
Approximating the Maximum Cut: Theory with
Computer Experiments

Yiyang Su

April 24, 2021

Abstract
In mathematics and theoretical computer science, we frequently en-

counter optimization problems some or all of whose variables are restricted
to integers. They are frequently referred to as integer programs. Even
though there is no known polynomial-time algorithm for integer programs,
we are able to approximate solutions to integer programs efficiently. In
this paper, we focus on one particular integer program, finding the maxi-
mum cut in an arbitrary graph and explore various approximation strate-
gies and visualize them using computer programs.

1 Introduction
1.1 Maximum Cut
In mathematics and computer science, there are many computationally hard
problems, for instance, finding the maximum cut of an arbitrary graph, which
is formulated below.

Definition 1.1 (Undirected graph). An undirected graph G = (V,E) is defined
as a set V of vertices together with a set E of edges where each edge is an
unordered pair of vertices.

An example of an undirected graph is provided in Figure 1. In this example,
there are 6 vertices and 6 edges. According to our definition above, for this
graph we have

V = {1, 2, 3, 4, 5, 6}
G = {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (3, 6)}

For simplicity, we restrict our focus to finite simple graphs, graphs with
a finite number of edges and without loop or multiple edges. Throughout this
paper, we use n to denote |V |, the number of vertices of a graph, unless otherwise
specified. The graph being referred to should be clear from the context.

When studying graphs, a popular problem to contemplate is the max-cut
problem that is formulated below.

1

1

2

3

4

5

6

Figure 1: A graph with 6 vertices and 6 edges.

1

2

3

4

5

6

1

2

3

4

5

6

Figure 2: Two cuts on the same graph.

Definition 1.2 (Maximum cut). Suppose that we partition the set of vertices
of a graph G into two disjoint sets. The cut is the number of edges crossing
between these two sets. The maximum cut of G, denoted MAX-CUT(G), is
obtained by maximizing the cut over all partitions of vertices.

Two cuts on the same graph are illustrated in Figure 2. The partitions are
illustrated in red and blue, respectively. The graph on the left represents the
partition

{1, 2, 3}, {4, 5, 6},

and there are 3 edges in the graph crossing between the two partitions that are
bold. In the graph on the right, the maximum cut for this graph is illustrated.
For these two partitions of this graph, all edges are crossing between partitions.
The partition is

{1, 4, 6}, {2, 3, 5}.

It is natural to encode a partition as p ∈ {−1, 1}n so that the two partitions
are given by

P0 = {v ∈ V |pv = −1} , (1)
P1 = {v ∈ V |pv = 1} . (2)

In this way, if we uniformly sample a partition, then a partition is essentially a
n-dimensional random vector whose coordinates are independent Rademacher
random variables with parameter 1

2 . Recall that a random variable is said to

2

have the Rademacher distribution if it takes value 1 and −1 each with proba-
bility 1

2 .
Without loss of generality, we can let V = {1, 2, . . . , n− 1} and rewrite E

as an adjacency matrix M of size n× n such that for any i, j ∈ V ,

Mi,j =

{
1 (i, j) ∈ E,

0 (i, j) /∈ E.
(3)

Notice that for undirected graphs, since the edges are unordered pairs, we expect
M to be symmetric with respect to its main diagonal. Moreover, since we assume
that G is a simple graph, the main diagonal of M should be uniformly 0.

Finally, the cut is given by the number of edges that cross the cut. By
our representation of partitions, two vertices u, v are in the same partition if
and only if pupv = 1 and not in the same partition if and only if pupv = −1.
Therefore, the is the number of edges (u, v) such that pupv = −1. Hence, the
cut is given by

Cut(G, p) =
∑
u∈P0

∑
v∈P1

Muv (4)

=
1

2

n∑
i=1

n∑
j=1

Mij1pipj=−1

=
1

2

n∑
i=1

n∑
j=1

Mij
1− pipj

2
, (5)

where the factor in front accounts for the fact that we count each undirected
edge twice and we divide 1− pipj by 2 to scale it such that it is 1 when i, j are
in different partitions and 0 otherwise.

Note that we have formulated the problem of finding the maximum cut as
an integer program, where want to maximize a function of {pi}ni=1 and each pi
is restricted to ±1.

1.2 Approximation
Intuitively, finding the maximum cut is computationally hard because an ex-
ponentially large number of possible cuts to find the maximum and not many
possibilities can be pruned. In complexity theory, we say that finding the max-
imum cut is NP-hard.

NP-hard problems presents significant computational challenges. Not only
do we not yet know whether there exists a polynomial-time algorithm for find-
ing the maximum cut, but many computer scientists also believe that no such
algorithm exists. Therefore, the necessity for an approximation algorithm arises
when we want solve computationally hard problems efficiently while tolerating
some error.

One distinctive feature of approximation algorithms is that they have prov-
able error bounds in the worst case. It sets them apart from many other

3

approaches like local search and greedy algorithms, which does not have any
guarantee on the magnitude of the error in the worst case. In general, such
algorithms may be stuck in any arbitrary local optimum.

However, not all approximation algorithms are created equal. Some produce
more accurate result than others. As judging approximation using observation
and intuition is subjective and error-prone, we introduce a formal definition of
the worst case “error”.

Definition 1.3 (δ-approximation). Given an optimization problem, we say an
approximation algorithm is a δ-approximation if it always runs in polynomial
time and the resulting approximate value is always at least δ times the optimal
value.

Generally speaking, the value of δ can serve as a measure of the quality of
the approximation algorithm - the closer the value of δ is to 1, the more accurate
the approximation algorithm.

In the rest of this paper, we introduce to approximation algorithms for
the maximum cut problem, a simple 0.5-approximation algorithm and a 0.878-
approximation algorithm based on semidefinite relaxation.

2 0.5-Approximation Algorithm
In this section, we present a simple 0.5-approximation algorithm for finding the
maximum cut of a graph.

Theorem 2.1 (The 0.5-approximation algorithm for maximum cut). Given an
undirected graph G with n vertices and partition the vertices of G into two
sets at random, uniformly over all 2n partitions. Then, the expectation of the
resulting cut equals 0.5|E|.

Proof. We start from Equation 5. When i ̸= j, by simple calculation, we have
Epipj = 0 as they are independent Rademacher random variables. Recall that
a random variable is said to have the Rademacher distribution if it takes values
1 and −1, each with probability 1

2 . Also, when i = j, we know Mij = 0 as we
assumed in advance that there is no loop in our graph. Hence,

ECut(G, p) =
1

4
E

 n∑
i=1

n∑
j=1

Mij

 =
1

2
|E|.

QED

We perform experiments to illustrate Theorem 2.1. In our experiments, we
use exactly the same representation that we developed above except that we let
p ∈ {0, 1}n instead. In other words, to generate partitions uniformly over all 2n
partitions, we let pv = 1 with probability 1

2 and pv = 0 with probability 1
2 for

any v ∈ V . And to reduce computational overhead, we directly use Equation 4
to calculate the cuts.

4

Figure 3: Plot of the values of c′ of 100 randomly generated graphs. From the
graph, it is easy to see that the values are clustered around 0.

In our experiments, we generate 100 random graphs with 20 vertices. For
each graph, we use the average of 1000 randomly sampled cuts c̃ to approximate
the expectation and calculate

c′ = c̃− m

2
. (6)

The values of c′ of the graphs are plotted in Figure 3 and the code to generate the
figure is provided in Appendix A.1. Theorem 2.1 predicts that c′ has expectation
0. From the graphs, we observe that the values are clustered around 0, which
agrees with the theoretical results.

Theorem 2.1 proves that the maximum cut is at least half of the number
the edges. If not, when we calculate the expected cut from the finite number
of partitions, the expected cut would be strictly less than 0.5|E|, contradicting
Theorem 2.1. This theorem offers a 0.5-approximation algorithm because it
always runs in polynomial time (the least efficient step is counting the number
of edges) and the approximate value is always half of the optimal value.

3 Semidefinite Relaxation
3.1 Semidefinite Program
In this section, we discuss how we can employ the powerful tool of semidefinite
relaxation to obtain a much better approximation algorithm for finding the
maximum cut for an arbitrary graph.

First, we introduce the notion of semidefinite matrices and semidefinite pro-
gram.

Definition 3.1. A matrix X is said to be positive semidefinite if it satisfies the
following properties.

5

i) for any 1 ≤ i, j ≤ n, Xi,j equals Xj,i, the complex conjugate of Xi,j ;

ii) there exists a m× n matrix V such that X = V TV .
We use the notation X ⪰ 0 to denote that X is a semidefinite matrix.

Positive semidefinite matrices have a wide range of theoretical and empirical
applications, including underlying the following definition. In this paper, we will
only encounter real-valued matrices, for which the first property is equivalent
to that X is symmetric with respect to its main diagonal.
Definition 3.2 (Semidefinite program). A semidefinite program is an optimiza-
tion problem of the following type

maximize
n∑

i=1

n∑
j=1

Ai,jXi,j : X ⪰ 0,

n∑
i=1

n∑
j=1

Bk,i,jXi,j = bi for k = 1, . . . ,m,

where A and Bk are given n× n matrices, bi ∈ R are given.
One advantage of semidefinite program is that it is a subset of convex opti-

mization problems (i.e., the constraints and the objective are convex functions
in X), for which efficient solvers exist whereas solving integer programs is much
computationally harder. Therefore, it is tempting to relax some restrictions in
an integer program to make it a semidefinite program. After we have solved the
semidefinite program, we can exert the restrictions again to obtain an approxi-
mate solution for the original integer program.

The following theorem can help ensure that semidefinite program approx-
imations of solutions for integer programs are reasonably accurate, up to a
constant factor.
Theorem 3.3 (Grothendieck’s inequality). Consider an m×n matrix A of real
numbers. Assume that, for any numbers xi, yj ∈ {−1, 1}, we have∣∣∣∣∣∣

m∑
i=1

n∑
j=1

Aijxiyj

∣∣∣∣∣∣ ≤ 1.

Then, for any Hilbert space H and any vectors ui, vj ∈ H satisfying ∥ui∥ =
∥vj∥ = 1, we have ∣∣∣∣∣∣

m∑
i=1

n∑
j=1

Aij⟨ui, vj⟩

∣∣∣∣∣∣ ≤ K,

where K ≤ 1.783 is a constant.
Various proofs of this theorem results in various bounds on K, with 1.783

being the smallest explicit bound that is known [3]. The idea is to use kernel
method to work with a higher-dimensional space that has more linearities. How-
ever, it is also known that the best possible bound must be strictly less than
1.783 [1]. Here, we proceed assuming this theorem without a rigorous proof as
giving a bound on K.

6

3.2 0.878-Approximation
Now, we are ready to present the 0.878-approximation algorithm except that
we have not yet proven the following useful lemma.

Lemma 3.4 (Grothendieck’s identity). Let g be a uniform random unit vector.
Then, for any fixed vectors u, v such that ∥u∥ = ∥v∥ = 1, we have

E(sign⟨g, u⟩ · sign⟨g, v⟩) = 2

π
arcsin⟨u, v⟩ (7)

Proof. Let α ∈ [0, π] be the angle between the vectors u and v. We claim that
P(sign⟨g, u⟩ · sign⟨g, v⟩ = −1) = α

π .
Recall the inner product is rotation invariant. So we can always rotate the

vectors g, u, v such that u, v ∈ R2. Moreover, we can also assume g ∈ R2

without loss of generality as the the other dimensions do not contribute to the
inner product.

Again, by the rotation invariance of inner product, we can let u = (1, 0) and
v = (cos θ, sin θ). Once more, without loss of generality, we can assume that
0 ≤ θ ≤ π as we can rename u, v if necessary. If we let g = (cos γ, sin γ) for
some 0 ≤ γ ≤ π, it is easy to see that

sign⟨g, u⟩ · sign⟨g, v⟩ = −1 ⇐⇒ 2

π
< γ < θ +

2

π
.

This is because sign⟨g, u⟩ · sign⟨g, v⟩ = −1 if and only if a line through the
origin whose normal vector is g divides u and v into different half planes. And
it happens if and only if π

2 < γ + θ + 2
π . Thus, we have proven that

P(sign⟨g, u⟩ · sign⟨g, v⟩ = −1) =
α

π
.

Then, since u, v are unit vectors, α = arccos⟨u, v⟩. Also, since g takes
continuous values, P(sign⟨g, u⟩ · sign⟨g, v⟩ = 0) = 0. Hence,

E(sign⟨g, u⟩ · sign⟨g, v⟩) = (−1)× α

π
+ 1×

(
1− α

π

)
= 1− 2α

π

= 1− 2

π
arccos⟨u, v⟩

=
2

π

(π
2
− arccos⟨u, v⟩

)
=

2

π
arcsin⟨u, v⟩.

QED

We want to provide a visualization Lemma 3.4. The idea is simply to fix arbi-
trary u and v, sample g, and observe the distribution of E(sign⟨g, u⟩ ·sign⟨g, v⟩).

7

However, there is one caveat - uniformly sampling a unit vector is more chal-
lenging to implement than it seems. Naïve sampling methods usually results in
biased distributions.

Fortunately, as [4] suggested, we can take advantage of the properties of the
normal distribution.

Theorem 3.5. For some positive integer n, let X1, X2, . . . , Xn be n Gaussian
random variables with mean 0 and variance 1, then the random vector

(X1, X2, . . . , Xn)

∥(X1, X2, . . . , Xn)∥2
=

1√∑n
i=1X

2
i

(X1, X2, . . . , Xn)

is uniformly distributed over all unit vectors.

Proof. Let

X = (X1, X2, . . . , Xn) ∼ N(0, In),

where X1, X2, . . . , Xn are as in the theorem. And let Q be an n× n orthogonal
matrix. Then, notice that QX ∼ N(0, In) so X is rotational invariant.

Moreover, the random variable X
∥X∥2

is also rotation invariant as

QX

∥QX∥2
=

QX

∥X∥2
=

X

∥X∥2
.

Then, X
∥X∥2

is also rotation invariant. Furthermore, we also have that∥∥∥∥ X

∥X∥2

∥∥∥∥
2

= 1

with probability 1. Hence, X is distributed uniformly on the unit sphere. QED

An illustration of this theorem is provided in Figure 4. In this illustration,
we specifically choose to work in a 2-dimensional space for the sake of simplicity
of the visualization and we use method described in Theorem 3.5 to generate
100 uniform random vectors. From the figure, we can observe that the points
are reasonably uniform around the entire unit circle.

With this handy theorem at our disposal, we can perform our experiments
in a straightforward manner. In our experiment, we arbitrarily choose 50 pairs
of 200-dimensional unit vectors u and v and for each pair we uniformly sample
1000 random vectors g. Then, we calculate the average of sign⟨g, u⟩ · sign⟨g, v⟩)
for each pair of u, v and plot sign⟨g, u⟩ · sign⟨g, v⟩)− 2

π arcsin⟨u, v⟩. The results
are outlined in Figure 5. From the figure, we can see that the values are very
small and clustered around 0.

Now, we are ready to use a semidefinite program and prior results to obtain
the famous 0.878-approximation algorithm for maximum cut due to Goemans
and Williamson [2].

8

Figure 4: 100 uniform random vectors illustrating Theorem 3.5 in 2-dimension.

Figure 5: Illustration of Lemma 3.4. The histogram of (sign⟨g, u⟩ · sign⟨g, v⟩)−
2
π arcsin⟨u, v⟩ for different g, u, v is plotted. We can see from the plot that the
expectation is approximately 2

π arcsin⟨u, v⟩.

9

Theorem 3.6 (0.878-approximation algorithm). Let G be a graph with adja-
cency matrix A. Define the following semidefinite program

SDP(G) =
1

4
max


n∑

i=1

n∑
j=1

Ai,j (1− ⟨Xi, Xj⟩) : ∥Xi∥2 = 1 ∀1 ≤ i ≤ n

 (8)

where ⟨· , ·⟩ denotes the canonical inner product of two vectors and

∥Xi∥2 =

√√√√ n∑
j=1

X2
i,j .

Then, SDP(G) is a semidefinite program. Moreover, if we let X be its solution
and define

xi = sign (⟨Xi, g⟩)

where g ∼ N(0, In) is a standard normal random vector, then

ECut(G, x) ≥ 0.878SDP(G) ≥ 0.878MAX-CUT(G).

Proof. First, we verify that SDP(G) is indeed a semidefinite program. Even
though SDP(G) is not in the original format of a semidefinite program, we can
transform it into one as follows.

Define Y to be a n× n matrix such that

Yi,j = ⟨Xi, Xj⟩.

Since inner product is symmetric, Y must be symmetric as well. And in this
way, our objective functions becomes

n∑
i=1

n∑
j=1

Ai,j (1− ⟨Xi, Xj⟩) =
n∑

i=1

n∑
j=1

Ai,j (1− Yi,j) ,

which agrees with the original formulation of semidefinite programs.
Moreover, the restriction on X such that ∥X∥2 = 1 means that Y is uni-

formly 1 on the main diagonal. In other words,

∥X∥2 = 1 ⇐⇒ Yi,i = 1 ∀i = 1, 2, . . . , n.

Also, by the definition of Y , we notice that Y = XTX so Y is a positive
semidefinite matrix. Thus, SDP(G) is a semidefinite program as it contains all
components and satisfies all conditions of a semidefinite program.

If X is a solution for SDP(G), we can simply obtain a solution Y for our
transformed semidefinite program by taking Y = XTX. Conversely, although
we cannot compute an explicit formula for arbitrary X in an efficient manner
given Y , we still have approximation algorithms for the decomposition.

10

Figure 6: Illustration of Equation 9. The orange straight line represents y =
0.878(1− x) and the blue curve represents y = 2

π arccosx.

Then, we remove the nonlinear arcsin function in Lemma 3.4 using that
2

π
arccos⟨u, v⟩ ≥ 0.878(1− ⟨u, v⟩),

which can be verified using a simple script. This inequality, together with the
trigonometry identity arcsin t+ arccos t = π

2 implies that

1− 2

π
arcsin⟨u, v⟩ = 2

π
arccos t ≥ 0.878(1− t). (9)

Then, we can rewrite Equation 5 as

ECut(G, x) =
1

4
E

 n∑
i=1

n∑
j=1

Mij (1− xixj)


=

1

4

n∑
i=1

n∑
j=1

Mij (1− E [xixj]) .

However,

1− E [xixj] = E[sign⟨g,Xi⟩ · sign⟨g,Xj⟩] by the construction of x

= 1− 2

π
arcsin⟨Xi, Xj⟩ by Lemma 3.4

≥ 0.878(1− ⟨Xi, Xj⟩) by Equation 9.

Hence,

ECut(G, x) ≥ 0.878× 1

4

n∑
i=1

n∑
j=1

Mij (1− ⟨Xi, Xj⟩)

= 0.878SDP(G),

11

which proves the first inequality. So, it only remains to prove the second in-
equality.

To see the second inequality, let p∗ ∈ {−1, 1}n denote the partition gener-
ating the maximum cut. If we let Xi = (p∗i , 0, 0, . . . , 0) for any i = 1, 2, . . . , n.
Then,

SDP(G) ≥
n∑

i=1

n∑
j=1

Ai,j (1− ⟨Xi, Xj⟩)

=

n∑
i=1

n∑
j=1

Ai,j

(
1− p∗i p

∗
j

)
= Cut(G, p∗)

= MAX-CUT(G).

QED

Besides its superior accuracy over the 0.5-approximation algorithm, Theorem
3.6 also allows us to easily recover a partition that attains at least 0.878 times
the maximum cut given the solution of SDP(G) using the randomized rounding
technique in Theorem 3.6.

References
[1] Mark Braverman et al. “The Grothendieck constant is strictly smaller than

Krivine’s bound”. In: Forum of Mathematics, Pi. Vol. 1. Cambridge Uni-
versity Press. 2013.

[2] Michel X Goemans and David P Williamson. “Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite
programming”. In: Journal of the ACM (JACM) 42.6 (1995), pp. 1115–
1145.

[3] JL Krivine. “Constantes de Grothendieck et fonctions de type positif sur
les sphères”. In: Advances in Mathematics 31.1 (1979), pp. 16–30.

[4] Mervin E Muller. “A note on a method for generating points uniformly
on n-dimensional spheres”. In: Communications of the ACM 2.4 (1959),
pp. 19–20.

[5] Roman Vershynin. High-dimensional probability: An introduction with ap-
plications in data science. Vol. 47. Cambridge university press, 2018.

12

Appendices
A Code
A.1 Expectation of Uniform Random Cut

1 # ----- Graph ------
2 import numpy as np
3

4 class Graph:
5 """
6 A simple implementation of graph with the help of numpy.
7 """
8

9 def __init__(self, n):
10 """Initializes an empty graph"""
11 self.n = n
12 self.V = np.arange(n)
13 self.E = np.zeros((n, n), dtype='int8')
14

15 def generate_random_edges(self):
16 """As name suggests, but we want E to be reflective w.r.t its

main diagonal"""
17 self.E = (np.random.random((self.n, self.n)) >= 0.5).astype('

int8')
18 self.E = np.triu(self.E) # upper triangle of E
19 self.E = (self.E + self.E.T) - np.diag(np.diag(self.E))
20

21 def cut(self, C):
22 """C: an 1D numpy array consisting of 0's and 1's of length

self.n"""
23 partition_0 = self.V[C[self.V] == 0]
24 partition_1 = self.V[C[self.V] == 1]
25 return np.sum(np.array([self.E[u, v] for u in partition_0 for v

in partition_1]))
26

27 def num_edges(self):
28 # we subtract the orthogonal so that we have a simple graph
29 # this works because the loops are never calculated in any cut
30 return (np.sum(self.E) - np.sum(np.diag(self.E))) / 2
31 # ----- End of Graph ------
32

33 # ----- Experiments ------
34 # Hyper-parameters
35 # the number of graphs
36 NUM_GRAPHS = 100
37 # number of cuts for each graph
38 NUM_CUTS = 1000
39 # the number of vertices in each graph
40 N = 20
41

42 diffs = []
43 for _ in range(NUM_GRAPHS):
44 graph = Graph(N)
45 graph.generate_random_edges()

13

46 cuts = []
47 for _ in range(NUM_CUTS):
48 # generate a random cut
49 cut = (np.random.random((N)) >= 0.5).astype('int8')
50 cuts.append(graph.cut(cut))
51 diffs.append(np.mean(np.array(cuts)) - graph.num_edges() / 2)
52 # ----- End of Experiments -----
53

54 # ----- Illustration -----
55 import matplotlib.pyplot as plt
56

57 _, _, _ = plt.hist(x=diffs, bins='auto')
58 plt.show()
59 # ----- End of Illustration -----

A.2 Uniform Random 2D Unit Vector

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 xs = []
5 ys = []
6 for _ in range(100):
7 g = np.random.default_rng().normal(size=2)
8 g /= np.linalg.norm(g)
9 xs.append(g[0])

10 ys.append(g[1])
11

12 plt.scatter(xs, ys)
13 plt.axis('equal')
14 plt.show()

A.3 Visualization of Grothendieck’s Identity

1 import numpy as np
2 from matplotlib import pyplot as plt
3 from math import pi
4

5 # hyperparameters
6 NUM_DIM = 50
7 NUM_UV = 200
8 NUM_G = 1000
9

10 diffs = []
11 for _ in range(NUM_UV):
12 u = np.random.default_rng().normal(size=NUM_DIM)
13 u /= np.linalg.norm(u)
14 v = np.random.default_rng().normal(size=NUM_DIM)
15 v /= np.linalg.norm(v)
16 sign_list = []
17 for _ in range(NUM_G):
18 g = np.random.default_rng().normal(size=NUM_DIM)
19 g /= np.linalg.norm(g)
20 sign_list.append(np.sign(np.dot(g, u) * np.sign(np.dot(g, v))))

14

21 diffs.append(np.array(sign_list).mean() - 2/pi * np.arcsin(np.dot(u
, v)))

22

23 _ = plt.hist(x=diffs, bins='auto')
24 plt.show()

15

	Introduction
	Maximum Cut
	Approximation

	0.5-Approximation Algorithm
	Semidefinite Relaxation
	Semidefinite Program
	0.878-Approximation

	Code
	Expectation of Uniform Random Cut
	Uniform Random 2D Unit Vector
	Visualization of Grothendieck's Identity

