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Abstract

The displacements of a particle from classical Brownian motion form
a Gaussian distribution. However, the distribution of variables drawn
from a distribution with infinite variance as opposed to a finite variance
in classical Brownian motion is not Gaussian. We show that the sum of a
large number of lognormal variables tends to an α-stable Levy subordina-
tor when 0 < α < 1. This distribution is surprisingly common in real-life
stochastic systems such as stock market and relativistic Brownian motion.

1 Introduction

1.1 Background

In classical Brownian Motion, defined below, the speed of particles has been
assumed to be infinite and the displacement of each step has been treated as
independent.[1]

Definition 1.1. (classical Brownian Motion) A real-valued stochastic pro-
cess {B(t) : t ≥ 0} is called a classical Brownian motion with start in x ∈ R if
the following holds:

1. B(0) = x,

2. the process has independent increments, i.e. for all times 0 ≤ t1 ≤ t2 ≤
... ≤ tn the increments B(tn) − B(tn−1), B(tn−1) − B(tn−2), ..., B(t2) −
B(t1) are independent random variables,

3. for all t ≥ 0 and h > 0, the increments B(t + h) − B(t) are normally
distributed with expectation zero and variance h,

4. almost surely, the function t→ B(t) is continuous.

We say that {B(t) : t ≥ 0} is a classical Brownian motion.
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1.2 Model Construction

The velocity of particles in classical Brownian motion are assumed to be infinite.
However, in reality, the speed of particles is bounded above by the speed of light
c. We are interested in studying the motion of the particles moving at nearly
the speed of light. Therefore, this study requires relativity.

Velocity is the derivative of position with respect to time. In relativity, a
more natural variable is rapidity θ, which is related to the derivative of position
X1 and time X0 with respect to proper time τ (time measured by a clock
attached to the particle). In units with c = 1,

dX0

dτ
= cosh θ,

dX1

dτ
= sinh θ.

We can see that the relation of velocity to rapidity is

v =
dX1

dX0
= tanh θ.

Although θ is not bounded, v is bounded by the speed of light.
It is more convenient to introduce null co-ordinates

X0 ±X1 = X±

so that
dX+

dτ
= eθ,

dX−

dτ
= e−θ.

Thus, we can now propose a model of relativistic Brownian motion in one
spatial dimension.

A particle moves along a straight line until it collides with another particle.
In each collision, the rapidity of a particle is changed by the addition of a random
variable. The effect of a large number of such collisions is to make rapidity into
a Gaussian random variable (Central Limit Theorem). The null coordinates are
incremented by the exponential of rapidity at each step:

X+
k = X+

k−1 + eθk∆τ, X−k = X−k−1 + e−θk∆τ

where ∆τ is a small interval of proper time in between two collisions. Also, θk
are independent identically distributed (i.i.d) Gaussian random variables.

Thus we have

X+
n = ∆τ

n∑
k=1

eθk

and similarly for X−n . The mathematical question we solve is how to take the
limit n→∞ and ∆τ → 0 such that Xn tends to a random process.

We should expect that this limit is an infinitely divisible distribution, because
the sum can be subdivided into independent terms. Because the terms in the
sum are positive, we should expect also that this will be a “subordinate process”
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in the sense defined below. A tricky question is how the mean and variance of
the Gaussian random variables θk must behave as n→∞.

If θ is Gaussian, x = eθ is log-normal. It is useful to write its probability
density function in the following form:

Proposition 1.2. The probability measure of a log-normal variable can be writ-
ten as

µ(dx) =
1

Z

e−
log2 x

2σ2

xα+1
dx

where
E (log x) = −ασ2, Var (log x) = σ2

and

Z =
√

2πσe
α2σ2

2 .

Proof. Make the change of variables θ = log x

µ(dx) =
1

Z

e−
θ2

2σ2

e(α+1)θ
eθdθ

=
1

Z
e−

1
2σ2

θ2−αθdθ

=
e
α2σ2

2

Z
e−

1
2σ2

[θ+ασ2]
2

dθ

=
1√
2πσ

e−
1

2σ2
[θ+ασ2]

2

dθ.

This is the probability density of a normal variable with mean −ασ2 and
variance σ2.

We will hold α fixed as n → ∞. The question then is how the variance
σ2 must depend on n in order that the sum of n identical log-normal variables
tends to a sensible limit as n→∞. We will show below that we need

σ2
n ∼

log
[
α2n2

2π

]
α2

.

Since the variance tends to infinity, the central limit theorem does not apply
and the limiting distribution for Xn is not a Gaussian, unlike for Brownian
motion. Instead, it will be an α-stable subordinator Levy distribution. This is
our main result.

In the next section, we will review some useful results from the theory of
stochastic processes.
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1.3 Impact

A few studies were published on related problems. The distribution of the sum
of log-normal variables was studied as early as in 1960.[2] A comparison of four
methods to approach the sum of log-normal variables was published in 1995.[3]
In 2003, a paper focusing on using moment-matching approximation to study
the distribution of the sum of log-normal variables was published.[4]

The distribution of log-normal variables with additional parameters from
financial models was studied in 1998 and the distribution of independent but not
necessarily identically distributed log-normal variables was studied in 2005.[5][6]
In 2008, a paper was published on the asymptotics of the sum of log-normal
variables.[7]

In this paper, we will show that the sum of log-normal variables tends to
an infinitely divisible α-stable Levy subordinator when the number of terms of
in the sum goes to infinity. α is the ratio of the mean to the variance of the
normal distribution and we will focus on the case when 0 < α < 1. However,
this approach is very slow and the number of steps is expected to be much larger
than 500.

The resulting distribution of relativistic Brownian motion is quite common
in real-life stochastic systems including stock market. In the future, this work
can be generalized into financial field.

We will first present our theoretical derivation, with special emphasize on
the major approximations and normalizations. In the following section, we
will present a numerical verification of the proposed distribution. Finally, our
methods will be demonstrated using a simulation program.

2 Theoretical Derivation

First, we state the definition of a Levy process.[8]

Definition 2.1. (Levy Process) Let X = (X(t), t ≥ 0) be a stochastic pro-
cess defined on a probability space (Ω,F , P ). We say that it has independent
increments if for each n ∈ N and each 0 ≤ t1 < t2 < ... < tn+1 < ∞ the
random variables (X(tj+1)−X(tj), 1 ≤ j ≤ n) are independent and that it has

stationary increments if each X(tj+1)−X(tj)
d
= X(tj+1 − tj)−X(0).

We say that X is a Levy process if:

1. X(0) = 0 (almost surely);

2. X has independent and stationary increments;

3. X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s+

P (|X(t)−X(s)| > a) = 0.

The third property of Levy process implies that Levy processes are not
necessarily continuous. In fact, classical Brownian motion is the only Levy
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process that is continuous. Our model for relativistic Brownian motion is not
continuous. However, it is infinitely divisible.[8]

Definition 2.2. (Infinitely Divisible) Let X be a random variable taking
values in Rd with law µX . We say that X is infinitely divisible if, for all n ∈
N, there exist independent and identically distributed (i.i.d.) random variables

Y
(n)
1 , ..., Y

(n)
n such that

X
d
= Y

(n)
1 + ...+ Y (n)

n .

2.1 Problem Reduction

The following theorem guarantees the infinite divisibility of relativistic Brownian
motion once the motion is shown to be a Levy process.[8]

Theorem 2.3. If X is a Levy process, then X(t) is infinitely divisible for each
t ≥ 0.

Proof. For each n ∈ N, define

Y
(n)
k (t) = X

(kt
n

)
−X

( (k − 1)t

n

)
.

Y
(n)
k (t) are i.i.d. for each 1 ≤ k ≤ n by the second property from the

definition for Levy process.
Therefore, for such n, we have

X(t) = Y
(n)
1 (t) + ...+ Y (n)

n (t).

By definition, X(t) is infinitely divisible.

Therefore, we have reduced the problem to showing the sum of log-normal
variables tends to an α-stable subordinator Levy distribution.

We now introduce five definitions.[8][9]

Definition 2.4. (Stable Random Variables) We consider the general cen-
tral limit problem in dimension d = 1, so let (Yn, n ∈ N) be a sequence of
real-valued i.i.d. random variables and construct the sequence (Sn, n ∈ N) of
rescaled partial sums

Sn =
Y1 + Y2 + ...+ Yn − bn

σn
,

where (bn, n ∈ N) is an arbitrary sequence of real numbers and (σn, n ∈ N)
an arbitrary sequence of positive numbers. We are interested in the case where
there exists a random variable X for which

lim
n→∞

P (Sn ≤ x) = P (X ≤ x) (1)

for all x ∈ R, i.e. (Sn, n ∈ N) converges in distribution to X.
A random variable is said to be stable if it arises as a limit as in Equation

1.
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Definition 2.5. (Stable Levy Processes) A stable Levy process is a Levy
process X in which each X(t) is a stable random variable

Definition 2.6. (α-stable Levy Processes) Let {Xt : t ≥ 0} be a Levy
process on Rd. It is called α-stable if, for any a > 0, there is α such that

{Xat : t ≥ 0} d
= {a 1

αXt : t ≥ 0}.

Definition 2.7. (Subordinator) A subordinator is a one-dimensional Levy
process that is non-decreasing (almost surely).

More specifically, α-stable subordinators are defined as the following.

Definition 2.8. (α-stable Subordinators) An α-stable subordinator X is
a Levy process with E

(
e−uX

)
= e−u

α

for 0 < α < 1, u ≥ 0.

Using the identity (the proof of which we will recall in section 2.7),

uα =
α

Γ(1− α)

∫ ∞
0

(
1− e−ux

) dx

x1+α
.

It follows that the problem has been reduced to showing

logE
(
e−uX

)
=

∫ ∞
0

(
1− e−ux

) dx

x1+α
. (2)

2.2 Definition of Variables

We are interested in the expected value for the exponential of displacement. In
the following derivation, we will use the following notation:

n: the number of steps;
x: step, the log-normal variable;
Xn: displacement after n steps;
X = limn→∞Xn;
s: time window;
σ2: the variance of rapidity;
−ασ2: the mean of rapidity.
µn(dx): the probability measure.
Since every step is independent

E(e−sXn) = [

∫ ∞
0

e−sxµn(dx)]n.

∫∞
0
e−sxµn(dx) is the expected value for the exponential of each step x. The

summation of the expected value of each step becomes multiplication when
taking the exponential.

If we choose
∫∞
0
nµn(dx) = 1,

E(e−sXn) = [1 +
1

n

∫ ∞
0

(e−sx − 1)nµn(dx)]n
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E(e−sXn) = exp[n log(1 +
1

n

∫ ∞
0

(e−sx − 1)nµn(dx))]. (3)

This equation allows us to further simplify the expression for E(e−sXn) using
approximations, which will be explained in the following sections.

2.3 Large Number Approximation

Assuming n is large so that 1
n is small.

Consider the Taylor expansion around x = 0,

log(1 + x) = x− x2

2
+ ...

When x is sufficiently small, the first two or one terms is a good approxima-
tion for log(1 + x). We now apply this approximation to Equation 3.

The Taylor expansion for Equation 3 is

exp[

∫ ∞
0

(e−sx − 1)nµn(dx)− 1

2n
[

∫ ∞
0

(e−sx − 1)nµn(dx)]2] + ...

Since 1
n is sufficiently small, only keeping first two terms in its Taylor ex-

pansion gives a good approximation for E(e−sXn), as shown in Equation 4.

E(e−sXn) = exp[

∫ ∞
0

(e−sx − 1)nµn(dx)− 1

2n
[

∫ ∞
0

(e−sx − 1)nµn(dx)]2]. (4)

Moreover, if we only keep the first term,

E(e−sXn) = exp[

∫ ∞
0

(e−sx − 1)nµn(dx)]. (5)

2.4 Normalization

Before deriving Equation 5 further, it is critical to study its properties in limit
cases. If µn does not depend on n, the integral in Equation 5 goes to infinity
as n goes to infinity, which is not physical. To eliminate the n dependence in
Equation 5, we choose µn such that nµn does not depend on n. Physically, the
change of n means a change of the number of steps in a fixed time window.
By dividing the given time window into finer bins, we do not expect to receive
larger and larger total displacement happening within the time window.

Recall the log-normal probability density function. This measure is used
since the variable x follows a log-normal distribution.

µn(dx) =
1

Zσ,α

exp(− log2 x
2σ2 )

xα+1
dx

where

Zσ,α =
√

2πσe
α2σ2

2
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We choose σn so that
Zσn,α = n.

Then

nµn(dx) =
n

Zσn,α

exp(− log2 x
2σ2
n

)

xα+1
dx =

exp(− log2 x
2σ2
n

)

xα+1
dx (6)

which is independent of n. This normalizes E(e−sXn).
By solving Zσn,α = n, we have

σ2
n =

W (α
2n2

2π )

α2
. (7)

where W (z) is the Lambert function, defined as the principal branch solution
of z = W (z)eW (z).

2.5 Very Large Number Approximation

We simplify Equation 7 by assuming n is even larger so that 1
logn is small.

Expanding the Lambert function introduced above,

W (z) = log z − log log z +O(1)

Since 1
logn is small, we can approximate W (z) only keep the first term in the ex-

pansion. Substituting W (α
2n2

2π ) by the first term from its expansion in Equation
7,

σ2
n =

log(α
2n2

2π )

α2
.

Applying this result and the expression for nµn in Equation 6 to Equation 5,
we have

E(e−sX) = exp[

∫ ∞
0

(e−sx − 1)
exp(− log2 x

2σ2
n

)

xα+1
dx]. (8)

2.6 Another Large Number Approximation

Equation 8 can be further simplified assuming n → ∞, then log2 x
2σ2
n

is small.

Therefore, we can approximate exp(− log2 x
2σ2
n

) by 1. With this approximation,

Equation 8 becomes

E(e−sX) = exp[

∫ ∞
0

(e−sx − 1)
1

xα+1
dx]. (9)

Thus,

logE(e−sX) =

∫ ∞
0

(e−sx − 1)
1

xα+1
dx.

This agrees with Equation 2, so the sum of log-normal variables in relativistic
Brownian motion is an infinitely divisible α-stable Levy subordinator as long as
the integral

∫∞
0

[1 − e−sx] dx
xα+1 converges. Notice that the integral on the right

hand side converges when 0 < α < 1.
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2.7 Alternative Large Number Approximation: First Or-
der

Instead of applying the approximation in the previous section, which is exp(− log2 x
2σ2
n

)→
1, consider the following Taylor expansion.

∫ ∞
0

(e−sx−1)
exp(− log2 x

2σ2
n

)

xα+1
dx =

∫ ∞
0

(e−sx−1)
1

xα+1
dx− 1

2σ2
n

∫ ∞
0

log2 x

xα+1
[e−sx−1]dx+...

Furthermore, following the derivation by Applebaum, we can prove the identity
mentioned in section 2.1.[8] For 0 < α < 1,∫ ∞

0

(e−sx − 1)
1

xα+1
dx =

∫ ∞
0

(

∫ x

0

se−sydy)
dx

xα+1

=

∫ ∞
0

(

∫ ∞
y

dx

xα+1
)se−sydy

= − s
α

∫ ∞
0

e−syy−αdy

= −s
α

α

∫ ∞
0

e−xx−αdx

= −s
α

α
Γ(1− α)

= −s
α

α
(−α)Γ(−α)

= sαΓ(−α)

Therefore,
logE(e−sX) = sαΓ(−α).

Moreover, since

−s
α

α
Γ(1− α) = sαΓ(−α),

sαΓ(−α) =

∫ ∞
0

[e−sx − 1]
dx

xα+1
.

Hence,

∫ ∞
0

(e−sx − 1)
exp(− log2 x

2σ2
n

)

xα+1
dx→ Γ(−α)sα − 1

2σ2
n

∫ ∞
0

log2 x

xα+1
[e−sx − 1]dx+ ...

If we only keep the first order in this expansion

E(e−sX) = exp[Γ(−α)sα]. (10)
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In other words,

logE(e−sX) =

∫ ∞
0

(e−sx − 1)
1

xα+1
dx.

This matches Equation 2. Hence, we conclude that the sum of log-normal
variables in relativistic Brownian motion is an infinitely divisible α-stable Levy
subordinator as long as the integral

∫∞
0

[1− e−sx] dx
xα+1 converges.

When α = 1
2 , there is an analytic expression for the Γ function. Then

Equation 10 becomes
E(e−sX) = exp(−2π

1
2 s

1
2 ). (11)

Thus, we have shown that the sum of log-normal variables in relativistic
Brownian motion is an infinitely divisible α-stable Levy subordinator for 0 <
α < 1.

2.8 Alternative Large Number Approximation: Second
Order

To include the second order term in the expansion, Recall for 0 < α < 1,

sαΓ(−α) =

∫ ∞
0

[e−sx − 1]
dx

xα+1
.

Also

− ∂

∂α
(

1

xα+1
) =

log x

xα+1
.

Furthermore,
∂2

∂α2
(

1

xα+1
) =

log2 x

xα+1
.

Then
∂2

∂α2
(sαΓ(−α)) =

∫ ∞
0

log2 x[e−sx − 1]
dx

xα+1
.

So

E(e−sXn) = exp[Γ(−α)sα − 1

2σ2
n

∂2

∂α2
(sαΓ(−α))].

This is an infinitely divisible α-stable Levy subordinator with a correction
term.

3 Numerical Verification

We study the case when α = 1
2 using numerical verification. E(e−sXn) has been

calculated analytically and numerically when n = 104.
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Figure 1: Analytical and Numerical Calculation for E(e−sXn)

In the curve “analytic”, E(e−sXn) was calculated using Equation 11. The
curve “numerical; analytical sigma” was calculated by integrating the exponent
in Equation 8 where σ was calculated using Equation 7. The curve “numerical;
sigma = 10.” was calculated using Equation 8 where sigma was the fixed value
10. The curve “numerical; large sigma approximation” was calculated from
Equation 9.

We conclude that the numerical calculation using Equation 9 gives the best
approximation. Moreover, all three approximations are valid when s is small.

4 Simulation

In the simulations, we add a new variable t to our model to control the time
span we considered in each random process. Notice that t = 1 in the derivation.
In general,

E(e−sXn) = exp[

∫ ∞
0

(e−sx − 1)t
exp(− log2 x

2σ2 )

xα+1
dx].

We first generate m = 200 random copies of n = 100 log-normal variables
xij with the standard deviation σ calculated using equation

σ =

√
W (α

2n2

2πt2 )

α

which was derived from Equation 7 and the mean

µ = −ασ2.

4.1 Distribution of the Steps

Let xij be the displacement each step. The actual distribution of 200 × 100
log-normal random variables is shown in the figure below.
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Figure 2: Distribution of log-normal variable x

4.2 Sample Path

We then sum the displacement per step (i.e. summing over i) in each copy to
get the total displacement per trial Xj . An example displacement vs. number
of steps curve is shown as below.
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Figure 3: Displacement vs. Number of Steps

As shown in the figure above, the total displacement Xj is dominated by
large jumps. We define large jumps as any step with a size larger than ε

n .
Therefore, the summed displacement with the rest of the steps is less than or
equal to ε. We choose ε = 10−2.

4.3 Distribution of Large Steps

Then we countNj the number of large steps per trial. We expect the distribution
of Nj follows Poisson distribution.[8]

Definition 4.1. (The Poisson Process) The Poisson process of intensity
λ > 0 is a Levy process N taking values in N ∪ {0} wherein each N(t) = π(λt),
so that we have

P (N(t) = n) =
(λt)n

n!
e−λt (12)

for each n = 0, 1, 2, ....

We anticipate the distribution ofNj follows Poisson distribution since whether
a big jump is happening at a given step is random.

PNj=r =
λr

r!
e−λ

where λ is the mean of Nj . The distribution of Nj from simulation comparing
with the distribution predicted by Poisson distribution from Equation 12 where
t = 1 is shown as below.
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Figure 4: Distribution of the Number of Large Steps

From Figure 4, we can see Nj indeed follows Poisson distribution.
Figure 5 verifies that the decay of the probability of step follows a power

law as the size of the step increases. This agrees with our expectation since we
have shown that E(e−sX) is an infinitely divisible α-stable Levy subordinator.
Notice that the linear correspondence in a log-log graph means a power law.

Figure 5: Distribution of the Size of Large Steps
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Appendices
Numerical Verification Program

#!/usr/bin/env python

# coding: utf-8

# In[ ]:

#Authors: Yue Wang, Prof. Rajeev

# In[2]:

#packages

import math

import numpy as np

import matplotlib.pyplot as plt

import scipy as sp

from scipy.optimize import curve_fit

# In[3]:

#alpha in the derivation and in alpha-stable Poisson process

alpha = 0.5

# In[4]:

#integrate the integral in the alpha-stable subordinator equation

numerically

#fixed sigma = 10.

def zexp(m,s,alpha):

#integration method

sigma =

10.#np.sqrt(sp.special.lambertw(alpha**2*m**2/(2*math.pi)))/alpha

#print(sigma)

binNum = 10**4

binSize = 10**(-3)

integral = 0.0

for i in range(1,binNum):#iterate through the waves collected

x = i*binSize

integral = integral +

(np.exp(-s*x)-1)*(np.exp(-(np.log(x))**2/(2*sigma**2))/(x**(alpha+1)))*binSize



18

return integral

# In[5]:

#integrate the integral in the alpha-stable subordinator equation

numerically

#sigma without approximation

#analytic sigma

def zexpAnalytic(m,s,alpha):

#integration method

sigma = np.sqrt(sp.special.lambertw(alpha**2*m**2/(2*math.pi)))/alpha

#print(sigma)

binNum = 10**4

binSize = 10**(-3)

integral = 0.0

for i in range(1,binNum):#iterate through the waves collected

x = i*binSize

integral = integral +

(np.exp(-s*x)-1)*(np.exp(-(np.log(x))**2/(2*sigma**2))/(x**(alpha+1)))*binSize

return integral

# In[8]:

#integrate the integral in the alpha-stable subordinator equation

numerically

#large sigma approximation

def z(m,s,alpha):

#integration method

binNum = 10**4

binSize = 10**(-3)

integral = 0.0

for i in range(1,binNum):#iterate through the waves collected

x = i*binSize

integral = integral + (np.exp(-s*x)-1)/(x**(1+alpha))*binSize

return integral

# In[15]:

#Integrate Z with different sigma approximations

binNumSplot = 10**2

binSize = 1

plotListZ = []

plotListS = []



19

plotListA = []

plotListZExp = [] #fixed sigma

plotListZExpA = [] #analytic

plotListZExp1 = [] #1st approximation

plotListZExp2 = [] #2nd approximation

for i in range (3,4):

m = 10**i

sList = []#list of s values

zList = []

aList = []

zExpList = []

zExpAList = []

zExp1List = []

zExp2List = []

for j in range(1,binNumSplot):

sList.append(j*binSize)

zList.append(z(1,j*binSize,alpha))

aList.append(-2*np.pi**(1/2)*(j*binSize)**(1/2))

zExpList.append(zexp(m,j*binSize,alpha))

zExpAList.append(zexpAnalytic(m,j*binSize,alpha))

zExp1List.append(zexp1(m,j*binSize,alpha))

zExp2List.append(zexp2(m,j*binSize,alpha))

plotListS.append(sList)

plotListZ.append(zList)

plotListA.append(aList)

plotListZExp.append(zExpList)

plotListZExpA.append(zExpAList)

plotListZExp1.append(zExp1List)

plotListZExp2.append(zExp2List)

# In[19]:

#Plot Z integrated using different sigma approximations

for i in range(1):

plt.plot(plotListS[i],plotListA[i],label = ’analytical’)

plt.plot(plotListS[i],plotListZExpA[i],label = ’numerical;

analytical sigma’)

plt.plot(plotListS[i],plotListZExp[i],label = ’numerical; sigma =

10.’)

plt.plot(plotListS[i],plotListZ[i],label = ’numerical; large sigma

approximation’)

plt.xlabel(’s(a.u.)’)

plt.ylabel(’z(a.u.)’)

plt.legend(loc=(1.05,0.1),fontsize=16.0)

plt.grid()

#plt.show()

plt.savefig(’numericalZ.png’,bbox_inches=’tight’)
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Simulation Program

#!/usr/bin/env python

# coding: utf-8

# In[ ]:

#Authors: Yue Wang, Prof. Rajeev

# In[43]:

#packages

import math

import numpy as np

import matplotlib.pyplot as plt

import scipy as sp

from scipy.optimize import curve_fit

import numpy.ma as ma

# In[44]:

#epsilon in the derivation: used to define large steps

epsilon = 10**(-2)

#t: time range

t = 0.05

# In[45]:

#alpha in the derivation and in alpha-stable Poisson process

alpha = 1/2

n=100 #number of steps

m = 200 #number of copies

sigma =

np.sqrt(sp.special.lambertw((alpha**2)*(n**2)/(2*math.pi*(t**2))))/alpha

mu = -alpha*sigma**2 #from the mathematica program

# In[47]:

#generate steps

xList = [] #X_{ij}

distList = [] #the list of summed x for each copy; X_j
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for i in range(0,m):

theta = np.random.normal(0., 1.0, n)

x = np.exp(sigma*theta+mu)

xList.append(x)

distList.append(sum(x))

# In[48]:

#boolean list indicating if the each step in xList is large

booleanList = np.array(xList)[:][:]>epsilon/n

# In[49]:

NList = [] #N_j

for j in range(0,m):

NList.append(sum(booleanList[j]))

# In[56]:

#histogram for number of large steps

Nhist,Nbin= np.histogram(NList,bins =12)

plt.plot(Nbin[:-1],Nhist,’o-’)

plt.xlabel(’Nj’)

plt.ylabel(’count/bin’)

#plt.yscale("log")

#plt.xlim(0,10)

#plt.ylim(top=1000)

#plt.ylim(top=2200)

plt.grid()

# In[58]:

#define the Poisson distribution

#suppose the Poisson process is called N

#lambda_poisson is a float, which is the mean of of N

#r_possion is a float. It matches with the r in the main text

def poisson(lambda_poisson, r_possion):

return

((lambda_poisson**r_possion)/(math.factorial(r_possion)))*np.exp(-lambda_poisson)
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# In[59]:

#plot the expectated curve using values from Nbin as r values

#Nbin contains the x axis values in the histogram for number of large

steps

poissonPlot = []

for Nj in Nbin[:-1]:

poissonPlot.append(poisson(np.mean(NList),math.floor(Nj)))

# In[76]:

#histogram for number of large steps with expected poisson distribution

plt.plot(Nbin[:-1],Nhist/sum(Nhist),’o-’,label = ’simulation’)

plt.plot(Nbin[:-1],poissonPlot,label = ’prediction’)

plt.xlabel(’Nj’)

plt.ylabel(’probability’)

plt.legend(loc=(1.05,0.1),fontsize=16.0)

#plt.yscale("log")

#plt.xlim(0,10)

#plt.ylim(top=50)

#plt.ylim(top=2200)

plt.grid()

plt.savefig(’largestep.png’,bbox_inches=’tight’)

# In[75]:

#histogram for step sizes

#Lognormal

disthist, distbin = np.histogram(np.array(xList).flatten(),bins

=np.logspace(-18,5,20))

plt.plot(distbin[:-1],disthist,’o-’)

plt.xlabel(’x’)

plt.ylabel(’count/bin’)

plt.xscale("log")

#plt.xlim(0,10)

#plt.ylim(top=1000)

#plt.ylim(top=2200)

plt.grid()

plt.savefig(’xhistogram.png’,bbox_inches=’tight’)

# In[62]:
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#boolean matrix transpose

booleanListI = np.invert(booleanList)

# In[63]:

#select large steps in xList

mx = ma.masked_array(np.array(xList), mask=np.array(booleanListI))

print(mx)

# In[64]:

#select large steps

compressedMx = []

compressedMxFlattened = []

for j in range(len(mx)):

compressedX = mx[j].compressed()

buffer = []

for i in range(len(compressedX)):

buffer.append(float(compressedX[i]))

compressedMxFlattened.append(float(compressedX[i]))

compressedMx.append(buffer)

# In[79]:

#histogram for the sizes of large steps

#log-log normal

largehist, largebin = np.histogram(compressedMxFlattened,bins

=np.logspace(-4,5,20))

plt.plot(largebin[:-1],largehist,’o’)

plt.xlabel(’step size’)

plt.ylabel(’count/bin’)

plt.xscale("log")

plt.yscale("log")

#plt.xlim(0,10)

#plt.ylim(top=1000)

plt.ylim(10**(-1),10**3)

plt.grid()

plt.savefig(’largestepsize.png’,bbox_inches=’tight’)

# In[66]:
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#plot a sample path

samplePath = []

for i in range(0,n):

samplePath.append(sum(xList[0][:i]))

# In[67]:

#plot one path

plt.plot(samplePath)

plt.xlabel(’number of steps’)

plt.ylabel(’displacement’)

#plt.yscale("log")

#plt.xlim(0,10)

#plt.ylim(top=50)

#plt.ylim(top=2200)

plt.grid()

plt.savefig(’examplePath.png’,bbox_inches=’tight’)


