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Abstract

We show a subset of F2
p of size Cnlog7(12) does not necessarily contain

any equilateral triangles by giving an explicit construction of such an
equilateral-free subset. We do so by providing a map between F2

p and sets
of points on the plane. Lastly, we examine a special case of looking at
only axis-aligned triangles.
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1 Introduction

Various upper bounds have been proved for the maximum size of subsets in Fdp
that do not contain certain configurations of points. In (2) they show a upper
bound on the maximum size of a subset of Fdp which does not contain every

configuration of k points in general position as long as d >
(
k
2

)
. Specifically

for triangles, this gives a bound when d >
(
3
2

)
= 3. A method is given in (3)

to generalize to any given distance graph, as opposed to just complete graphs.
They also show specifically for unit equilateral triangles, any set in Fdp with size
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at least 24p
3+d
2 contains some equilateral triangle. Again, this gives a nontrivial

bound only when d > 3.
A natural question is whether there exists any bound of the form Cpα with

some α < d when d is 2 or 3, or if it is possible to find equilateral free sets
with a positive percentage of the available points, or neither. For some val-
ues of p, this is trivial, as the entirety of F2

p contains no equilateral triangles.

(1) shows that it contains equilateral triangles iff
√

3 ∈ F2
p, which is true iff

p ≡ 1, 3, or11 (mod 12). When d = 3, there always exists equilateral triangles,
take (1, 0, 0), (0, 1, 0), (0, 0, 1) for instance. Instead of looking for upper bounds,
this paper will instead look at the other side, and establish the following for
d = 2:

Theorem 1.1 There exists some C such that for any p, there’s an S ⊂ F2
p

of size |S| ≥ Cnlog7(12) which contains no three distinct points forming an equi-
lateral triangle.

The proof will rely on the structure of F2
p being similar to the normal Eu-

clidean plane. Intuitively, many of the the operations we can do are the same.
Formally, we will make use of the following bijection between the finite field and
the hexagonal plane:

Theorem 1.2 There is a bijection between the points of S ⊂ F2
p and Pp

(see Definitions) for all odd p > 3 such a triple is an equilateral triangle in one
iff it is an equilateral triangle in the other.
As such, we will look for large subsets of the hexagonal coordinate system that
are equilateral-free. Lastly, because it is curious if there exists any bound of the
form Cpα with α < d, we will also examine and prove the following special case:

Theorem 1.3 For any C and any α < 2, there is some subset of Pn for
large enough n with at least Cnα elements, that contains no equilateral trian-
gles with sides parallel to the coordinate axes.

This may provide evidence that there is no way to get a a bound of the form
Cnα on the size of equilateral free sets for d = 2, although trying to apply a
similar proof method does not work.

2 Definitions

For any two elements x and y of Fdp, the d-dimensional vector space over the
finite field with characteristic p prime, we define the distance between the two
to be:

||x− y|| = (x1 − y1)2 + (x2 − y2)2 + ...+ (xd − yd)2

Note that this does not follow the normal intuition of a distance function as
the triangle inequality does not always hold, and distances can be 0 between
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distinct points. Three distinct points, x, y, z ∈ Fdp are called an equilateral
triangle iff

||x− y|| = ||x− z|| = ||y − z||

and a subset S ⊂ Fdp is called equilateral− free if it has no such triple.
We will also be making use of the hexagonal coordinate system, which con-

sists of all points of the form

{(a+
b

2
,
b
√

3

2
)|a, b ∈ Z}

We can divide this into n2 equivalency classes which we will call Pn with two

points (a1+ b1
2 ,

b1
√
3

2 ) and (a2+ b2
2 ,

b2
√
3

2 ) in the same equivalency class iff a1 ≡ a2
(mod p) and b1 ≡ b2 (mod p). We will refer to this element of Pn by (a, b) where
a ≡ a1 ≡ a2 (mod p), b ≡ b1 ≡ b2 (mod p), and 0 ≤ a, b ≤ n. The points of P3

are shown in Figure 1 with a coloring as an example. Note that there are not
more than 3 colors along any line, and that every 3x3 parallelogram in any of
the 3 orientations contains all 9 colors exactly once.

We don’t define a distance function between points of Pn, but instead define
a distinct triple to be an equilateral triangle if there exists a triple of points
containing one from each equivalence class that is an equilateral triangle in the
plane.

Figure 1: Points of the hexagonal coordinate system separated into the 32 equiv-
alency classes of P3

3 Proof of the main result

Using the bijection in theorem 1.2, our goal becomes to show there exists subsets
of Pn of size Cnα with α = log7(12) ≈ 1.277 for some C for any n which contains
no equilateral triangle.

First, looking at n = 7, there is a equilateral-free subset of size 7α = 12 of P7

as shown by the circled points in figure 2. This can be checked to not contain
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equilateral triangles, and has been programmatically verified as the largest such
subset of P7. The code for this is in the Appendix. The code isn’t fast enough
to run for larger grids, but this proof method can use a better starting grid to
get a better bound, if one is found.

Next, we will show that for any k and S, if there exists an equilateral-free
subset of Pk with size S, how to construct one in P7k with size 12S. The method
will be to place a P7 into each point of the Pk, and in the S originally selected
points, we select the corresponding 12 points of that P7. An example of this
(with k = 3, S = 4) is shown in figure 3 to help with understanding. Formally,
we have a set A of S pairs in Pk, and a set B of 12 pairs in P7, we then make
set

A′ = {(7a+ b, 7c+ d)|0 ≤ a, c < k, 0 ≤ b, d < 7, (a, c) ∈ A, (b, d) ∈ B}

Figure 2: Maximum size equilateral-free set in P7

Figure 3: Method for extending equilateral-free sets into larger ones
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The reason A′ will not contain any equilateral triangles is as follows. The
points of the plane contained in it are a subset of the points defined by the
12 equivalence classes of P7, so the only possible equilateral triangles must be
within the same equivalence class in P7. That means they must differ by multi-
ples of 7 in axis parallel directions. Taking all such points reduces it to a copy
of the original Pn, which will either be completely empty, or a copy of S, which
we already know does not contain any equilateral triangles. Essentially, this is
just a tensor product of the two.

With this method, we can make a subset of P7n without any equilateral
triangles, which will be of size (7n)α = 12n for any n. This doesn’t prove
the theorem completely though. Just because we can choose 144 points in P49

doesn’t necessarily mean we can choose 144 points in P50 because we have to
worry about triangles formed with wrapping around. However we can divide Pn
into two sections, dividing along the main diagonal. Then, when the plane is
tiled as shown in Figure 5, if we only pick points that lie under the main diagonal
to be in our set, we avoid the problem of wrapping around Pn completely. This
is because for any two points lying under the main diagonal, i.e. in one of the
darker triangles in Figure 5, the points that complete the equilateral triangle
will either be in the same darker triangle, and therefore be in the same copy
of Pn, or be in a lighter triangle and therefore not be in the selected set at all.
These two cases are demonstrated in the Figure as well.

By choosing a 7a < n
2 and choosing the 12a points in the lower left P7a of

Pn, we get some equilateral-free set. There is always a power of seven with n
14 ≤

7a < n
2 for any n, so this set will have at least n

14
log7(12) = 14−log7(12)nlog7(12).

�

Figure 4: Division of Pn into two parts

4 Proof of Theorem 1.2

in Theorem 1.4 of (1), it is established that F2 contains equilateral triangles
if and only if

√
3 ∈ F. Additionally, Lemma 4.1 in the proof of that theorem

implies that if F does not have characteristic 2, then for any line segment (x1, x2),
the amount of x3s such that

||x1 − x2|| = ||x1 − x3|| = ||x2 − x3||
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is 
2 if 3 is a nonzero square in F
1 if 3 ≡ 0, (so if F has characteristic 3)

0 otherwise

We will first solve to determine exactly what these x3 are, if they exist.

Lemma 1.1 For any distinct x1, x2, x3 in Zp with p > 2, they form an
equilateral triangle if and only if x3 = x1 +R(x2 − x1) where

R =

[
1/2 ±

√
3/2

∓
√

3/2 1/2

]
Proof :The intuition behind R is that it represents a rotation of 60 degrees

that will be applied to x2 clockwise or counter-clockwise about x1.
First, we can show that if

√
3 6= 0, the two solutions are not equal. This is

because [
1/2

√
3/2

−
√

3/2 1/2

]
(x2 − x1) =

[
1/2 −

√
3/2√

3/2 1/2

]
(x2 − x1)

means that [
0

√
3

−
√

3 0

]
(x2 − x1) = 0

which means that either x2−x1 = 0 which isn’t allowed as they are distinct,
or the matrix has nonzero kernel, which would mean its determinant is zero, so
3 = 0, which is a contradiction.

Therefore, taking x3 = x1 +R(x2−x1) gives two distinct solutions if
√

3 6= 0
exists, one solution if

√
3 = 0, and none if

√
3 does not exist. We know this

is the total amount of solutions that will extend the segment (x1, x2) into an
equilateral triangle, so if we show that these solutions do make an equilateral
triangle, we will also have shown that no other solutions exist.

The rest is just computation. Letting x1 = (a, b), x2 = (c, d), so then

x3 = ( 1
2 (a+ c)±

√
3
2 (d− b), 12 (b+ d)∓

√
3
2 (c− a)), we can find the distance

||x3 − x1|| = (
1

2
(c− a)±

√
3

2
(d− b))2 + (

1

2
(d− b)∓

√
3

2
(c− a)))2

= (
1

4
+

3

4
)(c− a)2 + (

±
√

3

2
+
∓
√

3

2
)(c− a)(d− b) + (

1

4
+

3

4
)(d− b)2

= (c− a)2 + (d− b)2 = ||x2 − x1||

and following similarly we also get

||x3 − x2|| = (
1

4
+

3

4
)(c− a)2 + (

∓
√

3

2
+
±
√

3

2
)(c− a)(d− b) + (

1

4
+

3

4
)(d− b)2
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= (c− a)2 + (d− b)2 = ||x2 − x1||

�
Now that we have this lemma, when the characteristic of Zp is greater than

3, this closely matches what we expect from the plane. To get an equilateral
triangle, you can start with any segment, and rotate one point about the other
by 60 degrees in either direction. This intuition will give way to the bijection.
Taking Zn with n > 3 and

√
3 ∈ Zn, every element of Z2

n can be decomposed

into a(1, 0) + b( 1
2 ,
√
3
2 ) with 0 ≤ a, b < n (Choosing one of the two possible

√
3

arbitrarily but consistently). Matching up that point with a(1, 0) + b( 1
2 ,
√
3
2 ) on

the plane, we get the desired correspondence. Because on the plane, x1, x2, x3
also form an equilateral triangle if and only if x3 = x1 + R(x2 − x1), and the
bijection preserves scalar multiplication and addition, the bijection preserves
equilateral triangles.

As an example, Figure 1 shows three equilateral triangles in Z2
11 on the left,

and the equilateral triangles that they map to in P11.

Figure 5: Three triangles in Z2
11 and in P11

�

5 Proof of Theorem 1.3

The proof of this theorem will rely on the fact that there exist Salem-Spencer
sets of size greater than nα for any α < 1, as for any equilateral triangle with
sides parallel to the coordinate axes, the x-coordinates of these points form an
arithmetic series.
This doesn’t completely solve the problem, as x-coordinates are not evenly dis-
tributed within any one n by n parallelogram of representative points in Pn, and
also we have to worry about wrapping around similar to the proof of the main
result. However we can employ a similar trick in which we pick only points from
a more restricted shaded region, as shown in Figure 6. Formally, we choose all
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Figure 6: Darker shaded contains evenly distributed x-coordinates

{(a+
b

2
,
b
√

3

2
)|b is even,

n

4
≤ a+

b

2
<

3n

4
, 0 ≤ b < n/2}

and the corresponding equivalence classes. This represents bn2 c choices of
b, and bn2 c choices of a for each b, so bn2 c

2 ≈ n
4 total points, forming a square

with bn2 c possible x and y coordinates. Next, we choose a Salem-Spencer set of
numbers from 0 to bn2 c and take all points in this with an x coordinate exactly
bn4 c above a point in this set.
For any α, we can choose a n large enough such that the Salem-Spencer set
will have at least n

2
α−1 elements, and then the set we pick will have n

2
α = Cnα

elements.

6 Concluding thoughts

We still haven’t touched on what if d = 3, a similar method that was employed
here to biject into space is unlikely to work, as the number of triangles for any
segment in F3

n depends on n, which has no parallel in space. Every slice of F3
n

creates a copy of F2
n though scaled somehow, so there is some hope of using a

solution from a lower dimension to find one for a higher dimension
If a faster program was able to find grids of larger sizes with better ratios

than the 7x7 example provided, they would instantly improve the lower bound
in this paper, by using the same method. If it turns out to be like the problem
in Theorem 1.3, these lower bounds would not hit a stopping point, and you
would have to use an argument like with Salem-Spencer sets, or perhaps Cap
sets. Cap sets seem possibly related in that they also are in d dimensional fields
and deal with finding large sets avoiding specific triples of points.

7 Appendix

#include <iostream>
#include <vector>
using namespace std ;

int mx; // b e s t s o l u t i on found so fa r
int n ; // s i z e o f the g r i d
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struct ar r { // s t r u c t used in order to be ab l e to pass by va l
int ans [ 7 ] [ 7 ] ;

} ;

void s o l v e ( a r r ans , vector<pair<int , int> > marked , int x , int y , int to t ){

i f ( y==n){ // i f we are at the end o f the g r i d
i f ( to t > mx){ //and our current s o l u t i on i s the b e s t so f a r

mx = tot ; //update and output
cout << ”Set with s i z e ” << to t << ” : ” << endl ;
for ( pair<int , int> p : marked ){

cout << p . f i r s t << ” ” << p . second << endl ;
}
for ( int i =0; i<n ; i++){

for ( int j =0; j<n ; j++){
cout << ( ( ans . ans [ i ] [ j ]==1)?”X ” : ”O ” ) ;

}
cout << endl ;

}
cout << endl << endl ;

}
return ;

}
else {

int nx = x ; // ge t the next c e l l to recurse
int ny = y ;
nx++;
i f ( nx == n){

ny++;
nx = 0 ;

}
i f ( ans . ans [ x ] [ y ] == −1) { // i f we can ’ t choose x , y

s o l v e ( ans , marked , nx , ny , to t ) ;
return ;

}
ans . ans [ x ] [ y ] = −1;
s o l v e ( ans , marked , nx , ny , to t ) ; // i f we don ’ t p i ck x , y
// o therwi se we s e l e c t x , y
for ( pair<int , int> p : marked ){ //go through and mark po in t s which now can ’ t be s e l e c t e d

int a = p . f i r s t ;
int b = p . second ;
ans . ans [ ( 2∗ n+a+b−y)%n ] [ ( 2 ∗ n+y+x−a)%n ] = −1;
ans . ans [ ( 2∗ n+x+y−b)%n ] [ ( 2 ∗ n+b+a−x)%n ] = −1;

}
ans . ans [ x ] [ y ] = 1 ;
marked . push back ( make pair (x , y ) ) ;
s o l v e ( ans , marked , nx , ny , to t +1);
return ;

}

}

int main ( ) {
n = 7 ;
a r r ans ;
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for ( int i =0; i<n ; i++){
for ( int j =0; j<n ; j++){

ans . ans [ i ] [ j ] = 0 ;
}

}
vector<pair<int , int> > marked ;
//we can always ro t a t e to be ab l e to p ick (0 ,0) and (1 ,0) so s t a r t with those marked
ans . ans [ 0 ] [ 0 ] = 1 ;
ans . ans [ 1 ] [ 0 ] = 1 ;
ans . ans [ 0 ] [ 1 ] = −1;
ans . ans [ 1 ] [ n−1] = −1;
marked . push back ( make pair ( 0 , 0 ) ) ;
marked . push back ( make pair ( 1 , 0 ) ) ;
s o l v e ( ans , marked , 2 , 0 , 2 ) ;
return 0 ;

}

References

[1] M. Bennett, A. Iosevich, and J. Pakianathan Three-point configurations de-
termined by subsets of F2 via the Elekes-Sharir paradigm. Combinatorica 34
(2014), no. 6, 689–706.

[2] D. Hart and A. Iosevich Ubiquity of simplices in subsets of vector spaces over
finite fields. Anal. Math. 34 (2008), no. 1, 29–38.

[3] A. Iosevich and H. Parshall, Embedding distance graphs in finite field vector
spaces, arXiv:1802.06460

10


