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1. Introduction

Poirier and Reutenauer defined a Hopf algebra on the Z-span of all standard Young
tableaux in [10], which is later studied in [4, 11]. The Robinson-Schensted-Knuth insertion
was used to relate the bialgebra to Schur functions. Schur function is a class of symmetric
functions that can be determined by the summation of all semistandard Young tableaux of
shape �. With the help of the PR-bialgebra, the Littlewood-Richardson rule is established,
which gives an explicit description on the multiplication of arbitrary Schur functions. The
generalization of this approach has been used to develop the Littlewood-Richardson rule for
other classes of symmetric functions. In [9], a K-theoretic analogue is developed using Hecke
insertion, providing a rule for multiplication of the stable Grothendieck polynomials. Sim-
ilarly, in [6], a shifted analogue is developed, providing a rule for multiplication of P-Schur
functions. We use a shifted Hecke insertion, introduced in [8], to develop a shifted K-theoretic
version of the Poirier-Reutenauer algebra and an accompanying Littlewood-Richardson rule.

Section 2 deals with the weak K-Knuth equivalence and its relationship with the shifted
Hecke insertion. It is simultaneously a shifted analogue of Hecke insertion [1] and a K-
theoretic analogue of Sagan-Worley insertion in [12]. In section 3, we introduced a shifted
K theoretic analogue of the Poirier-Reutenauer algebra which was first introduced in [10].
In section 4, we define the weak shifted stable Grothendieck polynomials. This is class
of symmetric functions we are working with. Finally, section 5 introduces a Littlewood-
Richardson rule of the weak shifted stable Grothendieck polynomials. The Littlewood-
Richardson rule gives us an explicit description of the product structure of the weak shifted
stable Grothendieck polynomials.

2. Weak K-Knuth Equivalence and Shifted Hecke Insertion

The main result for this section is that the weak K-Knuth equivalence of words is preserved
by operating the shifted Hecke insertion. Before stating this result, we will review some
previous work on the weak K-Knuth equivalence, increasing shifted tableaux and shifted
Hecke insertion.

2.1. Word and weak K-Knuth equivalence. An alphabet is defined to be a nonempty set
of symbols. Given an alphabet, one can define the word to be a finite list of symbols chosen
from the alphabet. For example, the English alphabet is a finite alphabet and ”elephant” is
a word of this alphabet. The set of all positive integers is a infinite alphabet and ”162743”
is a word of this alphabet.

Definition 2.1. The weak K-Knuth equivalence relation on the alphabet {1,2,3, . . . }, de-
noted by ⌘̂, is defined as the symmetric transitive closure of the following relations, where u
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and v are (possibly empty) words of positive integers, and a < b < c are distinctive positive
integers:

(1) (u, a, a,v) ⌘̂ (u, a,v),
(2) (u, a, b, a,v)⌘̂ (u, b, a, b,v),
(3) (u, b, a, c,v) ⌘̂ (u, b, c, a,v),
(4) (u, a, c, b,v) ⌘̂ (u, c, a, b,v),
(5) (a, b,u) ⌘̂ (b, a,u).

Two words w and w0 are said to be K-Knuth equivalent, denoted as ⌘̂, if w can be obtained
by applying the above relations finitely many times from w0.

Example 2.2. 124636 ⌘̂ 124363 ⌘̂ 124633 ⌘̂ 12463 ⌘̂ 21463 ⌘̂ 21436 ⌘̂ 24136

This following lemma would be useful later on.

Lemma 2.3. If w ⌘̂ w0, then w|I ⌘̂ w0|I for any interval I.

2.2. Increasing Shifted Tableaux. Each strict partition � = (�
1

> �
2

> · · · > �n) can
be associated to the shifted shape, which is an array of boxes where the ith row has �i boxes
and is indented i � 1 units. A shifted tableau is a filling of the shifted shape with positive
integers. A shifted tableau is increasing if the labels are strictly increasing from left to right
along rows and top to bottom along columns. The reading word of a shifted tableau T ,
denoted as row(T ), is a word obtained from reading the labels of tableau T left to right,
from bottom to top. Similarly, we say two tableaux T and T 0 are weak K-Knuth equivalent
if row(PSK(T )) ⌘̂ row(PSK(T 0)).

In this paper, unless otherwise stated, all the tableaux have shifted shape and we refer to
them as tableaux.

Example 2.4. The first two tableaux are increasing shifted tableaux, while the third one
is not because the third column is weakly increasing. The reading word of the first two
tableaux are 635124 and 471367, respectively.

1 2 4

3 5

6

1 3 6 7

4 7

1 2 4 6

3 4

5

An important observation can be made directly from the definition of increasing shifted
tableaux.

Lemma 2.5. There are only finitely many increasing shifted tableaux filled with a given finite
alphabet.

Proof. If the alphabet has n letters, each row and column of the tableau can be no longer
than n. ⇤

2.3. Shifted Hecke Insertion. The rules for shifted Hecke insertion were introduced in
[8]. It is simultaneously a shifted analogue of Hecke insertion [1] and a K-theoretic analogue
of Sagan-Worley insertion [12]. From this point on, ”insertion” will always refer to shifted
Hecke insertion unless stated otherwise.
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First, proceed with how to insert a positive integer x into a given shifted increasing tableau
T . Start with inserting x into the first row of T . For each insertion, assign a box to
record where the insertion terminates. This data will be used when the recording tableau is
introduced in Subsection 2.4.

The rules for inserting x to T are as follows:

(1) If x is weakly larger than all integers in the row (resp. column) and adjoining x to
the end of the row (resp. column) results in an increasing tableau T 0, then T 0 is the
resulting tableau. We say the insertion terminates at the new box.

Example 2.6. Inserting 4 into the first row of the left tableau gives us the right tableau
below. The insertion terminates at box (1, 4).

1 2 3

3 5

6

1 2 3 4

3 5

6

(2) If x is weakly larger than all integers in the row (resp. column) and adjoining x to the
end of the row (resp. column) does not result in an increasing tableau, then T 0 = T .
If x is row inserted into a nonempty row, we say the insertion terminated at the box
at the bottom of the column containing the rightmost box of this row. If x is row
inserted into an empty row, we say that the insertion terminated at the rightmost
box of the previous row. If x is column inserted, we say the insertion terminated at
the rightmost box of the row containing the bottom box of the column x could not
be added to.

Example 2.7. Adjoining 4 to the first row of the left tableau does not result in an increasing
tableau. Thus the insertion of 4 into the first row of the tableau on the left terminates at
(2,3) and gives us the tableau on the right.

1 2 4

3 5

1 2 4

3 5

Adjoining 2 to the (empty) second row of the tableau below does not result in an increasing
tableau. The insertion ending in this failed row insertion terminates at (1, 3).

1 2 3

Adjoining 3 to the end of the third column of the left tableau does not result in an increasing
tableau. This insertion terminates at (1, 3).

1 2 3

3

For the last two rules, suppose the row (resp. column) contains a box with label strictly
larger than x, and let y be the smallest such box.

(3) If replacing y with x results in an increasing tableau, then replace y with x. In this
case, y is the output integer. If x was inserted into a column or if y was on the main
diagonal, proceed to insert all future output integers into the next column to the
right. If x was inserted into a row and y was not on the main diagonal, then insert
y into the row below.
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Example 2.8. Row inserting 3 into the first row of the left tableau results in the tableau
below on the right. This insertion terminates at (2, 3).

1 2 4

3

1 2 3

3 4

To insert 3 into the second row of the tableau below on the left, replace 4 with 3, and
column insert 4 into the third column. The resulting tableau is on the right.

1 2 3 5

4 6

8

1 2 3 5

3 4 6

8

(4) If replacing y with x does not result in an increasing tableau, then do not change the
row (resp. column). In this case, y is the output integer. If x was inserted into a
column or if y was on the main diagonal, proceed to insert all future output integers
into the next column to the right. If x was inserted into a row, then insert y into the
row below.

Example 2.9. If we insert 3 into the first row of the tableau below, notice that replacing
5 with 3 does not create an increasing tableau. Hence row insertion of 3 into the first row
produces output integer 5, which is inserted into the second row. Replacing 6 with 5 in the
second row does not create an increasing tableau. This produces output integer 6. Adjoining
6 to the third row does not result in an increasing tableau. Thus inserting 3 into the tableau
below does not change the tableau. This insertion terminates at (2, 3).

1 3 5

4 6

For any given word w = w
1

w
2

· · ·wn, we define the insertion tableau of w, PSK(w), to be

(· · · ((; SK �� w
1

)
SK �� w

2

) · · · SK �� wn), where ; denotes the empty shape and
SK �� denotes the

insertion of a single letter.

Example 2.10. The sequence of tableaux obtained while computing PSK(2115432) is shown
below. The tableau on the right is PSK(2115432).

2 1 2 1 2 1 2 5 1 2 4

5

1 2 3

4 5

1 2 3 5

3 4

For any interval I, we define T |I to be the tableau obtained from T by deleting all boxes
with labels not in I and w|I to be the word obtained from w by deleting all letters not in I.
We use [k] to denote the interval {1, 2, ..., k}. The following simple lemma will be useful.

Lemma 2.11. If PSK(w) = T , then PSK(w)|[k] = PSK(w|[k]) = T |
[k].

Proof. Observe from from the insertion rules that letters greater than k never a↵ect the
placement or number of letters in {1, 2, . . . , k}. ⇤

2.4. Recording Tableaux. In order to describe the recording tableau for shifted Hecke
insertion of a word w, we need the following definition.
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Definition 2.12. [8, Definition 5.16] A set-valued shifted tableau is defined to be a filling of
the boxes of a shifted shape with finite, nonempty subsets of primed and unprimed positive
integers such that:

1) The smallest number in each box is greater than or equal to the largest number in
the box directly to the left of it, if that box exists.

2) The smallest number in each box is greater than or equal to the largest number in
the box directly above it, if that box exists.

3) Any positive integer appears at most once, either primed or unprimed, but not both.
4) There are no primed entries on the main diagonal.

A set-valued shifted tableau is called standard if the set of labels is exactly [n] for some
n, each appearing either primed or unprimed exactly once.

Example 2.13. The tableaux below are set-valued shifted tableaux. The tableau on the
right is standard.

1 230 6

4 809

1 2 3040 60

5

The recording tableau of a word w = w
1

w
2

. . . wn, denoted QSK(w), is a standard set-
valued shifted tableau that records where the insertion of each letter of w terminates. We
define it inductively. Start with QSK(;) = ;. If the insertion of wk added a new box to
PSK(w1

w
2

. . . wk�1

), then add the same box with label k (k0 if this box was added by column
insertion) to QSK(w1

w
2

. . . wk�1

). If wk did not change the shape of PSK(w1

w
2

. . . wk�1

), we
obtain QSK(w1

w
2

. . . wk) from QSK(w1

. . . wk�1

) by adding the label k (k0 if it ended with
column insertion) to the box where the insertion terminated. If insertion terminated when
a letter failed to insert into an empty row, label the box where the insertion terminated k0.

Example 2.14. Let w = 352243. We insert w letter by letter, writing the insertion tableau
at each step in the top row and the recording tableau at each step in the bottom row.

3 3 5 2 3 5 2 3 5 2 3 4

5

2 3 4

4 5
= PSK(w)

1 1 2 1 2 30 1 2 3040 1 2 3040

5

1 2 3040

5 60
= QSK(w)

In [8], a reverse insertion procedure is defined so that for each pair (PSK(w), QSK(w)),
the word w can be recovered. See [8] for details on reverse shifted Hecke insertion. This
procedure gives the following result:

Theorem 2.15. [8, Theorem 5.19] The map w 7! (PSK(w), QSK(w)) is a bijection between
words of positive integers and pairs of shifted tableaux (P,Q) of the same shape where P is
an increasing shifted tableau and Q is a standard set-valued shifted tableau.

In fact, the shifted Hecke insertion preserves the weak K-Knuth equivalence on words. The
proof of the following statement can be found at [5], which was shown by using the shifted
K-theoretic jeu de taquin introduced in [3]. For more information on the shifted K-theoretic
jeu de taquin, see [2], [3], [13], and [5].
The theorem is a combined e↵orts of [5, Theorem 2.16] and [3, Theorem 7.8]. Since the
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shifted K-theoretic jeu de taquin is only used to show that the shifted Hecke insertion is
consistent with the weak K-Knuth equivalence on words, we omit the proof here.

Theorem 2.16. [5, Corollary 2.18] If PSK(u) = PSK(v), then u ⌘̂ v.

From this point on, we refer to both the weak K-Knuth equivalence on words and the
weak K-Knuth equivalence on insertion tableaux as ”equivalence”

Remark 2.17. The converse of this statement does not hold. Consider the words 12453 and
124533, which are easily seen to be weakly K-Knuth equivalent. We compute that shifted
Hecke insertion gives the following distinct tableaux.

PSK(12453) =
1 2 3 5

4
PSK(124533) =

1 2 3 5

4 5

2.5. Unique Rectification Targets. As one can see from Remark 2.17, two K-Knuth
equivalent words might have di↵erent insertion tableaux. The weak K-Knuth equivalence is
”coarser” than the natural equivalence of insertion tableaux. This is a key di↵erence between
weak K-Knuth equivalence and Knuth equivalence. It is natural to ask if one can find some
class of words that would have an unique insertion tableau given any shifted shape of tableau.
The answer is yes, and it is crucial to our approach to prove the Littlewood-Richardson rule.

Definition 2.18. [2, Definition 3.5] T is a unique rectification target, or a URT, if it is the
only tableau in its weak K-Knuth equivalence class. That is, T is a URT if and only if for
every w ⌘̂ row(T ) we have PSK(w) = T . If PSK(w) is a URT, we call the equivalence class
of w a unique rectification class.

A more detailed discussion of URTs can be found at [2, 3] for shifted tableaux and straight
shape tableaux.

In [2], Buch and Samuel describe a way to fill any shifted shape to create a URT. The
minimal increasing shifted tableau M� of a shifted shape � is the tableau obtained by filling
the boxes of � with the smallest values allowed in an increasing tableau. For example,

M
(4,1) =

1 2 3 4

3
M

(5,3,1) =
1 2 3 4 5

3 4 5

5

are minimal increasing tableaux.
Another way to fill any shifted shape to create a URT is to consider the superstandard

shifted tableaux. The superstandard shifted tableaux of a shifted shape (�
1

,�
2

, . . . ,�n) has
the filling of 1, 2, . . .�

1

for the first row, �
1

+ 1,�
1

+ 2, . . . ,�
1

+ �
2

for the second row, and
etc. For example,

M
(4,2) =

1 2 3 4

5 6
M

(5,2,1) =
1 2 3 4 5

6 7

8

are superstandard increasing tableaux.

Theorem 2.19.
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(1) [2, Corollary 7.2] Minimal increasing shifted tableaux are URTs.
(2) [3, Theorem 1.1] Superstandard shifted tableaux are URTs.

As a consequence, we see there are URTs for every shifted shape.

3. Shifted K-Poirier-Reutenauer Algebra

Poirier and Reutenauer first defined a Hopf algebra spanned by the set of standard Young
tableaux in [10]. In [6], Jing and Li developed a shifted version of the classical Poirier-
Reutenauer bialgebra, and Patrias and Pylyavskyy developed a K-theoretic analogue of the
Poirier-Reutenauer bialgebra in [9]. In this section, a shifted K-theoretic analogue of the
Poirier-Reutenauer algebra will be introduced.

A word h is said to be initial if the letters appearing in it are exactly the numbers in [k]
for some positive integer k. For example, 261534 and 31142 are initial, but 2632 is not.

Let [[h]] denote the formal sum of all words in the weak K-Knuth equivalence class of an
initial word h:

[[h]] =
X

hˆ⌘w

w.

This is an infinite sum, however, the number of terms in [[h]] of each length is finite. For
example,

[[2413]] = 4213 + 2143 + 2413 + 24133 + 42133 + 42313 + 42131 + 421311 + · · · .
Let SKPR denote the vector space over R spanned by all sums of the form [[h]] for some
initial word h. To give an PR-algebra structure, a compatible product will be defined on
SKPR.

Lemma 3.1. We have

[[h]] =
X

T

0

@
X

PSK(w)=T

w

1

A ,

where the sum is over all increasing shifted tableaux T whose reading word is in the weak
K-Knuth equivalence class of h.

Proof. Fix a word h. For any given word w, it is weak K-Knuth equivalent to h if and only
if row(PSK(w)) is weak K-Knuth equivalent to h from Theorem 2.16. This concludes the
proof. ⇤

Note that the set of tableaux we sum over is finite by Lemma 2.5. Since given any h,
the tableaux T equivalent to PSK(h) is defined on a finite alphabet. Hence, there are only
finitely many increasing shifted tableaux T equivalent to PSK(h).

3.1. Product structure. Denote w[n] as the word obtained from word w by increasing
each letter by[n]. For example, if w = 2413, w[2] = 4635. Given two initial words h and
h0 on the alphabet [n] and [m] respectively, the shu✏e product h and h0, denoted as , is
defined to be the concatenation of h and h0[n]. For example, 2413 12 = 241356.
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Now we define the product of [[h]] and [[h0]] in SKPR

[[h]] · [[h0]] =
X

w ˆ⌘h,w0
ˆ⌘h0

w w0[n].

where h is a word in the alphabet [n] and h0 is a word in the alphabet [m].

The following theorem shows that this product is a binary operation on the vector space
SKPR.

Theorem 3.2. The product of any two initial words h and h0 can be written as

[[h]] · [[h0]] =
X

h00

[[h00]],

where the sum is over some set of initial words h00.

Proof. By Lemma 2.3, we know that once a word appears in the right-hand sum, its entire
equivalence class must also appear. The result then follows. ⇤
Need to come back and check the reference!

— Yn

Example 3.3. Let h = 12 and h0 = 12. Then

[[12]] · [[12]] = [[1234]] + [[4123]] + [[3124]] + [[31234]] + [[41234]] + [[34123]] + [[341234]].

By Lemma 3.1, [[h]] · [[h0]] can be written as a sum over tableaux, which can be sorted into
finitely many equivalence classes. This implies that we can write the product as an explicit
sum over sets of tableaux.

Theorem 3.4. Let h be a word in alphabet [n], and let h0 be a word in alphabet [m]. Suppose
T = {PSK(h), T1

0, T
2

0, . . . , Ts
0} is the equivalence class containing PSK(h). Then

[[h]] · [[h0]] =
X

T2T (h h0
)

X

PSK(w)=T

w,

where T (h h0) is the set of shifted tableaux T such that T |
[n] 2 T and row(T )|

[n+1,n+m]

⌘̂ h0[n].

Proof. If w is a shu✏e product of some w
1

⌘̂ h and w
2

⌘̂ h0[n], then by Lemma 2.11.
PSK(w)|[n] = PSK(w|[n]) = PSK(w1

) 2 T .
By definition, row(PSK(w)|[n+1,n+m]

) = row(PSK(w))|[n+1,n+m]

. By theorem 2.16, we have
row(PSK(w)) ⌘̂ w. Hence, row(PSK(w)|[n+1,n+m]

) ⌘̂ w|
[n+1,n+m]

= w
2

⌘̂ h0[n]. Now using
Lemma 3.1 and Theorem 3.2, we see that the product can be expanded in this way. ⇤

Note that by Lemma 2.5 the set T (h h0) is finite since all of the tableaux in it are on
the finite alphabet [n+m].

Example 3.5. Consider h = 12 and h0 = 12. The set T (12 12) consists of the seven
tableaux below.

1 2 3 4 1 2 3

4

1 2 4

3

1 2 3 4

3

1 2 3 4

4

1 2 3

3 4

1 2 3 4

3 4
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For each of these tableaux, restricting to the alphabet {1, 2} gives the tableau PSK(12). Also,
the reading word of each restricted to the alphabet {3, 4} is weak K-Knuth equivalent to
h0[2] = 34.

Corollary 3.6. If both T
1

and T
2

are URTs, then
0

@
X

PSK(u)=T1

u

1

A ·

0

@
X

PSK(v)=T2

v

1

A =
X

T2T (T1 T2)

X

PSK(w)=T

w,

where T (T
1

T
2

) is the set of shifted tableaux T such that T |
[n] = T

1

and row(T )|
[n+1,n+m]

⌘̂ row(T
2

)[n].

4. Weak Shifted Stable Grothendieck Polynomials

4.1. Weak shifted stable Grothendieck polynomials. As an analogue of the weak set-
valued tableau defined in [8], we define the weak shifted stable Grothendieck polynomial K�

as a weighted generating function over weak set-valued shifted tableaux.

Definition 4.1. A weak set-valued shifted tableau is a filling of the boxes of a shifted shape
with finite, nonempty multisets of primed and unprimed positive integers with ordering
10 < 1 < 20 < 2 < · · · such that:

(1) The smallest number in each box is greater than or equal to the largest number in
the box directly to the left of it, if that box exists.

(2) The smallest number in each box is greater than or equal to the largest number in
the box directly above it, if that box exists.

(3) There are no primed entries on the main diagonal.
(4) Each unprimed integer appears in at most one box in each column.
(5) Each primed integer appears in at most one box in each row.

Given any weak set-valued shifted tableau T , we define xT to be the monomial
Q

i�1

xai
i ,

where ai is the number of occurrences of i and i0 in T . For example, the weak set-valued
tableaux T

1

and T
2

below have xT1 = x
1

x
3

x3

4

x2

5

x
6

x
7

x
8

and xT2 = x
1

x
2

x
3

x3

4

.

T
1

=
1 3 404 450

5 670

8

T
2

=
1 2 4040

3 40

Recall that we denote a shifted shape � as (�
1

,�
2

, · · ·�n), where n is the number of rows
and �i is the number of boxes of ith row.

Definition 4.2. The weak shifted stable Grothendieck polynomial is

K� =
X

T

xT ,

where the sum is over the set of weak set-valued tableaux T of shape �.

Remark 4.3. In tableaux formulation such as Definition 4.2, stable Grothendieck polyno-
mials and their analogues typically have a sign (�1)|T |�|�| for each monomial, where |T | is
the degree of xT . We have chosen to suppress this sign for our definition K� as others have
done e.g. [7]. It is easily reintroduced when necessary.
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Example 4.4. We have

K
(2,1) = x2

1

x
2

+ 2x
1

x
2

x
3

+ 3x2

1

x2

2

+ 5x2

1

x
2

x
3

+ 5x
1

x2

2

x
3

+ · · · ,

where the coe�cient of x2

1

x2

2

is 3 because of the tableaux shown below.

11 20

2

1 120

2

1 1

22

4.2. K� and fundamental quasisymmetric functions. Before giving out the definition
of quasisymmetric functions, one has to define the descent set for both word and tableau.

Given a word w = w
1

w
2

. . . wn, a descent set of w, D(w), is defined to be {i : wi > wi+1

}.
For example, D(131442) = {2, 5}. Similarly, one can define the descent set of a standard
set-valued shifted tableau D(T ) of T as the following.

D(T ) =

8
>>>><

>>>>:

i :

both i and (i+ 1)0 appear
or

i is strictly above i+ 1
or

i0 is weakly below (i+ 1)0 but not in the same box

9
>>>>=

>>>>;

.

Given a word w of length n, D(w) ⇢ [n� 1]. We can associate the fundamental quasisym-
metric function of w as

fD(w)
=

X

i1i2...in
ij<ij+1 if j2D

xi1xi1 . . . xin .

For example, the word w = 352243 has descent set D(w) = {2, 5}. Its recording tableau
is

QSK(w) =
1 2 3040

5 60

Since 2 and 30, 5, and 60 appear in pairs, we can conclude that D(QSK(w)) = {2, 5}. The
associated fundamental quasisymmetric function is

f{2,5} = x2

1

x3

2

x
3

+ x
1

x
2

x3

3

x
4

+ · · ·+ x2

1

x
2

x2

3

x
5

+ · · ·
+ x2

2

x3

4

x
5

+ x
1

x
3

x2

4

x
5

x
6

+ · · ·+ x
1

x
2

x
3

x
4

x
5

x
6

+ · · ·

Note that D(QSK(w)) = D(w). This is true in general. The proof is available in [5]

Theorem 4.5. [5, Theorem 3.7] For any word w = w
1

w
2

. . . wn, D(QSK(w)) = D(w).

Now we proceed to show thatK� can be written as the sum of fundamental quasisymmetric
functions. We will start by building the connection between the standard set-valued shifted
tableau and the weak set-valued shifted tableau, since K� is directly defined on the weak set-
valued shifted tableau of shape � and a word w can be associated with a standard set-valued
shifted tableau by considering its recording tableau.

Given a monomial � = xs1xs2 . . . xsr , where s
1

 s
2

 · · ·  sr, and a standard set-valued
shifted tableau T , we relabel T by � by replacing the ith smallest letter in T with si, primed
if that letter had a prime to begin with.

10



Example 4.6. Given T below and � = x
1

x
3

x2

5

x
6

x
7

, the relabeling T (�) of T with � is the
tableau on the right.

12 304 6

5

13 505 7

6

might have to change example

— Yn

A monomial � = xs1xs2 . . . xsr is said to be agree with D if si  si+1

with strict equality
on i 2 D. For example, given D = {1, 3} ⇢ [n� 1] with n = 4, both x

1

x2

2

x
3

, x
1

x
3

x
4

x
6

agree
with D.
Di↵erence between ⇢ and ✓

— Yn

The following lemma tells us how to translate a standard set-valued shifted tableau to a
weakly set-valued shifted tableau with a given monomial.

Lemma 4.7. [5, Lemma 3.8] If T is a standard set-valued shifted tableau and � = xs1xs2 . . . xsr

agree with D(T ), then T (�) is a weakly set-valued shifted tableau.

To see how to translate a weak set-valued tableau T to a standard set-valued tableau,
we define the standardization of a weak set-valued tableau T . The standardization st(T ) is
defined to be refinements of the order of entries of T given by reading each occurrence of k in
T from left to right and each occurrence of k0 in T from top to bottom, using the total order
(10 < 1 < 20 < 2 < · · · ). Notice that st(T ) will be a standard set-valued shifted tableau. For
example, we have

T =
1 2 3 3 3 3 7 9

4 5 6

0
8

0

7 8

0

st(T ) =
1 2 3 4 5 6 11 14

7 8 9

0
12

0

10 13

0

Now we can write K� as a sum of fundamental quasisymmetric functions.

Theorem 4.8. For any fixed increasing shifted tableau T of shape �,

K� =
X

PSK(w)=T

fD(w)

.

Proof. LetW be a weak set-valued shifted tableau of shape � with entries s
1

 s
2

 . . .  sn,
some of which may be primed. By Theorem 2.15, there is a unique word w such that
PSK(w) = T and QSK(w) = st(W ). We will show that xW agrees with D(w) by showing
that xW agrees with D(st(W )). By Lemma 4.7, every � that agrees with D(w) corresponds
to some W , so this would complete the proof.

Let j be strictly above j +1 in st(W ). If sj = sj+1

, by the weakly increasing property, we
see they must be in the same column. This violates condition (4) in the definition of weak
set-valued tableaux, so sj < sj+1

.
Next assume j and (j+1)0 both appear in st(W ). By the definition of standardization, sj

and sj+1

cannot be the same number, as primed entries of the same value are standardized
first. Therefore, �j < �j+1

.
11



Finally, let (j + 1)0 be weakly above j0 and not in the same box. If sj = sj+1

, they
cannot appear on the same row of W , as this would violate condition (5) in the definition of
weak set-valued shifted tableaux. Moreover, if sj+1

0 were strictly above sj 0, it would have to
be strictly smaller after standardization, which cannot occur. Therefore, sj < sj+1

, which
completes our proof. ⇤

Since quasisymmetric function is the ”building block” of symmetric functions, showing
that K� can be written as the sum of quasisymmetric functions is a positive sign of K� being
symmetric. In section 3.3 of [5], the symmetry of K� was shown.

5. A Littlewood-Richardson Rule

Give some idea on what the Littlewood-Richardson Rule is?

— Yn

Recall that SKPR denotes the vector space over R spanned by all sums of the form [[h]]
for some initial word h. We previously define a compatible product on SKPR. Now we
construct an algebra homomorphism that takes a weak K-Knuth equivalence class of initial
word [[h]] to a sum of fundamental quasisymmetric functions.

Theorem 5.1. The linear map � :SKPR! QSym defined by

�([[h]]) =
X

w ˆ⌘h

fD(w)

is an algebra homomorphism.

Proof. The well-definedness is obvious. To see why � preserves the product, consider h
1

on
[n] and h

2

on [m]. We use Sh(w0, w00[n]) to denote the set of all the elements of the shu✏e
product of w and w0. First, [7, Proposition 5.9] implies

fD(w0
)

· fD(w00
)

=
X

w2Sh(w0,w00
[n])

fD(w)

,

where the sum is over all shu✏es of w0, w00[n]. Recall that from Theorem 3.4, we have

�([[h
1

]] · [[h
2

]]) = �

0

@
X

w0
ˆ⌘h1,w00

ˆ⌘h2

w0 w00

1

A

=
X

w0
ˆ⌘h1,w00

ˆ⌘h2

X

w2Sh(w0,w00
[n])

fD(w)

=
X

w0
ˆ⌘h1,w00

ˆ⌘h2

fD(w0
)

· fD(w00
)

=

 
X

w0
ˆ⌘h1

fD(w0
)

! 
X

w00
ˆ⌘h2

fD(w00
)

!
= �([[h

1

]])�([[h
2

]]).

⇤
Theorem 5.2. Letting �(T ) denote the shape of T , we have

�([[h]]) =
X

row(T )

ˆ⌘h

K�(T )

.
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Proof. By Theorem 4.8, we see

�([[h]]) =
X

w ˆ⌘h

fD(w)

=
X

T ˆ⌘PSK(h)

X

PSK(w)=T

fD(w)

=
X

T ˆ⌘PSK(h)

K�(T )

=
X

row(T )

ˆ⌘h

K�(T )

.

⇤
With the algebra homomorphism � defined above, we can show the Littlewood-Richardson

rule for K� by using Theorem 5.2.

Theorem 5.3. Let T be a URT of shape µ. Then we have

K�Kµ =
X

⌫

c⌫�,µK⌫ ,

where c⌫�,µ is given by the number of increasing shifted skew tableaux R of shape ⌫/� such
that PSK(row(R)) = T .

Proof. In addition to T , fix a URT T 0 of shape �. Then by Theorems 3.6 and 5.2, we have

K�Kµ = �([[row(T 0)]])�([[row(T )]])

= �([[row(T 0)]] · [[row(T )]])

=
X

R2T (T 0 T )

X

PSK(w)=R

w

=
X

R2T (T 0 T )

K�(R)

,

where T (T 0 T ) is the set of shifted tableaux R such that R|
[|�|] = T 0 and

PSK(row(R|
[|�|+1,|�|+|µ|])) = T , giving our result. ⇤

This rule, up to sign, coincides with the rules of Cli↵ord, Thomas and Yong [3, Theorem
1.2] and Buch and Samuel [2, Corollary 4.8].
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