen

∥∥∥∥∥∥
2

=
∑
n≤k

|xn|2,

which implies
lim
k→∞

∑
n≤k

|xn|2 =
∑
n≥1

|xn|2 = 0.

Thus, xn = 0 for all n ≥ 1 and the argument is completed.

Next, we claim that both c0 and lp (with 1 ≤ p < ∞) have {en}n≥1

as a Schauder basis where

en = (0, . . . , 0, 1, 0, . . .)

and 1 is in the n-th position. We present the proof only for the space lp.

Proposition 2. {en}n≥1 defined above is a basis for lp for any 1 ≤ p < ∞.

Proof. First, we show that for any x ∈ lp one has

x =

∞∑
n=1

xnen,

where
x = (x1, x2, . . . , xn, . . .).

Indeed, for a fixed m ≥ 1, we infer

x−
m∑
i=1

xiei = (0, . . . , 0, xm+1, xm+2, . . .)

and, hence, ∥∥∥∥∥x−
m∑
i=1

xiei

∥∥∥∥∥ =

( ∞∑
i=m+1

|xi|p
)1/p

.

However, as x ∈ lp, we derive ∞∑
n≥1

|xn|p
1/p

= ‖x‖ < ∞

and, thus,

lim
m→∞

∞∑
i=m+1

|xi|p = 0.
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This yields

lim
m→∞

∥∥∥∥∥x−
m∑
i=1

xiei

∥∥∥∥∥ = 0

and the claim is proven.
To finish, we need to show the uniqueness of the representation x =

∑∞
n=1 xnen.

For this purpose, like in the proof of the previous proposition, we invoke the
linearity of limits and argue that it is enough to prove that

∞∑
n=1

anen = 0 =⇒ an = 0, (∀)n ≥ 1.

By definition, the left-hand side is equivalent to

lim
k→∞

∥∥∥∥∥∥
∑
n≤k

anen

∥∥∥∥∥∥ = 0.

However, we can infer directly that∥∥∥∥∥∥
∑
n≤k

anen

∥∥∥∥∥∥
p

=
∑
n≤k

|an|p,

which implies ∑
n≥1

|an|p = 0.

This obviously yields an = 0 for all n ≥ 1 and the proof of the proposition is
finished.

To conclude this section, we present a basis for C([0, 1]), which is not
as natural and easy to find like the ones for the previously discussed Banach
spaces. We start by listing the dyadic points in [0, 1] in the form of a sequence
{tn}n≥1 with

t1 = 0, t2 = 1, t3 =
1

2
, t4 =

1

4
, t5 =

3

4
, t6 =

1

8
, t7 =

3

8
, t8 =

5

8
, . . .

With the help of this sequence, we define the sequence of functions {fn}n≥1 ⊂
C([0, 1]) as follows:

f1 ≡ 1, f2(t) = t, (∀) t ∈ [0, 1];

n > 2, fn(tj) = 0, (∀)1 ≤ j < n; fn(tn) = 1, and
fn is linear between any consecutive points of the first n dyadic points.

(4)

The figure below contains the graphs of the first five terms of this sequence
of functions.
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Figure 1: {fn}5n=1

The main result we have here is:

Proposition 3. The sequence {fn}n≥1 represents a Schauder basis for C([0, 1]).

Proof. In arguing for this result, we show first that if for some g ∈ C([0, 1]) one
has

g =
∑
n≥1

anfn, (5)

then necessarily

a1 = g(0), an = g(tn)−
∑

1≤j≤n−1

ajfj(tn), (∀)n ≥ 2. (6)

This clearly proves the uniqueness of such representations for elements of C([0, 1]).
We recall that norm convergence in C([0, 1]) is equivalent to uniform conver-
gence, which implies pointwise convergence. Thus, from (5), we infer that

lim
k→∞

∑
n≤k

anfn(tj) = g(tj), (∀) j ≥ 1.

By using (4) and choosing k > j, we deduce∑
n≤k

anfn(tj) =
∑
n≤j

anfn(tj),

which implies ∑
n≤j

anfn(tj) = g(tj), (∀) j ≥ 1. (7)
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Therefore, by taking consecutive values of j in an increasing way, we obtain

g(0) = g(t1) = a1f1(t1) = a1,

g(tj) =
∑

1≤n≤j−1

anfn(tj) + ajfj(tj) =
∑

1≤n≤j−1

anfn(tj) + aj

=⇒ aj = g(tj)−
∑

1≤n≤j−1

anfn(tj), (∀) j ≥ 2

and this proves (6).
Now, all which is left to prove is that, for an arbitrary g ∈ C([0, 1]), the

representation (5) is indeed valid if {an}n≥1 are given by (6). For this purpose,
let us define

Pj =
∑
n≤j

anfn, (∀) j ≥ 1,

and argue that
lim
j→∞

‖Pj − g‖ = 0. (8)

First, we rely on (4) and (6) to infer that

Pj(tk) =
∑
n≤j

anfn(tk) =
∑
n≤k

anfn(tk) = g(tk), (∀) k ≤ j. (9)

Secondly, the first N = 2n + 1 dyadic points are

0, 1,
1

2
,
1

4
,
3

4
, . . . ,

2n − 1

2n
,

and the distance between any two of their consecutive images (as graphed on
the real line) is precisely 1/2n. Thus, if one considers the first N ≥ 2n+1 dyadic
points, the previous distance becomes at most equal to 1/2n.

Next, we fix ϵ > 0 and, based on g being uniformly continuous on [0, 1] (as a
continuous function on a compact set), deduce the existence of δ > 0 such that

|g(x)− g(y)| < ϵ, (∀)x, y ∈ [0, 1], |x− y| < δ.

Then, with the help of the Archimedean property, we choose nδ ≥ 1 integer
such that 1/2nδ < δ and take N > 2nδ to be an arbitrary integer. It follows
from previous facts that if

{t1, t2, . . . , tn} = {tj1 < tj2 < . . . < tjN },

then
|g(tji)− g(tji+1

)| < ϵ, (∀)1 ≤ i ≤ N − 1.

Let us consider now x ∈ [tji , tji+1
] and, since PN is linear on [tji , tji+1

], we
deduce from (9) that

|PN (tji)− PN (x)| ≤ |PN (tji)− PN (tji+1
)| = |g(tji)− g(tji+1

)| < ϵ.

9



On the other hand, since

|x− tji | ≤ |tji − tji+1
| < δ,

we derive from (3) that
|g(x)− g(tji)| < ϵ.

Given that PN (tji) = g(tji), the triangle inequality implies

|g(x)− PN (x)| ≤ |g(x)− g(tji)|+ |PN (tj1)− PN (x)| < 2ϵ.

As both the interval [tji , tji+1
] and x ∈ [tji , tji+1

] were chosen arbitrarily, we
conclude that

‖PN − g‖ < 2ϵ, (∀)N > 2nδ ,

and, hence, the argument for (8) is finished.

4 Another way of testing whether {en}n≥1 forms
a basis

By the definition of basis, we can see clearly that if {en}n≥1 is a basis for X,
we get span{en}n≥1 = X. So, the next question would be to ask whether this
is an if and only if statement. Unfortunately, even when we add the condition
that each en is linearly independent, we cannot guarantee it forms a basis. One
example of this is when we consider X = C[0, 1], and {en}n≥1 = {tm}m≥0 where
{tm}m≥0 is the sequence of polynomials.

Therefore, the next natural question is what other conditions are needed for
the sufficiency to be true. The following theorem would give us some idea.

Theorem 4.1. If {en}n≥1 ⊂ X satisfying

span{{en}n≥1} = X,

en 6= 0,∀n ≥ 1,

then {en}n≥1 is a basis for X if and only if ∃K > 0,∀n, p ∈ N and scalars {ai}i≥1

such that

K||
n+p∑
i=1

aiei|| ≥ ||
n∑

i=1

aiei||.

Proof. First, we show the necessity. In order to do so, we introduce a new
norm ||| · |||, and use inverse mapping theorem on the two spaces (X, ||| · |||) and
(X, || · ||) to construct the K we are looking for.

Definition 4.1. ∀x =
∑∞

i=1 xiei we define

|||x||| = sup

{∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ : n ≥ 1

}
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To show it is a norm, we do the following three verification:

|||x||| = 0 ⇐⇒ sup

{∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ : n ≥ 1

}
= 0

⇐⇒

∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ = 0,∀n ≥ 1 ⇐⇒ x = 0;

|||ax||| = sup

{
a

∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ : n ≥ 1

}

= a sup

{∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ : n ≥ 1

}
= a|||x|||;

|||x+ y||| = sup

{∥∥∥∥∥
n∑

i=1

(xi + yi)ei

∥∥∥∥∥ : n ≥ 1

}

≤ sup

{∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥+
∥∥∥∥∥

n∑
i=1

yiei

∥∥∥∥∥ : n ≥ 1

}

≤ sup

{∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ : n ≥ 1

}
+ sup

{∥∥∥∥∥
n∑

i=1

yiei

∥∥∥∥∥ : n ≥ 1

}
= |||x|||+ |||y|||.

And this shows ||| · ||| is indeed a norm.
Then, we want to show that X is complete given this new norm,

i.e. taking any Cauchy sequence {xn}n≥1 ⊂ X under the norm ||| · |||, want to
show ∃x ∈ X such that

lim
n→∞

|||xn||| = |||x|||.

Since {xn}n≥1 is Cauchy, ∀ϵ > 0,∃nϵ such that

∀n,m ≥ nϵ, |||xn − xm||| < ϵ where xn, xm ∈ X.

Notice that we can write xn =
∑

k≥1 an,kek, x
m =

∑
k≥1 am,kek for some scalars

{an,k}k≥1, {am,k}k≥1. Therefore,

|||xn − xm||| = |||
∑
k≥1

(an,k − am,k)ek||| < ϵ,

which implies

∀t ≥ 1,

∥∥∥∥∥∥
∑
k≤t

(an,k − am,k)ek

∥∥∥∥∥∥ < ϵ. (10)
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Using 10 and triangle inequality, we get

||(an,t − am,t)et|| =

∥∥∥∥∥∥
∑
k≤t

(an,k − am,k)ek −
∑

k≤t−1

(an,k − am,k)ek

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
k≤t

(an,k − am,k)ek

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑

k≤t−1

(an,k − am,k)ek

∥∥∥∥∥∥
< 2ϵ.

Therefore
|an,t − am,t| <

2ϵ

||et||
,

for all n > m ≥ nϵ and for all t and thus, we get {an,t}n≥1 is Cauchy.
Let bt = limn→∞ an,t, using 10 again, we get

lim
n→∞

∥∥∥∥∥∥
∑
k≤t

(an,k − am,k)ek

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
k≤t

(bk − am,k)ek

∥∥∥∥∥∥ ≤ ϵ, (11)

for all m ≥ nϵ and for all t ≥ 1. Then, we want to show {
∑

p≤n bpep}n≥1 ⊂ X
is Cauchy, since once it is Cauchy, we would get

∑
p≥1 bpep ∈ X, which will be

the ideal candidate for x.
Notice that by triangle inequality ∀n1, n2 ∈ N∥∥∥∥∥∥
∑
p≤n1

bpep −
∑
p≤n2

bpep

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑
p≤n1

(bp − am,p)ep

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
p≤n2

(bp − am,p)ep

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑
p≤n1

am,pep −
∑
p≤n2

am,pep

∥∥∥∥∥∥ .
By picking m ≥ nϵ, along with 11, we get∥∥∥∥∥∥

∑
p≤n1

(bp − am,p)ep

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
p≤n2

(bp − am,p)ep

∥∥∥∥∥∥ ≤ 2ϵ.

Also notice that
∑

k≥1 am,kek is Cauchy, so we have ∀ϵ > 0,∃Nϵ, such that
∀n1, n2 ≥ Nϵ ∥∥∥∥∥∥

∑
p≤n1

am,pep −
∑
p≤n2

am,pep

∥∥∥∥∥∥ < ϵ.

These two facts jointly imply that ∀ϵ > 0,∃Nϵ, ∀n1, n2 > Nϵ∥∥∥∥∥∥
∑
p≤n1

bpep −
∑
p≤n2

bpep

∥∥∥∥∥∥ ≤ 3ϵ,
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which implies ∑
p≥1

bpep ∈ X.

Let x =
∑

p≥1 bpep ∈ X. By 11, we get

|||x− xm||| = sup
n≥1

∥∥∥∥∥∥
∑
p≤n

(bp − am,p)ep

∥∥∥∥∥∥ ≤ ϵ,

for all m ≥ nϵ,∀t ≥ 1. Therefore, xm → x under ||| · |||, hence X is complete
under this norm, and (X, ||| · |||) is Banach.

Define I to be the identity map from (X, ||| · |||) → (X, || · ||). Trivially
followed by how we define ||| · |||, I is a continuous mapping. Hence, by the
Inverse Mapping Theorem I−1 is also continuous, and clearly, I−1 is also a
linear map, so |||I−1||| is bounded. Which means |||I−1||| < ∞.

Let K = |||I−1|||, we have

|||x||| = |||I−1x||| ≤ |||I−1||| · ||x|| = K||x||,

for all x ∈ X. Therefore

sup
j≥1

∥∥∥∥∥∥
∑
i≤j

ciei

∥∥∥∥∥∥ ≤ K

∥∥∥∥∥∥
∑
i≥1

ciei

∥∥∥∥∥∥ ,
for all scalars {ci}i≥1.

In order to get ||
∑n

i=1 aiei|| ≤ K||
∑n+p

i≥1 aiei||, for any scalars {ai}i≥1,∀n, p ∈
N, we define ci as below

ci =

{
ai i ≤ n+ p

0 i > n+ p,

and, thus, ∑
i≤j

ciei =

min{j,n+p}∑
i=1

aiei,

∑
i≥1

ciei =

n+p∑
i=1

aiei.

Therefore, ||
∑n

i=1 aiei|| ≤ supj≥1 ||
∑min{j,n+p}

i=1 aiei|| ≤ K||
∑n+p

i≥1 aiei||.
Secondly, we show the sufficiency. In order to do so, we use the definition of

a basis, which requires uniqueness of the scalars {xn}n≥1, and x =
∑∞

n=1 xnen.
Recall that uniqueness means for any scalars {bi}i≥1, {ci}i≥1,∑

i≥1

biei =
∑
i≥1

ciei =⇒ bi = ci, (∀) i ≥ 1
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Nevertheless,
∑

i≥1 biei =
∑

i≥1 ciei gives us
∑

i≥1(bi − ci)ei = 0. It’s now
equivalent as showing for any scalars {ai}i≥1,∑

i≥1

aiei = 0 =⇒ ai = 0, (∀) i ≥ 1.

In order to prove the statement above, we start off by defining Sk =
∑

i≤k aiei,
with limk→∞ Sk = 0. Then, ∃K such that for all k1 < k2, ||Sk1

|| ≤ K||Sk2
||. In

particular, for all l > 1, we have ||S1|| ≤ K||Sl||. And notice that

lim
l→∞

K||Sl|| = 0 =⇒ ||S1|| ≤ 0 =⇒ ||a1e1|| = 0 =⇒ a1 = 0.

Therefore, the base case is true. By weak induction, we suppose ∀i ≤ n, ai = 0,
and want to show an+1 = 0. In this case, for all l > n+ 1

||Sn+1|| = ||Sn + an+1en+1|| = ||an+1en+1|| ≤ K||Sl||,

and by the exact argument as the base case, we get an+1 = 0.
Hence, by induction we get ai = 0,∀i ≥ 1. And the proof for uniqueness is

completed.
We move on to proving x =

∑∞
n=1 xnen, and to do so we start off

by defining
Y = {x ∈ X : x =

∑
i≥1

aiei},

and our goal is to show Y = X.
Notice that ∀x ∈ span{ei}i≥1 we can write

x = a1ei1 + ....+ akeik , for some k ≥ 1

which is clearly in Y . Hence, span{ei}i≥1 ⊂ Y . So if we can show Y is a closed
linear space, we would get X = span{ei}i≥1 ⊆ Y = Y .

To show Y is closed, we take any convergent sequence {xn}n≥1 ⊂ Y , and
want to show x = limn→∞ xn ∈ Y .

Since {xn}n≥1 ⊂ Y , we have xn =
∑

k≥1 an,kek, x
m =

∑
k≥1 am,kek for

some scalars {an,k}k≥1, {am,k}k≥1. Then, ∃K > 0 such that∥∥∥∥∥∥
∑
k≤t

(an,k − am,k)ek

∥∥∥∥∥∥ ≤ K

∥∥∥∥∥∥
∑

k≤t+p

(an,k − am,k)ek

∥∥∥∥∥∥ , (∀) t, p ∈ N

And when taking p → ∞, we have ∀n,m ≥ 1, t ∈ N∥∥∥∥∥∥
∑
k≤t

(an,k − am,k)ek

∥∥∥∥∥∥ ≤ K

∥∥∥∥∥∥
∑

k≤t+p

(an,k − am,k)ek

∥∥∥∥∥∥ = ||xn − xm||. (12)
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By triangle inequality, we get

||(an,t − am,t)et|| =

∥∥∥∥∥∥
∑
k≤t

(an,k − am,k)ek −
∑

k≤t−1

(an,k − am,k)ek

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
k≤t

(an,k − am,k)ek

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑

k≤t−1

(an,k − am,k)ek

∥∥∥∥∥∥
≤ 2K||xn − xm||,

which implies
|an,t − am,t| ≤

2K||xn − xm||
||et||

.

Using the fact that {xn}n≥1 is convergent, and hence, Cauchy, we have ∀ϵ >
0,∃N , ∀n,m ≥ N

||xn − xm|| < ||et||ϵ
2K

.

The above two facts jointly imply that

|an,t − am,t| < ϵ.

and, thus {an,t}n≥1 is Cauchy, hence, convergent. Then, for all t ≥ 1, we define
bt = limn→∞ an,t, and want to show

x =
∑
k≥1

bkek,

By triangle inequality, we have∥∥∥∥∥∥
∑
k≤t

bkek − x

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑
k≤t

(bk − an,k)ek

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
k≤t

an,kek − xn

∥∥∥∥∥∥+ ||xn − x||.

Using 12, and take n → ∞, we get ∀t ≥ 1∥∥∥∥∥∥
∑
k≤t

(bk − an,k)ek

∥∥∥∥∥∥ = lim
m→∞

∥∥∥∥∥∥
∑
k≤t

(am,k − an,k)ek

∥∥∥∥∥∥
≤ lim

m→∞
K||xm − xn|| = K||x− xn||.

Therefore ∥∥∥∥∥∥
∑
k≤t

bkek − x

∥∥∥∥∥∥ ≤ (K + 1)||xn − x||+

∥∥∥∥∥∥
∑
k≤t

an,kek − xn

∥∥∥∥∥∥ .
Since limn→∞ xn = x, we have

∀ϵ > 0,∃N ′ > 0,∀n > N ′, ||xn − x|| < ϵ

2(K + 1)
.
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On the other hand, by definition of xn, we have ∀ϵ > 0,∃N ′′ > 0

∀t > N ′′,

∥∥∥∥∥∥
∑
k≤t

an,kek − xn

∥∥∥∥∥∥ <
ϵ

2
.

Hence ∀t > N ′′, ∥∥∥∥∥∥
∑
k≤t

bkek − x

∥∥∥∥∥∥ ≤ (K + 1) · ϵ

2(K + 1)
+

ϵ

2
= ϵ,

which implies
x =

∑
k≥1

bkek.

Therefore, x ∈ Y , and hence, Y is a closed linear space. We have X = Y , which
implies

∀x ∈ X,x =

∞∑
n=1

xnen.

5 Applications of Theorem 4.1
In this section, we will use Theorem 4.1 to help us check whether {en}n≥1 is
indeed a basis for a Banach Space by two examples.

The first example is in the context of Lp[0, 1] space. We start by
introducing the Haar System.

Definition 5.1. For any fixed r ∈ N, we take a partition of [0, 1] into intervals
of length 1

2r , denoted each sub-interval by {Irj : 1 ≤ j ≤ 2r}. For 1 ≤ k ≤ 2r−1,
we define χ2r−1+k = χ

Ir
2k−1

− χ
Ir
2k

, and χ1 = χ(0,1). The set {χn}n≥1 is called
Haar system.

Notice that in Haar system

χ1 = χ(0,1)

χ2 = χ(0, 12 )
− χ( 1

2 ,1)

χ3 = χ(0, 14 )
− χ( 1

4 ,
1
2 )
;χ4 = χ( 1

2 ,
3
4 )

− χ( 3
4 ,1)

χ5 = χ(0, 18 )
− χ( 1

8 ,
1
4 )
;χ6 = χ( 1

4 ,
3
8 )

− χ( 3
8 ,

1
2 )
;χ7 = χ( 1

2 ,
5
8 )

− χ( 5
8 ,

3
4 )
;χ8 = χ( 3

4 ,
7
8 )

− χ( 7
8 ,1)

...
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Remark.

χ(0,1) = χ1;

χ(0, 12 )
=

χ1 + χ2

2
, χ( 1

2 ,1)
=

χ1 − χ2

2
;

χ(0, 14 )
=

χ(0, 12 )
+ χ3

2
, χ( 1

4 ,
1
2 )

=
χ(0, 12 )

− χ3

2
,

χ( 1
2 ,

3
4 )

=
χ( 1

2 ,1)
+ χ4

2
, χ( 3

4 ,1)
=

χ( 1
2 ,1)

− χ4

2
;

...

Corollary 5.0.1. Span of the Haar system covers χ
Ir
j
,∀r ≥ 1, 1 ≤ j ≤ 2r.

Proof. We use induction on r to prove this Corollary.
Base case: When r = 1, we have

χ(0, 12 )
=

χ1 + χ2

2
, χ( 1

2 ,1)
=

χ1 − χ2

2
;

Suppose it is true for all r ≤ t, want to show it’s true for r = t+ 1. Notice
that ∀1 ≤ j ≤ 2t+1, if we look at the interval ( j

2t+1 ,
j+1
2t+1 ), we know at least one

of j, j + 1 is even.
If j is even, let p = j

2 , we know

j

2t+1
=

p

2t
,
j + 2

2t+1
=

p+ 1

2t
=⇒

(
j

2t+1
,
j + 1

2t+1

)
⊊
(

p

2t
,
p+ 1

2t

)
By weak induction, we know

χ( p

2t
, p+1

2t
) ∈ span{χn}.

On the other hand, there exists α ∈ N such that

χα = χ( j

2t+1 , j+1

2t+1 ) − χ( j+1

2t+1 , j+2

2t+1 ) ∈ span{χn}n≥1.

Therefore

χ( j

2t+1 , j+1

2t+1 ) =
χ( p

2t
, p+1

2t
) + χα

2
∈ span{χn}n≥1.

A similar argument would work for j + 1 is even.
Hence, by weak induction, span{χn}n≥1 covers χIr

j
,∀r ≥ 1, 1 ≤ j ≤ 2r.

Corollary 5.0.2. Dyadic points are dense in [0, 1].

Proof. For any x ∈ [0, 1], we can write it in binary form x =
∑∞

i=1
xi

2i . Then,
each partial sum

∑n
i=1

xi

2i is a dyadic point. Therefore, x can be approximated
by a sequence of dyadic point. Hence, the dyadic points are dense.
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Proposition 4. {χn}n≥1 is a Basis for Lp[0, 1], for any fixed p, 1 ≤ p < ∞.

Proof. In order to use Theorem 4.1, we first show that span{{χn}n≥1} =
Lp[0, 1]. We let A be the set of dyadic points.

Remark. A has Lebesgue measure 0.

Remark. The end points Irj ,∀r ≥ 1, 1 ≤ j ≤ 2r are in A.

By Corollary 5.0.1 and Corollary 5.0.2, we have A = [0, 1], and hence,

∀I ⊆ [0, 1], I ∈ span{χn}n≥1.

Therefore, span{χn}n≥1 = Lp([0, 1]).
Secondly, we want to show χn 6≡ 0,∀n ≥ 1. But this is follows trivially

from χn = χIr
j
− χIr

j+1
, for some r ≥ 1, j ≥ 1, and the fact that µ(Irj ) =

µ(Irj+1) =
1
2r > 0.

Lastly, we are left to show ∃K > 0,∀n, p ∈ N,∃{ai}i≥1

K||
n+p∑
i=1

aiei|| ≥ ||
n∑

i=1

aiei||.

In order to do so, let’s prove something stronger, that is K||
∑n+1

i=1 aiχi|| ≥
||
∑n

i=1 aiχi||, which will trivially give us what we want.
We define

f =

n∑
i=1

aiχi, g =

n+1∑
i=1

aiχi = f + an+1χn+1.

and want to show ∃K > 0 such that K||g|| ≥ ||f ||.

Remark. For all x ∈ [0, 1], if we have χn+1(x) = 0, then g(x) = f(x), i.e., for
all x ∈ [0, 1] \ suppχn+1, g(x) = f(x).

Let suppχn+1 be In+1. We have

||f ||p =

∫
[0,1]

|f |p =

∫
[0,1]\In+1

|f |p +
∫
In+1

|f |p

||g||p =

∫
[0,1]

|g|p =

∫
[0,1]\In+1

|f |p +
∫
In+1

|g|p

Hence, it is enough to show
∫
In+1

|g|p ≥
∫
In+1

|f |p. Since In+1 is the interval
where χn+1 6= 0, we know there exists two disjoint sub-intervals I ′n+1, I

′′
n+1

where I ′n+1 ∪ I ′′n+1 = In+1, and µ(I ′n+1) = µ(I ′′n+1) =
µ(In+1)

2 , with χn+1 = 1 on
I ′n+1 and χn+1 = −1 on I ′′n+1, which implies

g = f + an+1 on I ′n+1

g = f − an+1 on I ′′n+1
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and, hence, ∫
In+1

|g|p =

∫
I′
n+1

|g|p +
∫
I′′
n+1

|g|p

=

∫
I′
n+1

|f + an+1|p +
∫
I′′
n+1

|f − an+1|p

Remark. ∀j ∈ N, j < n + 1, we have either Ij ∩ In+1 = ϕ or In+1 ⊂ Ij with
either In+1 ⊆ I ′j or In+1 ⊆ I ′′j .

In all cases, we would get χj is constant on In+1. Hence, we can let f = α,
for some constant α on the interval In+1, and this gives us∫

In+1

|f |p =

∫
In+1

|α|p = |α|pµ(In+1)

and ∫
In+1

|g|p =

∫
I′
n+1

|f + an+1|p +
∫
I′′
n+1

|f − an+1|p

= |α+ an+1|pµ(I ′n+1) + |α− an+1|pµ(I ′′n+1)

= |α+ an+1|p
µ(In+1)

2
+ |α− an+1|p

µ(In+1)

2

= (|α+ an+1|+ |α− an+1|)
µ(In+1)

2
.

Therefore, in order to show
∫
In+1

|g|p ≥
∫
In+1

|f |p, we are left to show

|α+ an+1|p + |α− an+1|p ≥ 2|α|p = 2| (α+ an+1) + (α− an+1)

2
|p.

But this follows easily from the convexity of T (x) = |x|p when p ≥ 1 (which can
be proven by mean value theorem). Therefore,

||f ||p ≤ ||g||p =⇒ ||f || =

[∫
[0,1]

|f |p
] 1

p

≤

[∫
[0,1]

|g|p
] 1

p

= ||g||

Hence, K = 1 works and that ∀n, p ∈ N,

||
n∑

i=1

aiχi|| ≤ ||
n+1∑
i=1

aiχi|| ≤ ... ≤ ||
n+p−1∑
i=1

aiχi|| ≤ ||
n+p∑
i=1

aiχi||.

By Theorem 4.1, we have Haar system forms a basis for Lp[0, 1].

Nevertheless, it is not always the case that using Theorem 4.1 can help
us make the proof easier. One example of Theorem 4.1 does not work as we
expected is the basis we found in section 3, the dyadic points forms a basis for
C[0, 1]. Recall in section 3, we proved this is a basis using the definition of the
basis. Here, we take a look at how we can prove it by applying Theorem 4.1.
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Proof. Let {fn}n≥1, Pn be defined the same as the previous section, in order to
use Theorem 4.1, we need to prove three things, the first is

span{fn}n≥1 = C[0, 1].

Secondly,
fn 6≡ 0,∀n ≥ 1.

Thirdly, ∃K > 0, ∀n, p ∈ N,∃{ai}i≥1, such that

K||
n+p∑
i=1

aifi|| ≥ ||
n∑

i=1

aifi||.

As for span{fn}n≥1 = C[0, 1], it can be shown using the same argument when
we show limk→∞ ||Pk − g|| = 0 as Pk ∈ span{fn}n≥1. (Which is most of the
proofs needed for it to become a basis using definition, as the part of showing
uniqueness is trivial.) And now, we still need to check the non-zeroness, and
the existence of K.

The non-zeroness part follows directly from the definition of fn, as fn(tn) =
1 6= 0,∀n ≥ 1, which implies fn 6≡ 0.

To show K||
∑n+p

i=1 aifi|| ≥ ||
∑n

i=1 aifi||, it is equivalent as showing K||Pn+p|| ≥
||Pn||. Notice that for all j ≤ n

Pn+p(tj) =

n∑
i=1

aifi(tj) +

n+p∑
i=n+1

aifi(tj) = Pn(tj) +

n+p∑
i=n+1

aifi(tj).

However, for all i > j, fi(tj) = 0, which implies

n+p∑
i=n+1

aifi(tj) = 0,

and, hence,
Pn+p(tj) = Pn(tj), (∀) j ≤ n. (13)

Then, we claim for any fixed n ≥ 1, max{|Pn(tj)| : j ≥ 1} = |Pn(ti)| for
some i ≤ n.
Proof: Suppose on the contrary, for all i ≤ n,max{|Pn(tj)| : j ≥ 1} > |Pn(ti)|,
we have

∃i′ > n, such that |Pn(ti′)| > |Pn(ti)|.

Nevertheless, since i′ > n ≥ i we have there exists two consecutive points (in
the sense of the real line) ta, tb where a, b ≤ n such that

ti′ ∈ (ta, tb) but ti /∈ (ta, tb).

By linearity of Pn on (ta, tb) we have

min{Pn(ta), Pn(tb)} ≤ Pn(ti′) ≤ max{Pn(ta), Pn(tb)},
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which implies
|Pn(ti′)| ≤ max{|Pn(ta)|, |Pn(tb)|}.

Therefore,
|Pn(ti′)| ≤ |Pn(ti)| for some i ≤ n,

which gives us an contradiction. Therefore

||Pn|| = max{|Pn(tj)| : j ≥ 1} = |Pn(ti)| for some i ≤ n

■
Using this claim, along with 13, we have

||Pn+p|| ≥ |Pn+p(tj)| = |Pn(tj)| = ||Pn||.

Hence, when K = 1, we have K||Pn+p|| ≥ ||Pn||, for all n, p ∈ N.
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