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Abstract. In this paper, we will show that if E is a subset of a planar point set
over a finite field Fq (q not necessarily prime) and has cardinality |E| > 64q log2 q,
then there are more than q

2 distinct areas of triangles sharing the same vertex. A
finite field version of Beck’s theorem is derived to prove the result. The theorem
says that if |E| > 64q log2 q, then pairs of distinct points of E generate a positive
proportion of lines in F2

q. Also, the theorem ensures the existence of a point z 2 E,

such that there are at least q
4 lines incident to z, each supporting at least |E|

2q and

fewer than 2|E|
q points of E, other than z. This will give us the result about the

number of distinct triangle areas.
In addition, we prove that if E is a subset of F2

q and has cardinality |E| > q,
then there are at least q�1

2 distinct areas of triangles, which can be chosen to
share the same base.

The results about the volumes of k + 1 simplices in higher dimensional vector
spaces over finite fields follow from the conclusions about distinct triangle areas
in 2-dimensional vector spaces over finite fields.
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1. Introduction

The basic question of Erdős combinatorics is to determine whether a su�ciently
large discrete set determines a configuration of a given type. See, for example, [3],
[2], [22] and the references contained therein for a description of related problems
and their consequences. Perhaps the most celebrated of these is Szemerédi’s theorem
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which says that a subset of the integers of positive density contains an arithmetic
progression of any given length.

In the metric plane, interesting geometric configurations are congruent line seg-
ments or triangles. A famous question is the Erdős distance conjecture which asks,
how many distances are determined by the set of n points in Rd, d � 2. It was

conjectured by Erdős that the number of distance in Rd, d � 2, is at least n
2
n ,

up to logarithm factors. Guth and Katz ([11]) recently resolved the long-standing
Erdős distance conjecture ([6]) in R2 by proving that a planar set E of n points
determines ⌦( n

logn) distinct distances, or, equivalently, distinct congruence classes
of line segments.

While geometric combinatorics in Euclidean space has been studied for a long
time, analogous problems in vector spaces over finite fields have also received much
attention. For instance, the first two listed authors formulated the finite field version

of Erdős distance problem, which says that any subset E of Fd

q

with cardinality . q
d
2

points generates & |E|
2
d distances. (Here, X . Y means X 5 CY , for some constant

C). They also proved that if the E is a Salem set with cardinality & q
d
2 , then the

conjecture holds. For more details, see [27].

Another conjecture of Erdős, Purdy, and Strauss ([7]) suggested that a non-
collinear set of n points in R2 determines at least bn�1

2 c distinct nonzero triangle
areas, the most economical configuration being evenly distributed dn2 e points on a
line with evenly distributed bn2 c on a parallel line. A linear lower bound was found
by Burton and Purdy in 1979. But the conjecture was not resolved until 2008 by
Pinchasi ([19]). The precise statement of the result is as follows.

Theorem 1. The number of distinct areas of triangles determined by a non-collinear

point set of n points in R2
is at least bn�1

2 c. Indeed, the triangles yielding distinct

areas can be chosen to share a common base.

In this paper, we prove an analogous result in the setting of planar sets over finite
fields, which says that a set with more than q points determines at least q�1

2 distinct
triangle areas. And the triangles giving distinct areas can be chosen such that they
share the same base. The definition of triangle areas will be justified later.

Another interesting question about triangles asks if a vertex of triangles is fixed,
how many distinct areas are attained by a non-collinear set. Roche-Newton with the
first two listed authors of this paper ([16]) proved that a non-collinear n-point set
E ⇢ R2 generates ⌦( n

logn) distinct triangle areas for triangles pinned at the origin.
The precise statement is as follows.

Theorem 2. There exists a universal c, such that a set of n > 1
c

non-collinear

points in R2
determines at least c n

logn

distinct areas of triangles with one vertex at

the origin.

In the case of vector spaces over finite fields, we obtain the following result. For
any subset E of F2

q

with ⌦(q log q) points, there exist a point in E such that the
number of areas of triangles pinned at that point is greater than q

2 .
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As will be seen in this paper, geometric problems in vector spaces over a finite
field F

q

can often be e↵ectively resolved using Fourier analysis, provided that the
point sets in question are su�ciently large. See e.g. [9], [12], [24], [14], and the
references contained therein.

Fourier techniques have not proven to be particularly e�cient for su�ciently small
subsets of finite fields, where the fundamental tools come from arithmetic combina-
torics, as is demonstrated in a pioneering work of Bourgain, Katz, and Tao ([4]).
Unfortunately, quantitative results involving small sets are still far behind their Eu-
clidean prototypes. For instance, the celebrated Beck’s theorem ([1]), whose finite
field version, Theorem 6 below, is developed in this paper, states that a set of n
points in the Euclidean plane, with no more than cn collinear points, with some
absolute c, determines ⌦(n2) distinct lines drawn through pairs of distinct points.
The best currently known exponents, for small sets, are due to Helfgott and the
second listed author ([15]), who proved that for any (E = A ⇥ A) ⇢ F2

q

, where q

is a prime, and |A| < p
q, 1 the number of distinct lines is ⌦(n1+ 1

267 ). The power
1

267 , added to 1 in the latter estimate has since been improved a few times, implicit
in the recent work of Jones ([17]), but would still remain very far from 1 as it is in
Beck’s theorem.

Now we define the volumes of (d+1) simplices determined by subsets of Fd

q

. Then
the areas of triangles are defined as the case when d = 2. Let F

q

be the field with
q elements and Fd

q

be the d-dimensional vector space over this field. More precisely,

let (x1, . . . , xd+1) denote a (d + 1)-tuple of vectors from Fd

q

. Given a set E ✓ Fd

q

,
define

(1) V
d

(E) =
n

| det(x1 � xd+1, . . . , xd � xd+1)| : xj 2 E
o

\ {0}

as the set of d-dimensional nonzero volumes, defined by (d + 1)-simplices whose
vertices are in E, as well as for some fixed z 2 E, the set of pinned nonzero volumes

(2) V z

d

(E) =
n

| det(x1 � z, . . . , xd � z)| : xj 2 E
o

\ {0}.

Note that if xj = (xj1, . . . , x
j

d

), the subscripts referring to the coordinates relative
to the standard basis in Fd

q

, an element of V
d

(E), generated by the (d + 1)-tuple

(x1, . . . , xd+1) equals the determinant of the following d+ 1 by d+ 1 matrix:

V
d

(x1, . . . , xd+1) =

�

�

�

�

�

�

�

�

�

det

0

B

B

B

@

1 . . . 1
x11 . . . xd+1

1
...

. . .
...

x1
d

. . . xd+1
d

1

C

C

C

A

�

�

�

�

�

�

�

�

�

.

The above definition of the volumes of (d + 1) simplices in Fd

q

is natural in the
sense that it is invariant under the action of orthogonal matrices.

1Throughout the paper we use the | · | notation to denote the cardinality of a finite set.
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1.1. Statement of results: The main result of this note is is precisely stated as
follows.

Theorem 3. Let E ⇢ F2
q

. Then the following hold.

i) Suppose that |E| > q. Then |V2(E)| � q�1
2 , and the triangles giving at least

q�1
2 distinct areas can be chosen such that they share the same base.

ii) Suppose that |E| � 64q log2(q), and q � C for some absolute C. Then there

exists z 2 E such that

|V z

2 (E)| > q

2
.

Remark 4. The claim i) is a slightly weaker finite field version of Pinchasi’s result
in R2. Namely, we are o↵ by a constant in the sense that we do not know an
example of a set with q+1 points in F2

q

, which would not generate all possible q�1
nonzero areas of triangles. The question of what is the minimum size of E ⇢ Fq

2 to
yield all possible areas in F

q

\ {0} is open. It seems reasonable to conjecture that
|E| = q+1 would be necessary and su�cient, for any q. The analog of the conjecture
in higher dimensions would be that |E| = qd�1 + 1, necessary and su�cient to yield
all possible d-dimensional volumes. In this direction, Corollary 1 below shows that
if |E| � 2qd�1, then all the possible volumes are determined.

Remark 5. In the context of recent work on su�ciently large sets in F2
q

, Theorem 3
is an improvement over the earlier results [12], [25], which established the threshold

|E| = ⌦(q
3
2 ) in order for a general E ✓ F2

q

to determine ⌦(q) distinct areas of
triangles.

The claim ii) of Theorem 3 follows from the following theorem, which can be
regarded as a finite field version of the aforementioned theorem due to Beck ([1]),
for su�ciently large point sets.

Theorem 6. (Beck’s theorem in F2
q

). Suppose that E ⇢ F2
q

with q � C, for some

absolute C, and

|E| � 64q log q.

Then pairs of distinct points of E generate at least

q

2

8 distinct straight lines in F2
q

.

Moreover, there exists a point z 2 E and at least

q

4 straight lines incident to z, each

supporting at least

1
2
|E|
q

and fewer than 2 |E|
q

points of E, other than z.

Remark 7. It is well known that Fourier analysis yields nearly optimal estimates over
finite fields for su�ciently large sets. For instance, Garaev ([9]) proves an optimal

sum-product lower bound for |A+A| + |A ·A|, when A ✓ F
q

is such that |A| > q
2
3 .

The first quantitative estimate in this direction was proved by Hart, the first listed
author of this paper and Solymosi in [13]. Similarly, in F2

q

the “threshold” for what

can be regarded as a su�ciently large set E = A ⇥ A is usually q
4
3 , and q

3
2 for

general E. See, e.g., [12], [25], [14], and the references contained therein. Theorem
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6, however, delivers an optimal (up to a constant) estimate for |A| = ⌦
�

p

q log2 q
�

.

Note that the aforementioned estimate ⌦(n1+ 1
267 ) in [15] for the number of lines

generated by A ⇥ A with |A| = O(
p
q) (valid only when q is a prime) is strikingly

weaker. In the same vein, sum-product results of [9], [13], valid for su�ciently large
sets are considerably stronger than what is known for small sets, where the best
result so far in prime fields is due to the second listed author ([20]), generalised to
F
q

by Li and Roche-Newton ([18]).

Remark 8. The construction in Corollary 2.4 in [14] implies that if |E| = o(q
3
2 ), then

there exists z 2 E such that |V z

2 (E)| = o(q). In particular, this implies that part ii)
of Theorem 3 cannot be strengthened to say that one gets a positive proportion of
the areas from any fixed vertex, which would be somewhat analogous to the above-
mentioned Euclidean result of [16]. We do not know whether the logarithmic term
in the assumption for part ii) is necessary. It is definitely needed for our proof.

Remark 9. The forthcoming proof of Theorem 6 is based on Vinh’s ([24]) finite
field variant, quoted as Theorem 12 below, of the classical Szemerédi-Trotter ([21])
theorem on the number of incidences I(E,L) of points in E and lines in L. Vinh’s
theorem becomes its equal in the strength of exponents only if the underlying sets
E,L involved are rather large, that is if one takes |E||L| ⇠ q3, which amounts to

|E| = ⌦(q
3
2 ) in the interesting case when |E| ⇠ |L|. Indeed, this is the threshold

when the first term in Vinh’s incidence estimate (9) dominates, giving I(E,L) =

O((|E||L|)
2
3 ) for the number of incidences, as it is the case in the principal term

of the celebrated Euclidean Szemerédi-Trotter estimate. Beck’s theorem, however,
does not require the full strength of the Szemeredi-Trotter incidence theorem and
would already follow if the fact k3 in the denominator of the first term of (8) below
is replaced by k2+✏ for some ✏ > 0.

In the original paper ([1]), Beck had ✏ = 1
20 , rather than ✏ = 1, provided by the

Szemerédi-Trotter theorem as in the estimate (8) below. In other words, Beck’s
theorem is weaker than the Szemerédi-Trotter theorem. This is precisely the reason
why we can a↵ord to use (9) and succeed in obtaining a much better threshold

|E| = ⌦(q log2 q) in Theorem 6 (rather than |E| = ⌦(q
3
2 )) getting a nearly sharp

(up to the endpoint term log2 q) variant of the Beck theorem in the finite plane F2
q

,
as to the minimum size of a set E to generate ⌦(q) distinct straight lines.

Theorem 3 can be easily boot-strapped to higher dimensions, since if a set de-
termines a certain number of (d � 1)-dimensional volumes when restricted to a
(d � 1)-dimensional hyperplane, and on top of that contains at least one point
outside of this hyperplane, then it automatically determines at least that many d-
dimensional volumes. As a consequence of our method, we obtain the following
improvement of a result of Vinh ([26]) who proved that if |E| � (d� 1)qd�1, d � 3,
then V

d

(E) = F
q

\{0}.

Corollary 1. Let E ⇢ Fd

q

, d � 3.

i) Suppose that |E| > qd�1
. Then |V

d

(E)| � q�1
2 .
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ii) Suppose that |E| � 2qd�1
. Then V

d

(E) = F
q

\{0}.

2. Proof of part i) of Theorem 3

Proof. The core of the forthcoming proof of claim i) follows the lines of Lemmas 2.1
and 2.2 in [10], which in turn go back to the “statement about generic projection”
in [4], Lemma 2.1.

Let us first show that any set E ✓ F2
q

, with |E| > q, determines all possible
directions. More precisely, every linear subspace L ⇢ F2

q

contains a nonzero element
of E � E. This is a finite field analogue of the well-known result of Ungar ([23])
that 2N non-collinear points in the Euclidean plane determine at least 2N distinct
directions.

Let L be a one-dimensional linear subspace of F2
q

. Consider the sum set

S = E + L = {s = e+ l : e 2 E, l 2 L}.
Since |L||E| > |F2

q

| = q2, there is an element s 2 S with more than one representation
as a sum. More precisely,

(3) s = e1 + l1 = e2 + l2, (e1, e2, l1, l2) 2 E ⇥ E ⇥ L⇥ L, l1 6= l2.

Hence

(4) l2 � l1 = e1 � e2,

which implies that E determines all possible directions in the sense described above.

Now average the number of solutions of the equation (4), with (e1, e2, l1, l2) 2
E ⇥ E ⇥ L ⇥ L, over the q

2�1
q�1 = q + 1 subspaces L. For each L, the pair (e1, e2),

e1 6= e2 in (4) determines the subspace L. Moreover, each l 2 L can be represented
as a di↵erence l2 � l1 in exactly q di↵erent ways. Including the trivial solutions
where e1 = e2, we have

|{(e1, e2, l1, l2) 2 E ⇥ E ⇥ L⇥ L : (4) holds for some L}|

= |E|q(q + 1) + |E|2q
 2q|E|2.

It follows that there exists a subspace L, such that

(5) |{(e1, e2, l1, l2) 2 E ⇥ E ⇥ L⇥ L} : (4) holds}|  2|E|2 q

q + 1
.

It follows, by the Cauchy-Schwartz inequality, that with this particular L,

(6)
|E + L| � |E|2|L|2

|{(e1, e2, l1, l2) 2 E ⇥ E ⇥ L⇥ L} : (4) holds}|

� q(q + 1)

2
.
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Indeed, if s 2 E + L, and ⌫(s) is the number of realisations of s as a sum, then
X

s

⌫(s) = |E||L|,
X

s

⌫2(s) = |{(e1, e2, l1, l2) 2 E ⇥ E ⇥ L⇥ L} : (4) holds}|,

and by the Cauchy-Schwartz inequality

|S = E + L| �
�

P

s2S ⌫(s)
�2

P

s2S ⌫2(s)
.

We conclude from (6) that there are points of E in at least q+1
2 di↵erent parallel

lines. Moreover one of these lines, as has been shown in the beginning of the proof,
has at least two distinct points e1, e2 2 E. It follows that E determines at least q�1

2
distinct triangles, with the same base e1e2 and distinct nonzero heights, that is the
third vertex of the triangle lying on di↵erent lines parallel to the base. Thus, there
are at least q�1

2 distinct nonzero triangle areas.
⇤

3. Proof of part ii) of Theorem 3

3.1. Fourier mechanism. We shall need the following Fourier-analytic result, which
is an easy variant of the corresponding estimate from [12] and [14].

Let � be a non-trivial additive character over F
q

and let F (x) for the characteristic

function of a set F ✓ F2
q

. Define the Fourier transform bF of F (x) as

bF (⇠) =
1

q2

X

x

F (x)�(�⇠ · x).

The formulas we shall need are the following:
X

s2Fq

�(�sx) = q (orthogonality)

if x = 0 and 0 otherwise.

X

m

bf(m)bg(m) = q�d

X

x

f(x)g(x) (Plancherel)

Theorem 10. Let F,G ⇢ F2
q

. Suppose 0 62 F . Let, for t 2 F
q

,

⌫(t) = |{(x, y) 2 F ⇥G : x · y = t}|,
where x · y = x1y1 + x2y2.

Then

(7)
X

t

⌫2(t)  |F |2|G|2q�1 + q|F ||G| ·max
x 6=0

|F \ l
x

|,

where

l
x

= {sx : s 2 F
q

\ {0}} ,
with x 2 F2

q

\ {0}.
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Proof. To prove the theorem, observe that for any t 2 F
q

, one has, by the Cauchy-
Schwartz inequality:

⌫2(t) =

 

X

x·y=t

F (x)G(y)

!2


X

x2F
12
 

X

x2F

X

x·y=t

F (x)G(y)

!2

 |F | ·
X

x·y=x·y0=t

F (x)G(y)G(y0).

By orthogonality, one has
X

t

⌫2(t)  |F | ·
X

x·y=x·y0
F (x)G(y)G(y0)

= q�1|F |
X

x,y,y

0

F (x)G(y)G(y0)
X

s2Fq

�(sx · (y � y0))

= |F |2|G|2q�1 + q�1|F |
X

s 6=0

X

x,y,y

0

�(sx · (y � y0))F (x)G(y)G(y0)

= |F |2|G|2q�1 + q�1|F |
X

s 6=0

X

x

F (x)
X

y,y

0

�

�(�sx · y0)G(y0)
�

(�(sx · y)G(y))

= |F |2|G|2q�1 + q�1|F |
X

s 6=0

X

x

F (x)

�

�

�

�

�

X

y

�(�sx · y)G(y)

�

�

�

�

�

2

= |F |2|G|2q�1 + q3|F |
X

s 6=0

X

x

| bG(sx)|2F (x)

by definition of the Fourier transform. Then by the assumption that 0 /2 F and by
change of variables, one has

|F |2|G|2q�1 + q3|F |
X

s 6=0

X

x 6=0

| bG(x)|2F (sx)

= |F |2|G|2q�1 + q3|F |
X

x 6=0

| bG(x)||F \ l
x

|

 |F |2|G|2q�1 + q3|F |max
x 6=0

|F \ l
x

|
X

x 6=0

| bG(x)|

= |F |2|G|2q�1 + q|F ||G| ·max
x 6=0

|F \ l
x

|,

where the last step uses the Plancherel identity. This completes the proof of Theorem
10. ⇤
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3.2. Finite field variant of the Beck theorem. Here we prove Theorem 6, a
variant of the Euclidean theorem due to Beck ([1]) in the finite field context. Recall
that Beck’s theorem says that either a positive proportion of a set of n points in the
Euclidean plane lie on single line, or there exists a constant multiple of n2 distinct
lines each containing at least two points of E. Note that Beck’s theorem follows
easily from the following formulation of the celebrated Szemerédi-Trotter incidence
theorem ([21]).

Theorem 11. Let E be a collection of points in R2
, and L(E) the set of lines

determined by distinct pairs of points of E. For k � 2, let L
k

✓ L(E) denote the

lines supporting at least k points of E. Then there exists C > 0 such that

(8) |L
k

|  C

✓

|E|2

k3
+

|E|
k

◆

.

We shall need the following finite field variant of the Szemerédi-Trotter theorem
due to Vinh ([24]).

Theorem 12. Let E be a collection of points and L a collection of lines in F2
q

. Then

(9) I(E,L) = |{(e, l) 2 E ⇥ L : e 2 l}|  |E| · |L| · q�1 +
p

q · |E| · |L|.

Using L
k

in place of L in Theorem 12, we see that I(E,L
k

) � k|L
k

|. It then

follows directly from (9) that if k > |E|
q

, then

k|L
k

|  q�1|E||L
k

|+
p

q|E||L
k

|,

which implies that

(k � q�1|E|)|L
k

| 
p

q|E||L
k

|,

then if k > |E|
q

, one has

(10) |L
k

|  q|E|
(k � q�1|E|)2 .

This leads us to the proof of Theorem 6.

Proof. Here q is treated as asymptotic parameter, to which the o(1) notation relates.
In order to avoid messy notation, let us assume, for convenience, that the quantities
q�1|E|, as well as log2 q are integers. The reader shall see that we have more than
enough flexibility with the constants to make this work. The key to our proof is the
following assertion.

Lemma 1. At least |E|2
4 unordered pairs of distinct points of E are supported on the

subset L ✓ L(E), defined as the set of all lines in L(E) containing between 1 + |E|
2q

and 2 |E|
q

points of E.

Proof. With a slight abuse of the notation, let Lj be the set of lines from L(E),
supporting no fewer than q�1|E| · 2j and no more than q�1|E| · 2j+1 points of E,
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where j is an integer ranging between 1 and log2 q. The upper bound of j is obtained
in the following way.

q�1|E|2j  |E|,

which means

2j  q.

Hence

j  log2 q.

The maximum number of points on a line from Lj is q�1|E| · 2j+1, so the number
of unordered pairs of distinct points is less than or equal to

q�1|E|2j+1(q�1|E|2j+1 � 1)

2
 q�2|E|2 · 22j+1.

On the other hand, by (10),

|Lj |  q|E|
q�2|E|2 · (2j � 1)2

Hence, the number of unordered pairs of distinct points of E supported on the union
of Lj , for j � 2 is bounded by

q�2|E|2 · 22j+1 q|E|
q�2|E|2 · (2j � 1)2

= q|E| 22j+1

(2j � 1)2

 4|E|q, for j � 2,

and by 8|E|q for j = 1. Then the number of unordered pairs of distinct points of E
supported on the union of Lj , for j � 1 is bounded by

8|E|q +
log2 q
X

j=2

4|E|q

= 4|E|q(log2 q � 1) + 8|E|q
= 4|E|q(1 + log2 q).

Then, if |E| � 64q log2 q, and q is large enough, the latter bound constitutes only a

small proportion of the total number |E|(|E|�1)
2 of unordered pairs of distinct points

of E. More precisely, it follows, with the above choice of constants (for q large
enough and q = o(|E|)) that the number of unordered pairs of distinct points of E,
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supported on lines in L(E), each supporting at most 2q�1|E| points, is at least

|E|(|E|� 1)

2
� (4|E|q + 4|E| log2 q)

� |E|(|E|� 1)

2
� 4|E|q |E|

64q

� 7

16
|E|2 � |E|

2
� 4|E|q

� 7

16
|E|2 � |E|

2
� 4|E| |E|

64 log2 q

� 5|E|2

12
.

There are only q(q + 1) distinct lines in F2
q

, and each line from L(E) with fewer

than 1 + |E|
2q points. So under the assumption that q large enough and q = o(|E|),

the number of points support on L(E) is fewer than

q(q + 1)(1 +
|E|
2q

) = q2 + q +
q|E|
2

+
|E|
2

 |E|2

6
.

This completes the proof of Lemma 1. ⇤

To complete the proof of Theorem 6, let l 2 L, the set L provided by Lemma 1,
and ⌫(l) is the number of points of E on l. It follows from Lemma 1 that

X

l2L
⌫2(l) > 2

X

l2L

⌫(l)(⌫(l)� 1)

2
� |E|2

2
.

Dividing this by the maximum value of ⌫(l)  2q�1|E|, we obtain for the total
number of incidences

(11) I(E,L) =
X

l2L
⌫(l) � q|E|

4
.

By the pigeonhole principle, there exists a point z 2 E with at least q

4 lines of
L passing through it. Now dividing (11) by 2q�1|E| once more yields the desired
bound

|L| � q2

8
.

This completes the proof of Theorem 6. ⇤

Remark 13. The lemma aims at partitioning the lines in the plane such that (i) each

line in the partitioned family supports & |E|
q

points of E; (ii) there are enough lines

satisfying (i). As can be seen in the proof of Theorem 6, both (i) and (ii) are needed.
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3.3. Combining Fourier (section 3.1) and Beck (section 3.2) estimates. We
now prove the claim ii) of Theorem 3.

Proof. Let us refine the initial set E to the set E0, containing z, provided by Theorem
6, and exactly 1

2q
�1|E| points of E other than z on exactly q

4 lines incident to z.
The flexibility in the choice of constants in the proof of Theorem 6 enables one to
treat q

4 as integer. It follows that

(12) |E0| > |E|
8

� 8q log2 q.

Now place z to the origin: let E0
z

= E0 � z and apply Theorem 10. More precisely,
in the application of the Lemma let G = E0

z

? and F = E0
z

\ {0}. Hence, we have

|E0
z

| = |E0|� 1 =
|E|
8

,

|F | = |E0
z

|� 1 = |E|� 2,

|G| = |E0
z

| = |E0|� 1.

Apply the estimate (7) to the sets F and G. In view of (12) and by Lemma 1, the
quantity |F \ l

x

|, for any x 6= 0, in the second term of the estimate (7) is bounded

by 4|F |
q

. Thus, once more by (12), the second term in the estimate (7) is dominated
by the first one. More precisely,

q|F ||G|4|F |
q

= 4|F |2|G| ⌧ |F |2|G|2

q

if and only if

4q ⌧ |G|

if and only if

4q ⌧ |E|
8

.

Indeed, it follows by (12) and the construction of |E0
z

| that the number of pairs
(x, y) 2 E0

z

⇥ E0
z

, such that x, y lie on the same line through the origin, which is
O(q�1|E|), is o(q�2|E0

z

|2). Then the estimate (7) yields

(13)
X

t

⌫2(t)  |E0|4

q
(1 + o(1)).
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Now the claim ii) of Theorem (3) follows by the Cauchy-Schwarz inequality in the
following way. We have

|V z

2 (E)| � |V z

2 (E
0)|

= |V z

2 (E
0
z

)| = |{t : ⌫(t) 6= 0}|

� |#(x, y) 2 F ⇥G : x · y 6= 0}|2
P

t 6=0 ⌫
2(t)

� |#(x, y) 2 F ⇥G : x · y 6= 0}|2
P

t

⌫2(t)

�
|F |2(|G|� |E|

2q )
2

P

t

⌫2(t)

=
(|E0|� 2)2(|E0|� 1� |E|

2q )
2

P

t

⌫2(t)

� |E0|4(1� o(1))

q�1|E0|4(1 + o(1))

>
q

2
.

This completes the proof of part ii) of Theorem 3.
⇤

4. Proof of Corollary 1

Proof. We proceed by induction on the dimension. Suppose that part i) holds for
the dimension d � 1, d � 3 and part ii) holds for dimension d � 1 with d � 4. The
base of the induction for part i) is Theorem 3, and for part ii) it is the result of Vinh
([26]) that V3(E) = F

p

\ {0} for E ✓ F3
q

with |E| � 2q2.

Consider now the intersections of E ✓ Fd

q

with hyperplanes H
c

= {x : x
d

= c}.
By the pigeonhole principle, there exists c such that |E \H

c

| > qd�2 for part i), and
|E \H

c

| � 2qd�2 for part ii) of Corollary 1.
Since V

d

(E) is invariant under translations, we may assume that c = 0. In ad-
dition, since |E \H

c

| > qd�1, there must be a point z 2 E\H0, which means that
z
d

6= 0.
By the induction assumption the set V

d�1(E \ H0) satisfies the conclusion of
Corollary 1. It follows that

|V
d

(E)| � |V z

d

((E \H0) [ {z})| = |V
d�1(E \H0)|.
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To verify the latter equality, since xj
d

= 0 for every xj 2 E \H0, the elements of
V z

d

(E) are determinants of size d+ 1 of the form
�

�

�

�

�

�

�

�

�

�

�

det

0

B

B

B

B

B

@

1 . . . 1 1
x11 . . . xd1 z1
...

. . .
. . .

...
x1
d�1 . . . xd

d�1 z
d�1

0 . . . 0 z
d

1

C

C

C

C

C

A

�

�

�

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

�

z
d

· det

0

B

B

B

@

1 . . . 1
x11 . . . xd1
...

. . .
...

x1
d�1 . . . xd

d�1

1

C

C

C

A

�

�

�

�

�

�

�

�

�

.

This completes the proof of Corollary 1. ⇤
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in combinatorial geometry. Combinatorica 3 (1983), 281–297.

[2] P. Brass, W.O.J. Moser, J. Pach. Research Problems in Discrete Geometry. Springer Verlag
(2005), 499pp.

[3] J. Pach, P. Agarwal. Combinatorial geometry. Wiley-Interscience Series in Discrete Mathemat-
ics and Optimization. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York
(1995), 376pp.

[4] J. Bourgain, N. Katz, T. Tao. A sum-product estimate in finite fields, and applications. Geom.
Funct. Anal. 14 (2004), 27–57.

[5] D. Covert, D. Hart, A. Iosevich, D. Koh, M. Rudnev. Generalized incidence theorems, homo-
geneous forms and sum-product estimates in finite fields. European J. of Combinatorics 31
(2010), 306–319.
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