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Abstract. This paper explores the complexities and optimizations within generalized multi-

echelon cross-docking systems, focusing on the balance between holding costs and backorder

costs under variable demand scenarios. By incorporating probability theory and supply chain
modeling, we present a detailed analysis of two-echelon, three-echelon cross-docking systems,

and possible generic systems, emphasizing the optimization of inventory levels and the strate-

gic distribution of goods from central warehouses to retailers. The investigation reveals the
critical role of lead time and demand distribution in determining optimal order-up-to levels

and discusses the implications of imbalance assumptions in multi-echelon structures. Through
theoretical models and calculations, we propose strategies for achieving balanced stock-out

probabilities across the supply chain, aiming to minimize the total expected cost under vary-

ing demand. The paper further discusses on potential strategies in scenarios where the im-
balance assumption is violated, offering insights into the resilience and efficiency of supply

chain designs. We conclude with the flexibility of the model highly depends on the lead time,

holding/backorder costs and demand.
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1. Introduction

The domain of supply chain optimization, characterized by its inherent complexity and the
stochastic nature of demand, presents a rich canvas for mathematical exploration. Within this

Date: April, 2024.

1



2 YINGHAN YU

domain, the strategy of cross-docking for supply chian as a critical mechanism aimed at enhancing
logistical efficiency. Cross-docking, by facilitating the direct transfer of goods from inbound
to outbound transportation with minimal storage in between, requires rigorous mathematical
modeling to optimize its implementation, particularly in the context of multi-echelon supply
chain systems.

1.1. Motivational Context

Contemporary supply chains are marked by a high degree of interconnectivity and dynamism,
challenging traditional inventory management paradigms. The seminal work of Erkip, Hausman,
and Nahmias [1] on multi-echelon inventory systems introduces a framework for considering
demand correlations across different echelons, a critical aspect that significantly influences the
optimization of inventory levels. This study extends the mathematical framework laid out by
Erkip et al., with a specific focus on integrating cross-docking operations into generalized multi-
echelon systems. The objective is to derive optimal inventory management strategies that not
only acknowledge but leverage the complexity and stochastic nature of modern supply chains.

1.2. Theoretical Foundation

The mathematical underpinnings of multi-echelon inventory management were rigorously formal-
ized by Clark and Scarf [2], setting the stage for subsequent explorations into complex supply
chain structures. The incorporation of demand correlations, as further explored by Johnson and
Thompson [3], adds another layer of complexity, necessitating advanced mathematical tools for
system optimization.

Building on these foundational studies, the work of Erkip, Hausman, and Nahmias [1] provides
a pivotal analysis of centralized ordering policies within multi-echelon inventory systems, taking
into account the intricacies of correlated demands. Complementing this, Eppen and Schrage
[4] delve into the optimization of centralized ordering policies in a multi-warehouse context,
highlighting the benefits of centralized decision-making in managing lead times and random
demand across warehouses.

1.3. Thesis Aims

This thesis aims to synthesize and extend the mathematical methodologies presented in the
works of Erkip et al. [1] and Eppen and Schrage [4], with the goal of developing a comprehensive
mathematical model for optimizing cross-docking operations in generalized multi-echelon supply
chains.In the previous studies, main discussion adopted the two echelon system. Through rig-
orous mathematical analysis and optimization techniques, we seek to uncover strategies under
increasing complexities of increasing echelon and flexibiliyt of system structure associated with
cross-docking.

The thesis is organized as follows: Section 2 provides a basic review for probability theory,
and detailed review of the mathematical literature on supply chain optimization, with a focus
on multi-echelon systems and cross-docking operations. Section 3 introduces the mathematical
model and formulation for the problem at hand specifically the multi-echelon cross-docking model
with number of echelon greater than two. Section 4 introduces some topic of interest for future
investigation.

2. Preliminary and Foundational Theorems

The whole discussion of supply chain is based on tradeoff between holding cost and backorder
cost, and the cost function is given as charging amount of extra stock with holding cost h > 0
and charging for inadequate stock for a missing demand with backorder cost b > 0, under the
random demand. Demand can be well discribed as a random variable.



DISCUSSION ON GENERALIZED MULTI-ECHELON CROSS-DOCKING SYSTEM 3

2.1. Fundamental Probability

First, let’s introduce basic definition and theorem in in probability theory [5].

Definition 2.1. Let (Ω,A,P) be the measurable sample space. A random variable X is a
A−measurable function from Ω into the R. The probability distribution PX of X is defined
as

PX(B) := P(X ∈ B) ∀B ∈ B(R).

The cumulative distribution of X is defined as

FX(a) = PX((−∞, a))

Definition 2.2. A probability density function fX of random variable X is a nonnegative
borel measurable function from R to R+ s.t.∫

R

f(x)dx = 1

Then a real random variable X has density f if

PX(B) =

∫
B

f(x)dx.

Now, the expectation is defined as

Definition 2.3. Let X be a random variable defined on (Ω,A,P). The expectation of a random
variable X is

E[X] =

∫
Ω

X(ω)P(dω)

The variance of X is defined as

V[X] = E[(X − E[X])2]

Now, the notion of independence between different random variables.

Definition 2.4. The finite set of random variables (Xn)Nn=1, that are defined on the same
probability space, are said to be independence if for any subset I ⊂ {1, · · · , N},

P(∀j ∈ I,Xj ∈ Bj) =
∏
j∈I

P(Xj ∈ Bj), ∀Bj ∈ B(R)

Theorem 2.5. Let X,Y be two random variables defined on the same probability space, then

(1) E[X + Y ] = E[X] + E[Y ] if all three expectations are defined.
(2) E[aX + b] = aE[X] + b
(3) V[X + Y ] = V[X] +V[Y ] + 2COV [X,Y ] where COV [X,Y ] := E[(X −E[X])(Y −E[Y ])]
(4) Suppose X,Y are independent, COV [X,Y ] = 0

The proof of this thoerem can be found in multiple probability texts, I would omit the proof
here.

The idea of conditional probability are useful under this context, and we shall define it.

Definition 2.6. Let (Ω,A,P) be the measurable sample space, and B ∈ A is an event with
positive probabiltiy, then, the conditional probability P·|B is defined, for every A ∈ A

P·|B(A) = P(A|B) =
P(A ∩B)

P(B)
.

Let X random variable in L1(Ω,A,P). The conditional expectation of X given B, E[X|B] is
defined as

E[X|B] :=
E[X1B ]

P(B)
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E[X1B ] is X’s expectation with respect to P·|B probability measure.

2.2. Multivariate Extremum

After defining the probability and random variable to describe the indeterministic demand, we
shall introduce some useful methods in finding optimization solution under certain constraints. [6]

Theorem 2.7 (Lagrange Multipliers). If f be a function from Rn to R has a relative local
extremum when it subjected to m equality constraints,

g1(x) = c1, . . . , gm(x) = cm, m < n

Then, exists scalar λ1, . . . , λm such that

∇f(x∗) =

m∑
i=1

λi∇gi(x∗)

which x∗ is the local extremum.

The extension for lagrange multipliers is extremely useful under the optimization scheme.

Theorem 2.8 (Karush–Kuhn–Tucker (KKT) conditions [7]). Let f be a function from Rn to R,
constraint to l equality constraints and m inequality constraints. Equivalently,

max
x

z = f(x)

s.t. x ∈ Rn

hk(x) = bk, ∀k = 1, 2, . . . , l

gi(x) ≤ ci, ∀i = 1, 2, . . . ,m

Then, the following conditions must hold at an optimum x∗

(1) ∇f(x∗) =
∑l
k=1 λk∇hk(x∗) +

∑m
i=1 µi∇gi(x∗) for some λk, µi ∈ R.

(2) hk(x∗) = bk for all k = 1, 2, . . . , l, and gi(x
∗) ≤ ci for all i = 1, . . . ,m.

(3) µi ≥ 0 and µi(ci − gi(x∗)) = 0 for each i = 1, 2, . . . ,m.

2.3. Basic Model Description

Back to the discussion about holding cost and backordering cost, the total cost is resulted from
the indeterministic demand X be a nonnegative random variable with cumulative distribution F
and the level of on-hand s. The actual cost function and expected cost function is described as

C(s) = h[s− x]+ + b[x− s]+(2.1)

G(s) := E[C(s)] = hE[(s− x)1{s≥x}] + bE[(x− s)1{s≤x}](2.2)

Assume that we have a f be the probability density function of X, then we have the following
optimal solution to the minimize the expected cost. We can write the cost function (2.2) and
write in terms of the density function.

Theorem 2.9 (Newsvendor Model in Continuous Demand). Let X be a real random variable
with continuous density f , characterizing the demand, with continuous derivative. Let h > 0 be
the unit holding cost, b > 0 be the unit backordering cost. Then, the optimal stock level s∗ ∈ R+

of the cost function given by below

min
s

G(s) = h

∫ s

−∞
(s− x)f(x)dx+ b

∫ ∞
s

(x− s)f(x)dx

satisfies F (s∗) = b
b+h .

1[a]+ := max{a, 0}
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To prove the newsvendor model, we need to use the following theorem about Leibniz’s differ-
entiation rules [8].

Theorem 2.10. Let F : R× R→ R be a continuous function with F (x, t) and ∂
∂xF continuous

over the [u(t), v(t)]×[a, b] for some a, b ∈ R and u, v : R→ R are continuous and have continuous
derivative on t ∈ [a, b], then

d

dt

∫ v(t)

u(t)

F (x, t)dx = F [v(t), t]v′(t)− F [u(t), t]u′(t) +

∫ v(t)

u(t)

∂F (x, t)

∂t
dx

Proof. Let F, u, v be function as described, and let G(u, v, t) =
∫ v(t)

u(t)
F (x, t)dx. Then by chain

rule,

∂

∂t
G(u, v, t) =

∂G

∂u

∂u

∂t
+
∂G

∂v

∂v

∂t
+
∂G

∂t

By Fundamental Theorem of Calculus, the first two terms agree. Then, suffice to show ∂G
∂t =∫ v(t)

u(t)
∂F (x,t)
∂t dx. ∫ v

u

∂F (x, t)

∂t
dx =

d

dt

∫ t

n

ds

∫ v

u

∂F (x, s)

∂s
dx

=
d

dt

∫ t

n

∫ v

u

∂F (x, s)

∂s
dx ds = (∗)

Since F, ∂F (x,s)
∂s are continuous over [u, v] × [a, b], the integral is boudned and apply Fubini’s

theorem.

(∗) =
d

dt

∫ v

u

∫ t

n

∂F (x, s)

∂s
ds dx

=
d

dt

∫ v

u

[F (x, t)− F (x, n)]dx

=
d

dt

∫ v

u

F (x, t)dx

�

We use the previous theorem2.10 to prove the Newsvendor calculation.

Proof. By Leibniz differentiation rules,

∂

∂s

∫ s

−∞
(s− x)f(x)dx = [(s− s)f(s)− 0] +

∫ s

−∞
f(x)dx = F (s)

∂

∂s

∫ ∞
s

(x− s)f(x)dx = [0− (s− s)f(s)]−
∫ ∞
s

f(x)dx = F (s)− 1

Then,

∂G

∂s
= hF (s) + b(F (s)− 1) = (h+ b)F (s)− b = 0(2.3)

⇒F (s∗) =
b

h+ b
(2.4)

Further, since

∂2

∂s2
G =

d

ds
F (s) = f(s) ≥ 0
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s∗ provides the minimum. Further, when F takes value on nonnegative real, s∗ is nonnegative.
�

Under the discrete demand case with X a real random variable with probability mass function
p(x), Newsvendor solution has similar result.

Theorem 2.11. (Newsvendor Model in Discrete Demand) Let X be a discrete random variable
takes value in Z∗ 1 with probability mass function p : Z∗ → [0, 1]. Let h > 0, b > 0 be holding
cost and backordering cost respectively. Then, the optimal stock level s∗ ∈ Z∗ to minimize the
cost function 2.2 satisfies difference in expected cost function is positive.

Proof. Consider the change of expected cost function 2.2, ∆G(s) := G(s+ 1)−G(s).

∆G(s) =G(s+ 1)−G(s)

=

[
h

s+1∑
n=0

(s+ 1− n)p(n) + b

∞∑
n=s+1

(n− s− 1)p(n)

]

−

[
h

s∑
n=0

(s− n)p(n) + b

∞∑
n=s

(n− s)p(n)

]

=h

[
(s− n)p(n)|n=s+1 +

s+1∑
n=0

p(n)

]
+ b

[
−(n− s)p(n)|n=s −

∞∑
n=s+1

p(n)

]

=h

s∑
n=0

p(n)− b
∞∑

n=s+1

p(n)

=(h+ b)F (s)− b

Here F is the cumulative distribution function of X, i.e. F (s) = P(X ≤ s). Since the cost
function is concave, and

G(s) = G(0) +

s−1∑
n=0

∆G(n)

Suppose exists s∗ ∈ Z∗ such that F (s∗) = b
h+b ⇔ ∆G(s∗) = 0, then, G(s∗) = G(s∗ + 1) are

both minimized cost, and there are multiple optimal stock level. Suppose do not exist s∗ an
nonnegative integer that ∆G(s∗) = 0, then s∗ minimizes G implies ∀s < s∗,∆G(s) < 0, and
∀s ≥ s∗,∆G(s) > 0. Then,

s∗ := min {n ∈ Z∗|∆G(n) = (h+ b)F (n)− b > 0} = min

{
n|F (n) >

b

h+ b

}
�

2.4. Two-echelon Cross-docking Supply System

These content are mainly based on Professor Muckstadt’s discussion [9]. The setting is as below,
and the structure is shown on Figure 1. The system has a central warehouse (root node) that
is responsible for allocating the on-hand demand into the lower streams. Suppose there are n
affiliated retailers, denoted r1, . . . , rn.

Definition 2.12. The stock that is in the station are on hand stocks, the stock that has been
assigned to the station, and sent to transit is called pipeline stocks.
The inventory position of a station is all the stocks this station i have on-hand, all the children

1Z∗ := {n ∈ Z|n ≥ 0}
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Oversea

CW

r2r1 rn−1 rn· · ·

AA A A

D

Figure 1. Two-Echelon System

stations’ on-hand stock, and all the pipeline stock assigned to this station i and its children
stations 2.

The assumptions of this model are

(1) For each station (CW and retailers), the holding cost is h per 1 unit, and the backorder
cost occurs at retailer level with cost b per 1 unit accounts for the penalty of an order, but
the stock from later day will satisfy the backorder from previous days3, i.e all demand
will be eventually fulfilled.

(2) Lead time: After CW order, there will be D day lead time to have the ordered stock
arrive; the lead time of retailers are assume to be same, denoted A.

(3) Independent Normal Demand. Assume only one product is sold, and each retailer j ∈
{1, 2, . . . , n} has day demand dj,t ∼ N (µj , σ

2
j ) at time t, where dj,t are i.i.d over t,

independent across different retailers.
(4) The CW always send order to the oversea suppliers by amount

∑n
j=1 dj,t−1 to bring the

system inventory position to a desired constant order-up-to level s at time t.
(5) Imbalance assumption holds, and the distribution strategy of intermediate state is such

that the stock-out probability downstreams are equal. Equivalently, ∀t ∈ Z+,∀i, j ∈
{1, 2, . . . , n}

P(si,t + xi,t ≤
t+A∑
k=t

di,k) = P(sj,t + xj,t ≤
t+A∑
k=t

dj,k)

n∑
i=1

xi,t = c, xi,t ≥ 0 ∀i ∈ {1, 2, . . . , n}

where si,t is the inventory position of station i at time t. xi,t is the allocation made by
CW at time t to ri, c is the amount available to allocate. Note, since holding cost are
the same across system, policy is leave no inventory upstream.

(6) The sequence of events happens at day t is described as: at the beginning of time t
(a) CW make the order to supplier with

∑n
j=1 dj,t−1. This order brings the inventory

level of whole system back to s.

2For instance, inventory position of CW is all stock downstreams in the pipeline with lead time A and all stock
on-hand for both CW and retailers and the intransite in the pipeline with lead time D.

3This can be replace by period. For simplicity, I will use day as a unit period of time.
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(b) Order from CW to supplier a lead timeD ago arrived CW by amount
∑n
j=1 dj,t−D−1.

(c) CW will allocate on-hand stock to ri based on the equal stockout probability pol-
icy(feasible by imbalance assumption). The amount allocated at time t is aim to
balance the stock-out probability among ri a lead time A later.

(d) Demand during time t occurs, and the total system stock level becomes s−
∑n
j=1 dj,t

at the end of period t.
(e) Holding and backorder costs occur, the period ends.

Definition 2.13. Y0 :=
∑D
t=1

∑
j dj,t is the total system demand over D time periods. Yj :=∑D+A+1

t=D+1 dj,t is the retailer j demand over A+ 1 periods.

The summary of variable is shown on Table 1.

Variables Description
h Holding cost
b Backordering cost
D Lead time from oversea to CW
A Lead time from CW to retailer ri for i ∈ 1, · · · , n
dj,t Demand of retailer j at time t
Y0 Total System Demand over lead time period D
Yj Demand of rj over lead time period A+ 1
st CW’s inventory position
sj,t rj ’s inventory position
xj,t Stock allocated from CW to rj at time t
s∗ Optimal order up-to level
Table 1. Summary of 2-echelon Model Variables

2.4.1. Two-echelon System and Imbalance Assumption. The policy of distribution within
the system is to balance the stock-out probability downstream. This leads to a lemma justifying
the validity of such policy.

Lemma 2.14. Let h > 0 be a holding cost and b > 0 be a backordering cost. Suppose there are n
stations each with demand as nonnegative random variable with culmulative distribution Fi, and
density fi, with total of c elements able to distribute. Let each station has expected cost function
2.2. Let the total cost function

G((s1, s2, . . . , sn)) =

n∑
i=1

Gi(si)

Then, s∗ = (s∗1, . . . , s
∗
n) equalize the stock-out probability.

Proof. Denote s = (s1, s2, . . . , sn) By the assumption, the following optimization problem is set
up as below:

min
s
G(s) =

n∑
i=1

Gi(si) =

n∑
i=1

h

∫ si

−∞
(si − x)fi(x)dx+ b

∫ ∞
si

(x− si)fi(x)dx

s.t.

n∑
i=1

si ≤ c

si ≥ 0, ∀i ∈ {1, . . . , n}
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Then, the KKT conditions in Theorem 2.8 gives

− ∂

∂si

n∑
i=1

Gi = λ− µi, for λ ∈ R, ∀i ∈ {1, . . . , n}(2.5)

n∑
i=1

si ≤ c, si ≥ 0(2.6)

µi ≥ 0 and µisi = 0(2.7)

λ ≥ 0 and λ

(
c−

n∑
i=1

si

)
= 0, ∀i ∈ {1, . . . , n}(2.8)

Then, refering to the basic newsvendor cost function minimization, we have by (2.3)

∂

∂si

n∑
i=1

Gi(si) =
d

dsi
Gi(si) = (h+ b)Fi(si)− b(2.9)

First, suppose that ∂
∂si
Gi = 0 for all i and

∑n
i=1 F

−1
i

(
b

b+h

)
≤ c. Thus,

λ = µi = µj , ∀i, j ∈ {1, 2, . . . , n}

Then, let s∗i = F−1
i ( b

b+h ), second condition (2.6) of feasibility has been satisfied. Set λ = 0, then

condition 3 (2.7) and condition 4 (2.8) is trivially satisfied. By previous calculation, condition 1
(2.5) is satisfied. Then, s = (s∗1, . . . , s

∗
n) is the optimal soltion. Since stock-out probability under

this optimal stock allocation has b
b+h , the allocation is balanced.

Now, suppose that
∑n
i=1 ŝi > c where ŝi = F−1

(
b

b+h

)
. Then, s∗i > 0⇒ µi = 0 by equation

(by convexity), and by (2.9)

(2.10)
d

dsi
Gi(si) = (h+ b)Fi(si)− b = µi − λ = −λ

Thus,
n∑
i=1

s∗i = c ⇒ λ free.

Thus, each station equalize their stock-out probability. �

The imbalance assumption states that if the stock-out probability for each is the same at time
t + D − 1, then there are always sufficent for CW to make allocation to ri such that the total
stock-out probability is same across ri at time t+D. Particularly, the assumption is met given
the following theorem.

Theorem 2.15. Suppose the system is in balance at the beginning of period t+D− 1. Then, it
will be in balance following the CW allocation to the retailers in period t+D if

n∑
i=1

di,t−1 ≥ max
j

∑
i 6=j

di,t+D−1 + dj,t+D−1

(
1−

∑n
k=1 σk
σj

)
Proof. Suppose the system is in balance at the beginning of period t + D − 1, and demand is
normally distributed at each ri with mean µi and standard deviation σi, then there exists a
k ∈ R such that

si,t+D−1 = (A+ 1)µi + k
√
A+ 1σi,∀i = 1, 2, . . . , n

where si,t+D−1 is defined to be the inventory position of ri at the beginning of time t+D − 1.
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During period t+D − 1,

(1) The order placed by CW to supplier in period t, by the total demand depleted at period
t − 1 arrived. The total amount arrived can be written as

∑
i di,t−1. Since the CW do

not keep inventory, the total amount allocated to ri is equal to the amount arrived in
CW.

(2) Demand occurred by di,t+D−1 for each retailer ri.

Suppose xi,t+D units are the allocation from CW to ri in period t + D, then the inventory
position for ri is

si,t+D = si,t+D−1︸ ︷︷ ︸
Inventory position

a day before

+ xi,t+D︸ ︷︷ ︸
Allocated to
rito balance

− di,t+D−1︸ ︷︷ ︸
demand lost
a day before

(2.11)

= (A+ 1)µi + k
√
A+ 1σi + xi,t+D − di,t+D−1(2.12)

Then, feasible allocation requires xi,t+D ≥ 0 for all i, satisfying

(2.13)

n∑
i=1

xi,t+D =

n∑
i=1

di,t−1

(2.14) ∃k′ ∈ R s.t. si,t+D = (A+ 1)µi + k′
√
A+ 1σi,∀i = 1, 2, . . . , n

Plugging (2.14) into (2.12), we have the following

(2.15) xi,t+D = (k′ − k)
√
A+ 1σi + di,t+D−1,∀i = 1, 2, . . . , n.

Based on (2.13),

n∑
i=1

xi,t+D =

n∑
i=1

di,t−1 = (k′ − k)
√
A+ 1

n∑
i=1

σi +

n∑
i=1

di,t+D−1

Solve for (k′ − k), we have

(2.16) k′ − k =

∑n
i=1 di,t−1 −

∑n
i=1 di,t+D−1√

A+ 1
∑n
i=1 σi

Substitue (2.16) to (2.15), we have

(2.17) xi,t+D =

(
n∑
i=1

di,t−1 −
n∑
i=1

di,t+D−1

)
σi∑n
j=1 σj

+ di,t+D−1

Set (2.17) be nonnegative, we have

n∑
i=1

di,t−1 ≥
n∑
i=1

di,t+D−1 − di,t+D−1

∑n
j=1 σj

σi
,∀i.

Thus, all xi,t+D are nonnegative if

n∑
i=1

di,t−1 ≥ max
j

∑
i 6=j

di,t+D−1 + dj,t+D−1

(
1−

∑n
i=1 σi
σj

) .

�

Proposition 2.16. Suppose retailers following the previous assumption, and the coefficient of
variation is sufficiently small, the equal-probability allocation can be made almost surely, given
the previous period is equalized.
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Proof. Let di denote the demand of retailer i. xi be the allocation made from CW to the retailer
i. Then,

P(xi ≥ 0,∀i) ≥ 1− P(∃j ∈ {1, · · · , n}|xj < 0) ≥ 1−
n∑
i=1

P(xi < 0)

P

(
n⋂
i=1

{xi ≥ 0}

)
≥ 1−

n∑
i=1

P(xi < 0)

Then with di ∼ N (µi, σ
2
i ) and σi

µi
< ε for some small εi > 0, 4

P(xi < 0) = P
(
xi − µi
σi

< −µi
σi

)
= Φ

(
−µi
σi

)
= Φ

(
− 1

εi

)
Then,

P

(
n⋂
i=1

{xi ≥ 0}

)
≥ 1−

n∑
i=1

Φ

(
− 1

εi

)
→ 1

as εi → 0 by the characteristic of cumulative distribution. �

2.4.2. Describing the optimal inventory position. Now, we have sufficient information
to claim a optimal inventory level that CW should bring up each time.

Theorem 2.17. Suppose the model satisfies previous assumptions and coefficient of variation
of demand is small, then the optimal stock level for the whole system is

s∗ = (D +A+ 1)

n∑
i=1

µi + z

D n∑
i=1

σ2
i + (A+ 1)

(
n∑
i=1

σi

)2
 1

2

To prove this theorem, we shall start from auxiliary definition and proposition.

Proposition 2.18. Let Fvj (·) be the cumulative distribution function of random variable defined

by vj = Yj + Y0
σj∑
i σi

. Then, vj is normal with

mean of (A+ 1)µj +D

n∑
i=1

µi
σj∑n
i=1 σi

and variance (A+ 1)σ2
j +D

n∑
i=1

σ2
i

(
σj∑n
i=1 σi

)2

Proof. First calculate the expectation of vj .

E(vj) = E
(
Yj + Y0

σj∑n
i=1 σi

)
= E(Yj) +

σj∑n
i=1 σi

E(Y0)

= (A+ 1)µj +D

n∑
i=1

µi
σj∑n
i=1 σi

4Note the normal assumption is not required here, and can be extend to broderer cases.
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Then, the variance of vj . To be noted, each demand variable are independent across time.

Var(vj) = Var

(
Yj + Y0

σj∑n
i=1 σi

)
= Var(Yj) + Var

(
D∑
t=1

n∑
i=1

di,t

)(
σj∑n
i=1 σi

)2

+ Cov

(
D+A+1∑
t=D+1

dj,t,
σj∑n
i=1 σi

D∑
t=1

n∑
i=1

di,t

)

= (A+ 1)σ2
j +D

n∑
i=1

σ2
i

(
σj∑n
i=1 σi

)2

All covariance is zero since they are independent. �

Now, we can proof for the theorem.

Proof of Theorem 2.17. The net system inventory in period D+ 1 prior to allocating CW stock
is s− Y0.

Note: This only includes system stocks at CW and downstream(i.e., supplier to CW pipeline
stocks are excluded). Since here we fiexed at a time t, the following will write si,t = si for
simplicity. After allocating CW stock, all stock downstream from CW is allocated to retailers,
thus

∑n
j=1 sj = s− Y0. By the imbalance assumption, there is a single k ∈ R such that

sj = (A+ 1)µj + k(A+ 1)1/2σj , ∀j ∈ {1, 2, . . . , n}
Using

∑n
j=1 sj = s− Y0, solve for k and

sj = (A+ 1)µj +

(
s− Y0 − (A+ 1)

n∑
i=1

µi

)
σj∑n
i=1 σi

≥ 0.

Let

cj = (A+ 1)µj − (A+ 1)

n∑
i=1

µi
σj∑n
i=1 σi

(2.18)

vj = Yj + Y0
σj∑n
i=1 σi

and(2.19)

zj = sj − Yj = rj ’s net inventory at the period’s end.(2.20)

With substitution,

zj = s
σj∑n
i=1 σi

+ cj − vj

Notice that among cj , vj , only vj is a composition of random variables. And therefore, random-
ness in zj only come from demands in vj . Then, zj < 0 is a stockout, with backorder cost −bzj ,
if zj > 0 is a stock-in with holding cost hzj . Refering back to the original newsvendor model2.9,
we have

Gj

(
s

σj∑n
i=1 σi

+ cj

)
|{F = Fvj}

Since Fvj is a normal distribution by proposition 2.18, the expected cost per period for rj is
given by

h

∫ s
σj∑n
i=1

σi
+cj

−∞

(
s

σj∑n
i=1 σi

+ cj − v
)
dFvj (v) + b

∫ ∞
s

σj∑n
i=1

σi
+cj

(
v − s σj∑n

i=1 σi
− cj

)
dFvj .

By the newsvendor minimization in theorem2.9, the minimum cost occuring when

Fvj

(
s

σj∑n
i=1 σi

+ cj

)
=

b

b+ h
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Then, denote Φ−1
(

b
b+h

)
= z, where Φ is the inverse standard normal distribution. Then, since

the random variable vj is normal,

z =
s σ∑n

i=1 σ
+ cj − E(vj)

σvj

=
s− (D +A+ 1)

∑n
i=1 µi

[(A+ 1)(
∑n
i=1 σi)

2 +D
∑n
i=1 σ

2
i ]

1
2

Note that z is independent of rj , so s∗ can be solved as

s∗ = (D +A+ 1)

n∑
i=1

µi + z

D n∑
i=1

σ2
i + (A+ 1)

(
n∑
i=1

σi

)2
 1

2

�

3. Main Discussion: Three-echelon System with equalizing stock-out probability
policy

With the analysis of multi-echelon model in previous section, it is natural to consider the more
complex system with similar assumption and strategies. Therefore, the main discussion of this
thsis is

(1) What does the generalized structure’s optimal inventory level (s∗) under the equalized-
allocation for each intermediate echelon?

(2) What is the condition for generalized structure to have imbalance assumption?
(3) What is the probability of breaking the imbalance assumption? What is the strategy

under breaking the assumption?

First, we shall start with the three-echelon system, which builds heavily on the two-echelon model.
As shown below in Figure 2, the three-echelon system with oversea supplier send product to the
central warehouse with D. Suppose that there are m intermediate stations ri, i ∈ {1, . . . ,m}
that recieve assigned stock from CW. Each intermediate station ri has ni lower stream retailers
rij , j ∈ {1, . . . , ni}. These retailers ri· only receive stock sent by ri.

Oversea

CW

r2 · · · · · ·r1 rm

r21 r2n2
· · ·r11

· · · r1n1 rmnm· · ·rm1

B BB B BB

AA A

D

Figure 2. Three-Echelon Cross-Docking System
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3.1. Introduction and assumptions of three-echelon model

The summary of variables is shown on Table 2.

Variables Description
h Holding cost
b Backordering cost
D Lead time from oversea to CW
A Lead time from CW to retailer ri for i ∈ 1, · · · ,m
B Lead time from ri to retailer rij for j ∈ 1, · · · , ni for all i
dij,t Demand of retailer rij at time t
Y0 Total System (CW and downstream) Demand over lead time period D
Yi Demand of ri (ri and its retailers) over lead time period A
Yij Demand of retailer rij over lead time period B + 1
s System order up-to level
st CW’s inventory position
si,t ri’s inventory position
sij,t rij ’s inventory position
xi,t Stock allocated from CW to ri at time t
xij,t Stock allocated from ri to rij at time t

Table 2. Summary of 3-echelon Model Variables

The assumptions of this model are

(1) For each station (CW, intermediate stations, and retailers), the holding cost is h per 1
unit, and the backorder cost occurs at retailer level with cost b per 1 unit.

(2) The lead time between supplier and CW is D; lead time between CW to ri is A for all
i ∈ {1, . . . ,m}; and lead time between ri to rij retailers denoted B for all i, j.

(3) Assume only one product is sold throughout system, retailer rij has day demand dij,t ∼
N (µij , σ

2
ij) at time t, where dij,t are i.i.d over all t, i, j.

(4) Let s ∈ R∗ be the system order-up-to level. At the end of everyday, CW send order to the
oversea suppliers by amount

∑m
i=1

∑ni
j=1 dij,t−1 to bring the system inventory position

to a desired constant order-up-to level s at time t.
(5) Suppose imbalance assumption holds for each level, the distribution strategy of interme-

diate stations and CW is such that the stock-out probability downstreams are equal.
(6) The sequence of events happens at day t is described as:

At the beginning of time t
(a) CW make the order to supplier with

∑n
j=1 dj,t−1. Supplier directly send correspond-

ing amount to the pipeline. This order brings the inventory level st of whole system
back to s.

(b) Order from CW to supplier a lead time D ago arrived CW by amount

m∑
i=1

ni∑
j=1

dij,t−1

For each station downstream, the order from a lead time ago arrived. For ri, the
allocation xi,t−A arrived. For rij , the allocation xij,t−B arrived.

(c) CW will allocate the on-hand to ri based policy of equalizing stockout probability
downstream. The amount allocated at time t is denoted as xi,t
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(d) Demand during time t occurs, and the total system stock level becomes

s−
m∑
i=1

ni∑
j=1

dij,t

at the end of period t.
(e) Holding and backorder costs occur, the period ends.

Definition 3.1. Define the demand over lead time. Y0 :=
∑D
t=1

∑m
i=1

∑ni
j=1 dij,t is the total

system demand over D time periods. Yi :=
∑D+A
t=D+1

∑ni
j=1 dij,t is the intemediate station i and

affiliated demand over A time periods. Yij :=
∑D+A+B+1
t=D+A+1 dij,t is the downstream retailer rij ’s

total demand over lead time B + 1.

Suppose s is total system level after order in the morning made to overseas suppliers but
before the day’s demands are incurred downstream. On day t, an order

∑m
i=1

∑ni
j=1 dij,t−D−1 is

received at CW, which must be allocated to branch i = 1 · · ·m.
Suppose no inventory carried on CW, then after the allocation to the m stations is made and

before the demand occurs, we have
m∑
i=1

si = s− Y0

Similarly, the lowerstream follows similarly. that
ni∑
j=1

sij,t = si,t−A − Yi

3.2. Imbalance Assumption for 3-echelon System

Theorem 3.2. Suppose the system is in balance at beginning of t+D+A−1 and previous days,
then there will be in balance following for each allocation to lower stream in period t+D +A if ni∑

j=1

dij,t+D−1 −
ni∑
j=1

dij,t+D+A−1

 σij∑ni
j=1 σij

+

 m∑
i=1

ni∑
j=1

dij,t−1 −
m∑
i=1

ni∑
j=1

dij,t+D−1

 σij∑ni
j=1 σij

Σi∑m
i=1 Σi

+ dij,t+D+A−1

≥ 0(3.1)

where

Σ2
i = A

ni∑
j=1

σ2
ij + (B + 1)

 ni∑
j=1

σij

2

Proof. We use the very similar analysis as imbalance analysis in 2-echelon case. Since, by as-
sumption, system is balance at time t + D + A − 1, then for any i ∈ {1, . . . ,m} exists ki ∈ R
such that

sij,t+D+A−1 = (B + 1)µij + ki
√
B + 1σij

sij,t+D+A = sij,t+D+A−1 + xij,t+D+A − dij,t+D+A−1

for all j ∈ {1, . . . , ni}. Fixed an i, and suppose system is balance at t+D + A, then it satsifies
that

(1) xij,t+D+A ≥ 0 for all j ∈ {1, . . . , ni}
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(2) Exists k′i ∈ R such that for all j

sij,t+D+A = (B + 1)µij + k′i
√
B + 1σij

(3)
∑ni
j=1 xij,t+D+A = xi,t+D stock arrived at rij in t+D+A is the total allocation from ri

made at t+D, and these sum up to the total allocation received.

This is equivalent to

sij,t+D+A ⇒ xij,t+D+A = (k′i − ki)
√
B + 1σij + dij,t+D+A−1

Then, we can sum all up and get

xi,t+D =

ni∑
j=1

xij,t+D+A = (k′i − ki)
√
B + 1

ni∑
j=1

σij +

ni∑
j=1

dij,t+D+A−1

Solve for (k′i − ki), we have expression of xij,t+D+Axi,t+D − ni∑
j=1

dij,t+D+A−1

 σij∑ni
j=1 σij

+ dij,t+D+A−1 ≥ 0(3.2)

being the condition for ri to balance downstreams.
Then, use the very similar approach, consider the CW’s allocation to balance downstreams.

Let (Fi)
m
i=1 denote the synthesized demand over lead time and policy for (ri)

m
i=1 consider its

downstreams. Let Mi,Σ
2
i denote mean and variance of Fi. Since the allocation made at time

t+D +A− 1 at CW enable ri to balance at time t+D + 2A− 1, (), we can write Fi following
normal distribution with

Mi = (A+B + 1)

ni∑
j=1

µij

Σ2
i = A

ni∑
j=1

σ2
ij + (B + 1)

 ni∑
j=1

σij

2

Then, suppose the system is balanced yesterday, there exists a q ∈ R such that for all i ∈
{1, . . . ,m}

si,t+D+A−1 = Mi + qΣi

si,t+D+A = si,t+D+A−1 + xi,t+D+A −
ni∑
j=1

dij,t+D+A−1.

Suppose system is balance at t+D +A, then it satsifies that

(1) xi,t+D+A ≥ 0 for all i ∈ {1, . . . ,m}
(2) Exists q′ ∈ R such that for all i

si,t+D+A = Mi + q′Σi

(3)
∑m
i=1 xi,t+D+A =

∑m
i

∑ni
j=1 dij,t+A−1
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This is equivalent to

xi,t+D+A = (q′ − q)Σi +

ni∑
j=1

dij,t+D+A−1

Sum over i
=======⇒

m∑
i=1

xi,t+D+A = (q′ − q)
m∑
i=1

Σi +

m∑
i=1

ni∑
j=1

dij,t+D+A−1

=

m∑
i

ni∑
j=1

dij,t+A−1

Solve for (q′ − q), and force the allocation be feasible, we have

xi,t+D+A =

ni∑
j=1

dij,t+D+A−1 +

 m∑
i

ni∑
j=1

dij,t+A−1 −
m∑
i

ni∑
j=1

dij,t+D+A−1

 Σi∑m
i=1 Σi

≥ 0(3.3)

being the condition for CW to make feasible allocation that equalize downstream stockout prob-
ability.

Since xi,t+D in (3.2) is the allocated made by CW before t + D + A − 1, (3.3) holds. Then,
(3.2) with substitution gives

xi,t+D =

 ni∑
j=1

dij,t+D−1 −
ni∑
j=1

dij,t+D+A−1

 σij∑ni
j=1 σij

+

 m∑
i=1

ni∑
j=1

dij,t−1 −
m∑
i=1

ni∑
j=1

dij,t+D−1

 σij∑ni
j=1 σij

Σi∑m
i=1 Σi

+ dij,t+D+A−1

≥ 0(3.4)

�

3.3. Analyzing 3-echelon System

Given that System has determined a policy internally which is to allocation such that down-
streams are always have same stock-out probability. The optimal order-up-to level s∗ can be
found depending on the costs, lead time, and demand distribution.

Theorem 3.3. Let system be a 3-echelon cross-docking system satisfying assumption in section
3.1, and assume the imbalance assumption hold, then the optimal order-up-to level is

s∗ = (A+B +D + 1)

m∑
i=1

µi + z

√√√√(A+B + 1)(

n∑
i=1

Λi)2 +D

m∑
i=1

Λ2
i

= (A+B +D + 1)

 m∑
i=1

mi∑
j=1

µij



+ z


 m∑
i=1

(B + 1)

 ni∑
j=1

σij

2

+A

ni∑
j=1

σ2
ij


1/2


2

+D

(B + 1)

 m∑
i=1

 ni∑
j=1

σij

2
+A

 n∑
i=1

ni∑
j=1

σ2
ij





1/2
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where for any i ∈ {1, . . . ,m},

Λi =

√√√√√(B + 1)

 ni∑
j=1

σij

2

+A

ni∑
j=1

σ2
ij

Proof. Assume the assumption about 3-echelon model holds, then fixed time start at t. Suppose
the allocation has finished and system proceeds

Step 1. At time t + A
(ri)

m
i=1 receive stocks (xi,t)

m
i=1. By no inventory leave upstream, and equalizing stockout

probability strategy for retailers (rij)
ni
j=1, this allocation made by ri at time t aims to equalize

the stockout probability under time t+A+B. With imbalance assumption, the common stockout
probability pi ∈ [0, 1] at retailer rij among ri in terms of si is:

(3.5) pi
5 = P

νij − E(νij)

V(νij)
>

si − (A+B + 1)
∑ni
j=1 µij√

(B + 1)
(∑ni

j=1 σ
2
ij

)
+A

∑ni
j=1 σ

2
ij


where νij is the random component contribute to the retail level applied in the Newsvendor
model in 2-echelon model. Specifically, refering to Proposition 2.18 with vij = Yij + Yi

σij∑ni
j=1 σij

Then, for ẑ ∼ N (0, 1)

pi = P(Stockout) = P

ẑ > si − (A+B + 1)
∑ni
j=1 µij√

(B + 1)(
∑ni
j=1 σ

2
ij) +A

∑ni
j=1 σ

2
ij


= 1− Φ

 si − (A+B + 1)
∑ni
j=1 µij√

((B + 1)(
∑ni
j=1 σ

2
ij) +A

∑ni
j=1 σ

2
ij)


Step 2. At time t + A + B Define Gij := expected cost at a retailer rij at time t+A+B. Glk :=
expected cost at a retailer rlk at time t + A + B. Then, according to the same decomposition
of demand for ri to rij with the 2-echelon model in equation (2.18 and 2.19), define ωij :=
si

σij∑
j σij

+ cij , and cij = E(νij)− (A+B + 1)
∑
j µij

σij∑
j σij

. The cost function is described as

Gij = h

∫ ωij

−∞
(ωij − νij)dFνij + b

∫ ∞
ωij

(νij − ωij)dFνij

If take the derivative of Gij respect to si, we have

∂Gij
∂si

=
∂Gij
∂ωij

∂ωij
∂si

(3.6)

=
σij∑ni
j=1 σij

[
(h+ b)Fνij (ωij)− b

]
(3.7)

Claim: optimal allocation of CW equalize downstream stock-out probability.

4Since we have fixed time, the time scripts are omitted when it is clear.
5pi = P(stockout at retailer rij at time t + A + B)
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Define Gi :=
∑ni
j=1Gij . Then, for any i ∈ {1, . . . ,m},

∂Gi
∂si

=

ni∑
j=1

∂Gij
∂si

= (h+ b)

Φ

 si − (A+B + 1)
∑ni
j=1 µij√

(B + 1)(
∑
j σ

2
ij) +A

∑
j σ

2
ij)

− b
Notice by equation(3.7),

∂Gi
∂si

= · · · = ∂Gj
∂sj

= 0

The optimization of whole system is

min
s

m∑
i=1

Gi(si)

s.t.

m∑
i=1

si = s− Y0

where s = (s1, . . . , sm). Then by lagrange multiplier in Theorem 2.7,

∂

∂si

(
m∑
i=1

Gi

)
= λ

for all i = 1, · · · ,m, where λ is a lagrange multiplier.
This implies optimal allocation satisfies equal stock-out probability.

Step 3. Solving for s. Under imbalance assumption, there exists a J ∈ R such that

si = (A+B + 1)

ni∑
j=1

µij + J

√√√√√(B + 1)

 ni∑
j=1

σij

2

+A

ni∑
j=1

σ2
ij

∀i ∈ {1, · · · ,m}

Define

µi =

ni∑
j=1

µij

Λi =

√√√√√(B + 1)

 ni∑
j=1

σij

2

+A
∑
j

σ2
ij .

Then, s− Y0 =
∑m
i=1 si, we solve for

J =
s− Y0 − (A+B + 1)(

∑m
i=1 µi)∑m

i=1 Λi

Now si can be express as the following,

si = (A+B + 1)µi +
s− Y0 − (A+B + 1)(

∑m
i=1 µi)∑m

i=1 Λi
Λi
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Apply Newsvendor optimization for s in Theorem 2.9,

Fνi

(
s

Λi∑m
i=1 Λi

+ ci

)
= Fνk

(
s

Λk∑m
i=1 Λi

+ ck

)
,

where

ci = (A+B + 1)

[
µi −

(
m∑
i=1

µi

)
Λi∑m
i=1 Λi

]
and νi is normally distributed with

E[νi] = (A+B + 1)µi +D

(
m∑
i=1

µi

)
Λi∑m
i=1 Λi

and

V(νi) =

[
(A+B + 1)(

m∑
i=1

Λi)
2 +D

m∑
i=1

Λ2
i

](
Λi∑m
i=1 Λi

)2

.

Note that we used the same decomposition of dynamic flow as in equation 2.18 and equation
2.19. Then,

P(stock-out at ri) = P
(
νi > s

Λi∑m
i=1 Λi

+ ci

)
= P

(
ẑ >

s− (A+B +D + 1)(
∑m
i=1 µi)√

(A+B + 1)(
∑m
i=1 Λi)2 +D

∑m
i=1 Λ2

i

)

=
b

h+ b

Then, we can extend this using a similar formula:

s∗ =(A+B +D + 1)

m∑
i=1

µi + z

√√√√(A+B + 1)

(
n∑
i=1

Λi

)2

+D

m∑
i=1

Λ2
i

=(A+B +D + 1)

 m∑
i=1

ni∑
j=1

µij



+ z


 m∑
i=1

(B + 1)

 ni∑
j=1

σij

2

+A

ni∑
j=1

σ2
ij


1/2


2

+D

(B + 1)

 m∑
i=1

 ni∑
j=1

σij

2
+A

 m∑
i=1

ni∑
j=1

σ2
ij





1/2

�

By the three echelon model, we can inductively obtain optimal stock level s∗ arbitrary multi-
echelon cross-docking model under similar assumption and strategy.

Corollary 3.4. Let a multi-echelon model be k-echelon system. From each echelon in level m to
level n, there is ln lead time. There is a oversea supplier send amount ordered by level 1 echelon
over lead time l1, and once a intermediate station receive the stock, they will allocate all of them
to all its affiliated branch to balance downstream stock-out probability. Only one product is sold,
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and demand d· only occur at retailer level following normal distribution independent across day
and station. Let h > 0, b > 0 be holding and backordering cost. Let s be the order-up-to level,
which CW order each end of day by amount of demand consumed in previous period. Then the
optimal order up-to-level is given by the recursive calculation as following:

Set parameter i be the level, and set z = Φ−1
(

b
h+b

)
Create array of synthesized demand mean

and variance, then compute the synethesized deman by its corresponing branch under that level.
Start from i = k, then record ~σk = (σkm)m∈Ik where Ik is the index set of level k. Let Iij be the
child index set of station j in level i. Then,

(1) If i = k − 1, then record σij =

√
(lk + 1)

(∑
p∈Ik−1,j

[ ~σk]p

)2

+ lk−1

∑
p∈Ik−1,j

[ ~σk]2p.6

(2) Then record ~σk−1 = (σk−1,j)j for j being a station in level k − 1.
(3) Update i = i− 1.

Now, for any level i < k − 1,

(1) Record σij =

√
(1 +

∑k
n=i+1 ln)

(∑
p∈Iij [~σi+1]p

)2

+ li
∑
p∈Iij [~σi+1]2p

(2) Record ~σi = (σij)j for j being a station in level i.
(3) Update i = i− 1.
(4) Stop when i = 0

s∗ is given by

(3.8)

(
1 +

k∑
i=1

li

)∑
j∈Ik

µj

+ zσ1

Note that here it only account for one Central Warehouse, and ~σ1 is a scalar.

3.4. Discussion of Breaking Imbalance Assumption

In an arbitrary echelon supply system with cross-docking policies with normal demand as dis-
cussed before, we have imbalance assumption that implies we can always be able to implement
the equal-stockout probability allocation. However, in some scenario, there is possible imbal-
ance cases happens. For completeness, we should also discuss the optimal strategy under the
imbalance case.

Suppose the demand at retailer level follows independent normal distribution with culmulative
distribution Fi for retailer ri. Holding cost and backordering cost h, b > 0. Zoom into the small
branch of the system, and we only focus on the downstream retailers. Suppose the upper echelon
has n retailers and denote N = {1, . . . , n}. Suppose c is the amount arrived for upper echelon,
and by strategy, they should assign xi to each retailer affiliated to this station, for each i ∈ N ,
s.t

n∑
i=1

xi = c

∃k ∈ [0, 1] s.t. P(stockout in retailer i) = k for ∀i ∈ N

6[~x]j is defined to be the j th element in vector x.
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Suppose the equal stock-out strategy is impossible, equivalently the previous allocation is infea-
sible. Then, exists a index set I such that for any subset A ⊂ I such that

@ x = sequence of (xi)i∈(N\I)∪A satisfies:(3.9)

xi ≥ 0 ∀i ∈ (N \ I) ∪A(3.10) ∑
i∈(N\I)∪A

xi = c(3.11)

Fi(si + xi) = Fj(sj + xj) ∀ i, j ∈ (N \ I) ∪A(3.12)

Define this I be the smallest balance set. Consider the original optimization problem without
constraint given by imbalance in equation(3.9), equation(3.10), equation (3.11), and equation
(3.12).

min
x

G(x) =

n∑
i=1

Gi(si + xi)

s.t.

n∑
i=1

xi = c

xi ≥ 0 ∀i ∈ N

Since by equation (2.10)

∂

∂xi
G =

∂

∂xi
Gi =

∂Gi
∂(xi + si)

∂(xi + si)

xi

= (h+ b)Fi(si + xi)− b

Thus, KKT condition gives

− ((h+ b)Fi(si + x∗i )− b) = λ− µi ∀i ∈ N(3.13)
n∑
i=1

x∗i = c, xi ≥ 0(3.14)

µi ≥ 0, µix
∗
i = 0 ∀i ∈ N(3.15)

Rewrite condition 3.13, for any i ∈ N ,

(3.16) Fi(si + x∗i ) =
b− λ
h+ b

+
µi
h+ b

Introduce the assumption that balance allocation is not feasible for N . Then, let subset I ⊂ N
be the smallest balance set. Consider the solution x̂ given by

if i ∈ I, x̂i = 0

If i /∈ I, Fi(x̂i + si) = Fj(x̂j + sj) ∀i, j ∈ N \ I

Claim: x̂ satisfies the KKT condition. By condition (3.15),

µi = 0, ∀i ∈ N \ I(3.17)

⇒Fi(si + x̂i) =
b− λ
h+ b

= Fj(sj + x̂j), ∀i, j ∈ N \ I(3.18)

µi free for i ∈ I(3.19)

⇒µi := (h+ b)Fi(si)− b+ λ, ∀i ∈ I(3.20)
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Denote the equal stockout probability of i ∈ N \I by p given by x̂. Assessing the KKT condition
with this set of λ, (µi)

n
i=1.

(3.13)⇔
{
−((h+ b)p− b) = λ for i ∈ N \ I
−(h+ b)Fi(si) + b = λ− µi = λ− (h+ b)Fi(si) + b− λ for i ∈ I

(3.14)⇔ xi ≥ 0,

n∑
i=1

x̂i = c

(3.15)⇔
{
µi = 0⇒ xiµi = 0 for i ∈ N \ I
µi = (h+ b)Fi(si)− b+ λ = (h+ b)(Fi(si)− p) > 0 for i ∈ I

Therefore, x̂ satisfies the KKT condition, and it minimizes G. Therefore, when allocation can
not be made to balance, remove those with low initial stock-out probability, and distribute to
equalize the rest of station’s stock-out probability whenever it is feasible.

4. Question remains.

Under the model described, we are able to identify a specific optimal order up-to level. How-
ever, some assumptions can be further assessed. For instance, under our modeling of suboptimal-
ity by making the decision each time fram, might not necessarily lead to the overall optimality
in the long run. Some question that I would like to investigate is

(1) Is a constant order up to level the optimal strategy if the lower stream demands remain
following the same distribution over time.

(2) When the system is have holding cost over the system, then is it optimal to allocate all
stock arrived for the intermediate stations to the lower streams? Is holding upstream
having any benefit in long run?

There are some implication to the model investigated. From traditional supply chain that
transit inventory directly from supplier to each retailer, comparing to the cross-docking system,
sufferes from more variation in demand to the achieve the same level of stock-out under at retailer
level, and therefore more cost with the lead time required. Further, the optimal stock-level is
also determined by both holding/backordering cost, lead time, and demand and their interaction
downstream over time and location. Therefore, the conclusion for a optimal structure under a
generic case may be very difficult. By adjusting the system, there might be different realistic
scenario that prefers specific structures.
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