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Abstract

Consider a d-ary tree T which simulates the process of broadcasting
information from the root to other vertices, where each edge is a copy of
an irreducible and aperiodic Markov chain M with reversible transition
matrix M ∈ Rn×n on state space Ω, the goal is to reconstruct the value of
the root given values of nodes at level n of the tree, where n → ∞. This
branching process is useful for modeling complex populations that exhibit
dependencies between the states of individuals and their ancestors. It
can be used to study a wide range of phenomena, including the spread
of diseases in populations, the growth of organisms in ecosystems, and
the diffusion of information and ideas. We are going to work on the
non-reconstruction conjecture of this problem. The conjecture states that
information on root cannot be reconstructed if |λ2(M)| < 1

d
, where λ2(M)

is the second largest eigenvalue of M. Our focus is on the scenario where
M is symmetric.

1 Introduction

The study of information propagation has gained significant attention in recent
years due to its wide-ranging applications in diverse domains such as epidemi-
ology, ecology, and social network analysis. The ability to model the behavior
of these systems, as well as the limitations of information recovery, can provide
valuable insights into the underlying mechanisms driving their dynamics.

In this paper, we investigate a specific instance of information broadcasting in a
d-ary tree, wherein the edges represent irreducible and aperiodic Markov chains
with a symmetric transition matrix. The d-ary tree T serves as a natural model
for representing the process of broadcasting information from a root node to
the remaining vertices. Each edge in this tree is a copy of an irreducible and
aperiodic Markov chain M with a reversible transition matrix M ∈ Rn×n on
the state space Ω. Our objective is to reconstruct the value of the root node
based on the values of nodes at level n of the tree, as n → ∞. This branching
process is particularly relevant in the context of modeling complex populations
that exhibit dependencies between the states of individuals and their ancestors.
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We dedicate our efforts to understanding the non-reconstruction conjecture as-
sociated with this problem. The conjecture posits that it is not possible to
reconstruct information about the root node if |λ2(M)| < 1

d , where λ2(M) rep-
resents the second largest eigenvalue of the transition matrix M. This paper
contributes to the existing body of knowledge by shedding light on the condi-
tions under which the non-reconstruction conjecture holds by focusing on the
case where M is symmetric, thereby offering a deeper understanding of the
limitations of information propagation in d-ary trees with symmetric Markov
chain edges. Furthermore, our findings have the potential to inform the design
of more efficient strategies for managing the spread of diseases, the growth of
organisms, and the diffusion of information and ideas in complex systems.

2 Related Works

2.1 Applications of the non-reconstruction conjecture

One of the prominent applications of the non-reconstruction conjecture lies in
the field of phylogeny reconstruction in computational biology [1, 2]. Phyloge-
netic trees are graphical models that represent the evolutionary relationships
among various species, tracing back to their common ancestors. In this context,
the d-ary tree with symmetric Markov chain edges can serve as a model for
the evolutionary process, where each vertex represents a species and each edge
signifies the transmission of genetic information. The non-reconstruction con-
jecture provides valuable insights into the conditions under which it is possible
to infer the ancestral state as well as the entire evolutionary tree based on the
genetic information of the extant species, thus contributing to the development
of robust phylogenetic inference methods.

Additionally, this study has implications for the understanding of the mixing
properties of Markov chains on random graphs, since the measure of how rapidly
a Markov chain converges to its stationary distribution, also known as the case
where sequences of random graphs converging locally to trees, is closely re-
lated to the ability to reconstruct the original state from the chain’s current
state [3, 4]. In essence, the non-reconstruction conjecture implies that certain
Markov chains exhibit rapid mixing, making the reconstruction of the root state
increasingly difficult.

The non-reconstruction conjecture also finds relevance in the context of the
replica symmetric phase of random constraint satisfaction problems (CSPs),
where the solutions to a CSP are organized in a tree-like structure, similar to
the d-ary tree considered in our study. The conjecture in this case sheds light on
the conditions under which the structure of the solution space can be recovered
from partial information. Understanding the non-reconstruction conjecture in
the context of CSPs can have implications for the landscape of combinatorial
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optimization problems. It can also be linked to the reconstruction problem
for the Potts model [5], a generalization of the Ising model used in statistical
mechanics to describe the behavior of interacting particles in a lattice. In this
setting, the d-ary tree with symmetric Markov chain edges can be viewed as a
lattice structure, where each node represents a particle with one of the possible
discrete states.

2.2 Existing reconstruction methods

Various reconstruction methods have been developed to address the problem of
inferring the root state in a d-ary tree. One such method to usemaximum like-
lihood estimation (MLE), which is consistent for inferring the tree topology
[6]. In particular, we find the optimal assignment of states to the root node that
maximizes the likelihood of the observed data. Another approach is the census
method, which involves observing whether the census of the configuration at
level n contains any significant information on the root variable. Reconstruc-
tion (and census) solvability when dλ2(M) > 1 was initially demonstrated in [7],
though it was expressed in the context of multi-type branching processes which
we will later introduce in §3.3. The proofs of the non-reconstruction result when
dλ2(M) ≤ 1 are harder as shown in [8], where it’s also demonstrated that the
asymptotic independence of the root in the census is determined by the spectral
properties of M.

3 Preliminaries

3.1 Markov chains

In this section, we introduce the basic concepts and notations related to Markov
chains, which will be employed throughout the paper to analyze the non-reconstruction
conjecture in information broadcast over d-ary trees.

A Markov chain is a stochastic process that models the transition between states
in a system, where the future state depends only on the current state and not
on the past states. This property is known as the Markov property.

Definition 1. (Markov Chain) A Markov chain is a sequence of random
variables Xn, n ∈ N taking values in a finite or countable state space Ω and
satisfying the Markov property: for any n ∈ N and any states x0, x1, . . . , xn+1 ∈
Ω,

P (Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn) = P (Xn+1 = xn+1|Xn = xn).

In this paper, we are mainly dealing with time homogeneous Markov chains,
where the probability of moving from one state to another is constant over
time and does not depend on when the transition occurs. Hence we have the
transition matrix that captures the probabilities of transitioning between the
states of a Markov chain.
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Definition 2. (Transition Matrix) Let M be a Markov chain with state space
Ω. The transition matrix M ∈ R|Ω|×|Ω| of M is a matrix such that Mij is
the probability of transitioning from state i to state j:

Mij = P (Xn+1 = j|Xn = i), i, j ∈ Ω,

where ∀i, j ∈ Ω,Mij ≥ 0, and
∑n

j=1 Mij = 1 for all i ∈ Ω.

A stationary distribution is a probability distribution over the state space of a
Markov chain that remains invariant under the transition probabilities.

Definition 3. (Stationary Distribution) Let M be a Markov chain with tran-
sition matrix M. A probability distribution π over the state space Ω is a sta-
tionary distribution of M if

πM = π.

Note that another way to express this is that π is an eigenvector with all its
elements being nonnegative, and its associated eigenvalue is 1.

Example 1. Consider a Markov chain represented by a random walk on the
nodes of an n-cycle. At each step, there is a 1/2 probability of staying at the
current node, a 1/4 probability of moving left, and a 1/4 probability of moving
right. The uniform distribution, which assigns a probability of 1/n to each node,
acts as a stationary distribution for this chain, because it remains constant after
performing a single step in the chain.

For Markov chains, irreducibility and aperiodicity are essential properties that
ensure the existence and uniqueness of a stationary distribution.

Definition 4. (Irreducibility) A Markov chain with transition matrix M is
irreducible if there exists a sequence of transitions between any pair of states
i, j ∈ Ω with positive probability

∀i, j ∈ Ω,∃t ∈ N s.t. (Mt)ij > 0.

Definition 5. (Aperiodicity) A Markov chain with transition matrix M is ape-
riodic if for all states i ∈ Ω, the greatest common divisor of the set {t ∈ N :
(Mt)ii > 0} equals 1.

Theorem 1. If a Markov chain M is irreducible then it has a unique stationary
distribution π.

A Markov chain is said to be ergodic if it is both irreducible and aperiodic.
Hence we derive the definition of ergodicity as follows.

Theorem 2. (Convergence to stationary distribution) If a Markov chain M is
ergodic, then there exists a unique stationary distribution π such that for any
given (initial) distribution α, limt→∞ αMt = π.

Definition 6. (Reversibility) An ergodic Markov chain is reversible if the sta-
tionary distribution π satisfies the detailed balance equations: ∀i, j ∈ Ω, πiMij =
πjMji
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3.2 Coupling

Coupling is a technique used in probability theory to study the convergence
of Markov chains. It involves constructing two Markov chains on the same
probability space that eventually couple or synchronize their states. We will
employ this technique in subsequent proofs. In short, the term coupling in
probability refers to creating a joint distribution from two separate distributions,
ν and γ, with the resulting joint distribution having ν and γ as its marginals.
This coupling can provide valuable insight into the difference between the two
distributions, measured by the total variation distance. Suppose ν, γ are two
distributions on Ω, we want to define measures that enable us to compare ν and
γ.

Definition 7. (Coupling) A coupling ω is a joint distribution on Ω× Ω such
that

∀y,
∑
x∈Ω

ω(x, y) = γ(y),

∀x,
∑
y∈Ω

ω(x, y) = ν(x).

where ν, γ are two distributions on Ω.

Example 2. Consider a Markov chain on the state space Ω = {0, 1} with the
following transition probability matrix M:

M =

(
0.7 0.3
0.6 0.4

)
We want to study the convergence of this Markov chain to its stationary distri-
bution. To do this, we construct two copies of the Markov chain, say X and
Y , with initial states x0 and y0, respectively, where x0 ̸= y0. Now we define a
coupling of these two chains such that:

• If Xt = Yt: 1) If Xt = Yt = 0, then Xt+1 = Yt+1 with probability 0.7 both
chains move to state 0, and with probability 0.3 both chains move to state
1; 2) if Xt = Yt = 1, then Xt+1 = Yt+1 with probability 0.6 both chains
move to state 0, and with probability 0.4 both chains move to state 1

• If Xt ̸= Yt: 1) If Xt = 0, Yt = 1, the chains have a 0.24 chance of
moving to state (1, 1), 0.4 chance of moving to state (0, 0), 0.36 chance
of staying in the same state, and 0 chance of moving to state (1, 0); 2) if
Xt = 1, Yt = 0, the chains have a 0.24 chance of moving to state (0, 0),
0.4 chance of moving to state (1, 1), 0.36 chance of staying in the same
state, and 0 chance of moving to state (0, 1).

Hence the coupling matrix can be written as
0.7 0 0 0.3
0.4 0.36 0 0.24
0.4 0 0.36 0.24
0.6 0 0 0.4


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Note that this is only one possible coupling for the given Markov chain. Coupling
works as long as the following conditions are satisfied:

• If X and Y are in the same state (i.e., Xt = Yt), they stay synchronized
(i.e., Xt+1 = Yt+1)

• If X and Y are in different states, they may synchronize with some prob-
ability

By constructing the coupled Markov chains X and Y, we can analyze the syn-
chronization time (i.e., the time it takes for the chains to reach the same state)
and use this information to study the convergence to the stationary distribution.

We also introduce a measure of the difference between two probability dis-
tributions. It is defined as the sum of the absolute differences between the
probabilities assigned to each event by the two distributions.

Definition 8. (Total Variation Distance) The total variation distance be-
tween probability distributions ν and γ is defined as

dTV := sup
A∈Ω

|ν(A)− γ(A)|, (1)

and when Ω is countable, it also holds that

dTV :=
1

2
||ν − γ||1 =

1

2

∑
x∈Ω

|ν(x)− γ(x)|. (2)

There’s also an alternative way of defining coupling using random variables
instead of distributions. Let X,Y be a pair of random variables with probability
distributions ν and γ on Ω, that is

P(X = a) = ν(a), for all a ∈ Ω,

P(Y = b) = γ(b), for all b ∈ Ω.

Then we define a joint distribution ω of (X,Y ) on Ω×Ω to be ω(x, y) = P(X =
x, Y = y). Hence ω is a probability measure on the product space Ω × Ω s.t.
the marginals of ω coincide with ν and γ.

Hence we can use coupling to bound the distance between probability measure.

Lemma 1. Let ν and γ be two probability distributions on Ω, then for any
coupling (X,Y ) of ν and γ,

dTV (ν, γ) ≤ P(X ̸= Y ). (3)
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Proof. For any event A ⊂ Ω and coupling (X,Y ) for ν and γ,

ν(A)− γ(A) = P[X ∈ A]−P[Y ∈ A]

= P[X ∈ A,X = Y ] +P[X ∈ A,X ̸= Y ]−P[Y ∈ A,X = Y ]−P[Y ∈ A,X ̸= Y ]

= P[X ∈ A,X ̸= Y ]−P[Y ∈ A,X ̸= Y ]

≤ P[X ̸= Y ]

The intuition is that we want to find a coupling (X,Y ) s.t. X ̸= Y only
if ν(x) ̸= γ(x) i.e. x is in the marginals of ω coincide with ν and γ. The
second line involves three cases when we randomly select a point x in Ω: 1)
X ∈ A, Y ∈ A; 2) X ∈ A, Y /∈ A; 3) X /∈ A, Y ∈ A. In case 1), we set X = Y ;
in case 2) and 3), we set X ̸= Y . Similarly, we can show that

γ(A)− ν(A) ≤ P[X ̸= Y ],

and hence
dTV = sup

A∈Ω
|ν(A)− γ(A)| ≤ P[X ̸= Y ],

3.3 Galton-Watson Branching Process

The Galton-Watson branching process (or GW-process for short) is a mathe-
matical model that describes the evolution of a population over time. Formally,
the GW-process can be defined as a discrete-time branching process, where the
number of offspring produced by each individual in the population is modeled
as a random variable. This random variable is typically assumed to follow a cer-
tain probability distribution, such as the Poisson distribution or the geometric
distribution, which determines the average number of offspring and the vari-
ance in the number of offspring. The size of the population at any given time
is given by the sum of the number of offspring produced by each individual in
the previous generation.

The GW-process is used to model a variety of real-world systems, including
the spread of diseases, the growth of populations, and the evolution of species.
By analyzing the behavior of the GW-process, it is possible to obtain informa-
tion about the long-term behavior of the population, such as the probability of
extinction or the average population size over time.

Example 3. Consider a branching process modeling population growth, where
each individual can have 0, 1, or 2 offspring with probabilities 0.4, 0.4 and 0.2, re-
spectively. Starting with a single individual (generation 0), the process unfolds in
discrete generations. Each individual in generation n produces a random number
of offspring (0, 1, or 2) according to the given probabilities, forming generation
n+ 1. This Galton-Watson process models the evolution of the population over
time, capturing growth or extinction dynamics.
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3.3.1 Single-type Branching Process

The most common formulation of a branching process is Galton–Watson pro-
cess.

Definition 9. A Galton-Watson process is a discrete-time Markov chain {Mn =
0, 1, 2, . . . } on Ω, where Mn denote the number of individuals on nth level, with
transition function defined in terms of offspring distribution {pk}, where k =
0, 1, 2, · · · , pk ≥ 0, and

∑
pk = 1, by

P(i, j) = P{Mn+1 = j|Mn = i} = p∗ij , i, j ∈ Zκ
≥0

where {p∗ik } denotes the ith convolution power of the {pk; k = 0, 1, 2, . . . }.

Denote the mean and variance of offspring distribution {pk} as µ and σ. Note
that µ, σ > 0 and are finite. Now we can calculate the first moment of Mn.
Since given Mn, we have

E[Mn+1 | Mn] = µMn ⇒ E[Mn+1] = µE[Mn],

then since E[M0] = 1, it follows that

E[Mn] = µn. (4)

In general, there are two types of branching processes: subcritical branching
processes and supercritical branching processes. In subcritical branching pro-
cesses, the population eventually goes extinct, while in supercritical branching
processes, the population grows without bounds. The critical threshold between
these two types of processes is determined by the mean number of offspring pro-
duced by each individual. Therefore, we introduce the following theorem that
expresses the probability of extinction of branching process [9].

Theorem 3. If µ < 1, then with probability 1 the branching process M extincts
eventually, i.e. there exists N ∈ M≥0 s.t. Mn = 0 for some any n ≥ N .

Proof.

E
[∑

Mn

]
=

∑
µi ≤ 1

1− µ

when µ < 1. Since the sum of number of offspring on each level is finite, the
process must die out at some point.

For instance, in Example 3, the mean of offspring µ = 0.8 < 1. Then ac-
cording to Theorem 3, with probability 1 the branching process will go extinct
eventually.

8



3.3.2 Multi-type Branching Process

In many scenarios, the individuals in a branching process are not identical.
Some examples of this include: 1) Population Genetics - where the inheritance
of alleles can be modeled by a 3-type branching process that corresponds to the
genotypes; 2) Physics - such as cosmic-ray cascades that involve both electrons
and photons and can be modeled by a 2-type branching process. Multi-type
branching process refers to a mathematical model that describes the evolution
of a population in which individuals can give rise to offspring of multiple types,
and the number and type of offspring is determined by a probability distribution
that depends on the current state of the individual and its ancestry. In our case,
we can form the multi-type branching process as [10].

Definition 10. A multi (κ−type) Galton-Watson process is a Markov chain
{Mκ

n = 0, 1, 2, . . . } on Ωκ, where Mn is a κ-dimensional vector whose ith entry
gives the number of individuals of type i on the nth level, with transition function

P(x,y) = P{Mn+1 = y|Mn = x}, x,y ∈ Ωκ.

Now let mij denote the expected number of children of type j that node of type
i has, Then we have an associated m × m matrix M where each entry mij is
defined by

mij = E[M1j | M0 = i]

Then the expected number of each type at level n (denoted as Mn) is

E[Mn] = E[Mn | M0] = M0M
n (5)

Now similarly, we consider the extinction probability for multi-type branching
process.

Theorem 4. If ρ(M) < 1, then with probability 1 the multi-type process M
extincts eventually.

Proof. Since if M survives at level n, there exists node(s) of some type(s) at
this level, which means Mn ≥ 1. To ensure smooth transitions of the process M
towards success, E[Mn] should be greater or equal to the probability of Mn ≥ 1.
Hence

P[M survives forever] ≤ P[Mn ≥ 1] ≤ E[Mn] = M0M
n,

and thus we have

lim
n→∞

P[M survives forever] ≤ lim
n→∞

M0M
n = 0,

as limn→∞ Mn = 0 when ρ(M) < 1. Hence M extincts with probability 1.
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4 Problem Definition

We now turn to the reconstruction problem. When the distribution of the
process on nth level is independent of the root value as n goes to infinity, we
say that the root is non-reconstructible. In this case, we have no way to
reconstruct given this ”same” distribution. Following this intuition, we can
formally define non-reconstructibility as follows.

Definition 11. Given Markov chain M with transition matrix M and two trees
generated from random roots that are independent, where distributions of level
n are denoted as νn and γn, then the root is non-reconstructible if

lim
n→∞

dTV (νn, γn) = 0 (6)

Following Lemma 1, suppose we create random variables X,Y with probability
distributions νn and γn, then we have

lim
n→∞

P(X ̸= Y ) = 0

if the root is non-reconstructible.

5 Recap on M2×2 transition matrix

Mossel [11] has showed that the information of the root can not be reconstructed
for the d-ary tree and binary symmetric channel M where transition matrix

M =

(
1− δ1 δ1
1− δ2 δ2

)
(7)

when |λ2(M)| = |δ2 − δ1| ≤ 1
d .

Theorem 5. Let M be in form (7). Take integer d s.t. |dλ2(M)| ≤ 1, then the
root is non-reconstructible for the d-ary tree.

5.1 Proof I

We first introduce the random process called λ-percolation [11]. Denote the
d−ary tree as T = {V,E}, where V represents the set of vertices (nodes) in T ,
and E represents the set of edges. Consider τ : E → {0, 1} which maps from
the set of edges to {0, 1}. Given any e ∈ E, we define P (τ(e) = 1) = λ.

Now we prove can prove Theorem 5 following Mossel [11].

Proof. Given transition matrix Mk×k, we first show that

Mi,j = λNi,j + (1− λ)vj (8)

for some broadcasting matrix Nk×k, distribution vectors (vj)
k
j=1, and a number

λ ∈ (0, 1). In this way, we separate the original broadcast process into two
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parts: 1) copying the original distribution; 2) broadcast via matrix N

Consider λ = λ2(M) = |δ1 − δ2|.

If δ1 − δ2 < 0, then λ = δ2 − δ1. Let N = I, where I is the identity matrix(
1 0
0 1

)
, and v = (1−δ2,δ2)

1−λ . Then

M = (δ2 − δ1)I+

(
1− δ2 δ1
1− δ2 δ1

)
,

so for each row vector Mi,∗ in M, we have

Mi,∗ = λIi,∗ + (1− λ) · (1− δ2, δ1)

1− λ

= λNi,∗ + (1− λ)v.

Then similarly, if δ1− δ2 > 0, then λ = δ1− δ2. Let N = J, where J =

(
0 1
1 0

)
,

and v = (1−δ1,δ2)
1−λ . Then

M = (δ1 − δ2)J+

(
1− δ1 δ2
1− δ1 δ2

)
,

so for each row vector Mi,∗ in M, we also have

Mi,∗ = λJi,∗ + (1− λ) · (1− δ1, δ2)

1− λ

= λNi,∗ + (1− λ)v.

We now show that when dλ ≤ 1, the root is non-reconstructible given transition
matrix M. In fact, for any transition matrix that can be written in the form
(8), the broadcast process is non-reconstructible.

We simulate the broadcast on d−ary tree T = {V,E} with root node ζ ∈ Ω
as a λ-percolation process. Note that we use the transition matrix M, which
means that the probability of from i to j is Mi,j . Hence we can define M :
V → V as a random function which satisfies P (M(i) = j) = Mi,j . Now since
Mi,j = λNi,j + (1 − λ)vj , we can write M = XN + (1 − X)Y , where N is a
random function that satisfies P (N(i) = j) = Ni,j , Y is a random variable that
satisfies P (Y = j) = vj , and X is a {0, 1} variable that satisfies P (X = 1) = λ.
Hence we can simulate the broadcast process in the following way. For any
node v ∈ V , let Nv be an independent copy of the function N to simulate the
transition through N from v, and Yv be an independent copy of the variable
Y . Then for any child v′ of v, there exists edge (v, v′), for which we define an
element of the space {0, 1}E as τ(v, v′), and it satisfies that

P(τ(v, v′) = 1) = λ. (9)
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Then according the definition of τ(v, v′), we define the procedure as follows

v′ =

{
Nv(τ(v)) if τ((v, v′) = 1
Yv if τ((v, v′) = 0

Therefore, for any node v ∈ V , we have probability λ to perform the transition
by M , and probability 1− λ by Y , and the two different processes are indepen-
dent.

In this way, we obtain a coupling of the two distributions on nth level of T .
Let the set of vertices that has path to root node ζ that contains only set of
edges E′ s.t. τ(E′) = 1 be L, and let the set of vertices at nth level be Sn.
Let the probability distribution given root, say ζν , at nth level be νn. Then if
L ∩ Sn = ∅, we obtain same distribution on nth level given any value of root ζ.
Then since

max
ζν ,ζγ∈Ω

P(νn ̸= γn) ≤ P(L ∩ Sn = ∅),

and since it has been proved in [12] that when dλ ≤ 1,

lim
n→∞

P(L ∩ Sn = ∅) = 0,

we have
lim
n→∞

max
ζν ,ζγ∈Ω

P(νn ̸= γn) = 0,

which implies that the root is non-reconstructible.

5.2 Proof II

An alternative proof using coupling is proposed as follows.

Proof. Say νn and γn are distributions of nth level of trees started with different
root values. Let Xn, Yn be random variables with probability distributions νn
and γn. By Lemma 1, we have

dTV (ν, γ) ≤ P(X ̸= Y ),

so P(X ̸= Y ) is an upper bound of dTV . Now since M =

(
1− δ1 δ1
1− δ2 δ2

)
,

λ2(M) = |δ1 − δ2| ≤ 1
d . Given any node Xn and corresponding Yn, let Xn+1,i

and Yn+1,i (i ∈ [0, d− 1]) be the ith child nodes transmitted from them through
transition matrix M. We are going to couple Xn+1,i and Yn+1,i as follows. If
Xn = Yn, nodes transmitted from these two nodes will always agree using same
randomness. Therefore, when n approaches infinity, all the nodes in distribu-
tions νn and γn will agree and hence root nodes cannot be reconstructed. If
Xn ̸= Yn, then we have the probability that Xn+1,i and Yn+1,i disagrees is

P(Xn+1,i ̸= Yn+1,i) = |1− δ1 − (1− δ2)| = |δ1 − δ2|.
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Thus given that |δ1 − δ2| ≤ 1
d , we have

lim
n→∞

P(Xn,i ̸= Yn,i) = lim
n→∞

|δ1 − δ2|n = 0,

which implies that

lim
n→∞

dTV (νn, γn) ≤ lim
n→∞

P(Xn ̸= Yn) = 0.

Therefore, we’ve showed that when n goes to infinity, Xn+1,i and Yn+1,i always
agree.

6 Extend to M3×3 transition matrix

Now we extend Theorem 5 to 3×3 transition matrices, simulating the transitions
as multi-type branching processes with 3 types. We start with the case
when M is positive definite (PSD).

6.1 Symmetric 3× 3 transition matrix with 2 variables

In order to apply coupling, we first consider the following case where transition
matrix M is symmetric and reversible with 2 variables.

Corollary 1. Let

M =

1− δ1 − δ2 δ1 δ2
δ1 1− δ1 − δ2 δ2
δ2 δ2 1− 2δ2

 (10)

be a positive definite symmetric transition matrix. Then if we take integer d s.t.
|dλ2(M)| ≤ 1, the root is non-reconstructible for the d-ary tree.

Given M in form 6.3, we denote the three states as A, B, and C, corresponds
to row 1, 2, and 3. Note that we have a choice for coupling the two broadcast
processes. Now since we want to compare the broadcast distributions given two
different root nodes, we define the coupled new states A A, B B, C C, A B,
A C, and B C. Note that when it reaches state A A, B B, or C C, two cou-
pled distribution ”agrees” and hence extinct.

Hence we only look at types A B, A C, and B C, where two distributions
disagree. Hence we let the coupling matrix be in the formP(A B → A B) P(A B → A C) P(A B → B C)

P(A C → A B) P(A C → A C) P(A C → B C)
P(B C → A B) P(B C → A C) P(B C → B C)


We first want to show that there exists a coupling s.t.

λ2(M) = ρ(coupling matrix) (11)
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by doing a case analysis. Note that given δ1 + δ2 + δ3 = 1, we use the sign of

δ1 − δ2

δ2 − 1/3

2δ1 + δ2 − 1

2δ2 + δ1 − 1

to determine the sign of the entries of M. We consider δ1 − δ2 and δ2 − 1/3 as
major cases, and the other two in sub cases.

Case I: Let δ1 ≤ δ2, δ2 ≤ 1
3 , then 2δ1 + δ2 − 1 ≤ 2δ2 + δ1 − 1 ≤ 0 ⇒ δ1 ≤

1− δ1 − δ2, δ2 ≤ 1− δ1 − δ2.

A B A C B C
A B 1− 2δ1 − δ2 0 0
A C 1− δ1 − 2δ2 0 0
B C δ2 − δ1 0 1− 3δ2

|λ2(M)| = ρ = 1− 2δ1 − δ2

Case II: Let δ1 ≤ δ2, δ2 > 1
3 , then 2δ1 + δ2 − 1 > 0 only if 2δ2 + δ1 − 1 > 0.

i) δ2 ≤ 1− δ1 − δ2, δ1 ≤ 1− δ1 − δ2

A B A C B C
A B 1− 2δ1 − δ2 0 0
A C 1− δ1 − 2δ2 0 3δ2 − 1
B C 1− δ1 − 2δ2 3δ2 − 1 0

λ2(M) = ρ = 1− 2δ1 − δ2

ii) δ2 > 1− δ1 − δ2, δ1 ≤ 1− δ1 − δ2

A B A C B C
A B 1− 2δ1 − δ2 0 0
A C 0 2δ2 + δ1 − 1 δ2 − δ1
B C 0 δ2 − δ1 2δ2 + δ1 − 1

λ2(M) = ρ = 3δ2 − 1

iii) δ2 > 1− δ1 − δ2, δ1 > 1− δ1 − δ2

A B A C B C
A B 2δ1 + δ2 − 1 0 0
A C 0 2δ2 + δ1 − 1 δ2 − δ1
B C 0 δ2 − δ1 2δ2 + δ1 − 1

14



λ2(M) = ρ = 3δ2 − 1

Case III: Let δ1 > δ2, δ2 ≤ 1
3 , then 2δ2 + δ1 − 1 > 0 only if 2δ1 + δ2 − 1 > 0.

i) δ1 ≤ 1− δ1 − δ2, δ2 ≤ 1− δ1 − δ2

A B A C B C
A B 1− 2δ1 − δ2 0 0
A C 0 1− δ1 − 2δ2 δ1 − δ2
B C 0 δ1 − δ2 1− 2δ2 − δ1

λ2(M) = ρ = 1− 3δ2

ii) δ1 > 1− δ1 − δ2, δ2 ≤ 1− δ1 − δ2

A B A C B C
A B 2δ1 + δ2 − 1 0 0
A C 0 1− δ1 − 2δ2 δ1 − δ2
B C 0 δ1 − δ2 1− δ1 − 2δ2

λ2(M) = ρ = 1− 3δ2

iii) δ1 > 1− δ1 − δ2, δ2 > 1− δ1 − δ2

A B A C B C
A B 2δ1 + δ2 − 1 0 0
A C 2δ2 + δ1 − 1 0 1− 3δ2
B C 2δ2 + δ1 − 1 1− 3δ2 0

λ2(M) = ρ = 2δ1 + δ2 − 1

Case IV: Let δ1 > δ2, δ2 > 1
3 , then 2δ1 + δ2 − 1 > 2δ2 + δ1 − 1 > 0 ⇒ δ1 >

1− δ1 − δ2, δ2 > 1− δ2 − δ2.

A B A C B C
A B 2δ1 + δ2 − 1 0 0
A C δ1 − δ2 3δ2 − 1 0
B C δ1 − δ2 0 3δ2 − 1

λ2(M) = ρ = 2δ1 + δ2 − 1

Let the coupling matrix be M̂ , where by definition M̂ij refers to the expected
number of children of type j that a node of type i has. Now since Eq.11 is
satisfied in all cases, by Theorem 4, the multitype branching process will go
extinct with probability 1 when ρ(M̂) < 1.
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6.2 Extend to certain distributions

Claim 1. Given d−ary tree formed by broadcast process M and transition ma-
trix M. Let Mn denote the vector of node counts for each type at level n. If
λ2(M) < 1

d and E[Mn] < d, then M on d-ary tree is non-reconstructible.

In this section we want to show how we can use the coupling method introduced
in the previous section to prove Claim 1 under certain children distributions for
special cases of M .

Given broadcast matrix M, let C be a “type-coupling matrix for M”, where

C = (1− α)M+ αI.

If we broadcast on d-ary tree using C, then the branching process with prob-
ability α preserves and makes a copy of the original distribution, in which we
call the the edges go down to “ineffective” nodes, and hence with probability
1 − α generates “effective” degree distribution through transition M . We can
model the branching process with Bin(d, α). Now given a d-ary tree at some
state during the branching process with X number of nodes, then the number
of effective nodes (edges) in the next generation, i.e. effective degree, is

Xd− (X − 1),

since Xd is the number of edges that go down from the X nodes, and X − 1 is
the number of edges connected to ineffective nodes. In this way, if we remove
ineffective nodes, the tree generated by C is equivalent to the one generated
with M, and thus the non-reconstructibility is related

Now intuitively, given d−ary tree formed by broadcast process M and transition
matrix M, we want to show that for certain child distribution, the d−ary tree
with broadcast matrix (1 − α)M + αI behaves the same way as the tree with
broadcast matrixM. In this way, if we have non-reconstruction for (1−α)M+αI
on d−ary tree, then we should have non-reconstruction for M for certain child
distribution.

Lemma 2. Given r.v. X, the number of ineffective nodes, let P = P0, P1, . . .
be a distribution of X. Let T be a tree with offspring distribution P . Perform
percolation of T keeping each edge with probability α < 1

d . Let Y be the effective
degree, then

E[Y ] =
(1− α)d

1− dα

Proof. Since with probability α, the branching process preserves the ineffective
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nodes, then we have

E[X] = 1 +

d∑
k=1

(
d

k

)
(1− α)d−kαk · (k · E[X])

= 1 + α

d∑
k=1

d

k

(
d− 1

k − 1

)
(1− α)d−kαk−1 · k · E[X]

= 1 + αE[X]d

d∑
k=1

(
α− 1

k − 1

)
(1− α)d−kαk−1

= 1 + dα · E[X]

which implies that

E[X] =
1

1− dα

and thus

E[Y ] = E[Xd− (X − 1)] =
1

1− dα
· d− (

1

1− dα
− 1)

=
d− 1 + 1− dα

1− dα

=
d− 1

1− dα
+ 1

=
(1− α)d

1− dα

Hence Theorem 6 follows.

Theorem 6. Given d−ary tree TM formed by transition matrix M with second
eigenvalue λ2. Let TC be a d-regular tree formed by coupling matrix C = (1 −
α)M + αI. Let the expected number of children for TM and TC be E[M ] and
E[C] respectively, and let E[M ] < d,E[C] = d. Then TM is non-reconstructible
if TC is non-reconstructible.

Proof. Suppose TC is non-reconstructible, then TM is non-reconstructible since
the it corresponds to the effective parts of TC . Since C is symmetric and the
second eigenvalue of C is (1−α)λ2 +α by construction, if d|(1−α)λ2 +α| < 1,
then by Corollary 1, tree TC formed by C is non-reconstructible. Now we want
to show that if d|λ2| < 1, then d|(1− α)λ2 + α| < 1.

By Lemma 2, we have

d = E[Y ] =
(1− α)d

1− dα
.
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Then

d|λ2| < 1

⇒ E[M ]|λ2| < 1

⇒ (1− α)d

1− dα
|λ2| < 1

⇒ (1− α)d|λ2| < 1− d|λ2|
⇒ d|(1− α)λ2 + α| < 1

Therefore, if d|λ2| < 1, d|(1 − α)λ2 + α| < 1, which implies that TC is non-
reconstructible, hence the effective part of TC is non-reconstructible, and thus
TM is non-reconstructible.

Therefore, we are able to show the non-reconstructibility of the tree with broad-
cast matrix M when E[children] < d.

6.3 Generalized case for 3 × 3 matrix with certain distri-
butions

Now since we’ve proved in § 6.1 that when the transition matrix is 3× 3 and is
PSD, coupling proves the conjecture that when E[number of children]·λ2(M) <
1, the root non-reconstructible, we want to extend it to trees with general off-
spring distributions. We try to prove it case by case after obtaining the coupling
matrix following what we did in § 6.1. We start with the 3 3×3 transition matrix
in following distribution. Given

M =

1− a− b a b
a 1− a− c c
b c 1− b− c


whose eigenvalues are 1 and 1 − a − b − c ±

√
a2 − ab+ b2 − ac− bc+ c2, we

have 6 combinations of a, b, c that forms the general cases, which are

a ≥ b ≥ c

a ≥ c ≥ b

b ≥ a ≥ c

b ≥ c ≥ a

c ≥ a ≥ b

c ≥ b ≥ a

Now consider the expressions

2a+ b, 2a+ c

2b+ a, 2b+ c

2c+ a, 2c+ b
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Let ab, ac, ba, bc, ca, cb be there abbreviations. Then WLOG, given any case,
say a ≥ b ≥ c, we have 9 sub-cases given any general case. Given a ≥ b ≥ c,
then if ab ≤ 1, all the other expressions are all less or equal to 1. If ab ≥ 1,
either ac ≤ 1 or ba ≤ 1 leads to all the other expressions follows all less or equal
to 1. Continue this way, we can have the cases listed below:

ab ≥ 1



ac ≥ 1, ba ≥ 1


bc ≥ 1, ca ≥ 1

{
cb ≥ 1
cb ≤ 1

bc ≥ 1, ca ≤ 1
bc ≤ 1, ca ≥ 1
bc ≤ 1, ca ≤ 1

ac ≥ 1, ba ≤ 1
ac ≤ 1, ba ≥ 1
ac ≤ 1, ba ≤ 1

ab ≤ 1

Imagine it as a tree. Every leaf node means 1 case where all the expressions
follows (in the order of ab, ac, ba, bc, ca, cb for case a ≥ b ≥ c) have to be less or
equal to 1.

Hence we have in total 54 cases.

Now similar to what we did for 2 × 2 matrices, for each case, we compare the
second eigenvalue of the transition matrix and the spectral radius of the coupling
matrix. Then we notice that when

2a+ b, 2a+ c, 2b+ a > 1

2b+ c, 2c+ a, 2c+ b < 1

the coupling matrix is as follows

A B A C B C
A B 2a+ c− 1 b− c 0
A C 2b+ a− 1 0 1− 2b− c
B C 0 a− b 1− a− 2c

and we obtain the result

λ2(M) ̸= ρ(coupling matrix) (12)

Hence there exists a case where coupling fails. For instance, let

M =


0 2

3
1
3

2
3

1
3 0

1
3 0 2

3

 .

19



Then in the bad case where the coupling matrix is as follows
1
3

1
3 0

1
3 0 1

3

0 1
3

2
3

 ,

we have

λ2(M) =
1√
3

but

ρ(coupling matrix) =
2

3
.

In our future work, we plan to investigate the non-symmetric case further and
solve the bad case.
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