
CORRESPONDENCE BETWEEN LIE GROUPS AND LIE

ALGEBRAS

YUQIAO HUANG

Abstract. We will study the Lie groups and Lie algebras, and build up to

establish the Lie group-Lie algebra correspondence. Along the way we will in-
troduce and explore some interesting and important concepts such as coverings

of Lie groups and the exponential map.
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1. A Review of Smooth Manifolds

We first review some of the main concepts in differential topology. For readers
unfamiliar with these definitions and theorems, [5] is a self-contained textbook and
strongly recommended to read. For concepts relevant to flows, I recommend [4]
instead.

Date: 4/16/2023.
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1.1. Some Preparations. A real-valued function f : U → R defined on an open
subset of Rn is smooth or C∞ at a point p if its partial derivatives of all orders
exists at p. Similarly, a function f : U → Rm, f = (f1, ..., fm) defined on an open
subset of Rn is smooth or C∞ at a point p if each real-valued fi is smooth at p.
We say f is smooth on U if it is smooth at any point in U .

Fix p ∈ Rn. We define Sp to be the set of all pairs (f, U) where U is a neigh-
borhood1 of p and f : U → R a smooth function defined on U . We define an
equivalence relation on Sp by (f, U) ∼ (g, V ) iff f, g agree on some neighborhood
of p, i.e. f |W = g|W for some neighborhood W ⊂ U ∩ V of p. The family of
equivalence classes, denoted C∞

p := Sp/ ∼, is called the germs of C∞ functions
at p. Conventionally, we just say f ∈ C∞

p .
For any vector v ∈ Rn, let Dv denote the directional derivative at p, so for

f ∈ C∞
p , Dvf = v · (Df)p where (Df)p = ( ∂f

∂x1 |p, ..., ∂f
∂xn |p)2. In particular, note

Dv(fg) = g(p)(Dvf) + f(p)(Dvg). This is called the Leibniz rule. We say a
linear map D : C∞

p → R satisfying the Leibniz rule is a derivation at p or a
point-derivation of C∞

p . We define the tangent space of Rn at p to be the set
of all derivations at p, denoted TpRn. We have seen that each directional derivative
Dv at p is a derivation at p. Hence there is a natural linear map

ϕ : Rn → TpRn, v 7→ Dv

Theorem 1.1. ϕ is a linear isomorphism.

It follows that the directional derivatives Dei form a basis for TpRn, where ei
are the standard basis for Rn. Note Dei =

∂
∂xi |p, so v =

∑
viei ∈ Rn corresponds

to
∑
vi ∂

∂xi |p.

1.2. Manifolds. A space M is a topological manifold if it is Hausdorff, second
countable and locally Euclidean, where locally Euclidean means, for some n ∈ N,
every point p ∈M has a neighborhood U s.t. there is a homeomorphism ϕ from U
onto some open subset of Rn. The integer n is the dimension of M . We call the
pair (U, ϕ) a chart, U a coordinate neighborhood, and ϕ a coordinate map
or system on U .

Two charts (U, ϕ), (V, ψ) are C∞-compatible (or just compatible) if the two
maps ϕ ◦ ψ−1, ψ ◦ ϕ−1 are smooth at points where they are defined. An atlas on a
topological manifold M is a collection of pairwise compatible charts that cover M .
An atlas U on M is always contained in a unique maximal atlas, namely the set
of all charts that are compatible with every chart in U . A smooth manifold is a
topological manifold M with a maximal atlas. The maximal atlas is also called a
differentiable structure on M . From now on, by a “manifold” we always mean
a smooth manifold, and by a “chart” on a manifold we always mean a chart in the
differentiable structure.

Example 1.2. The real numbers R has a natural global coordinate, namely the
identity map. Note that the map f : x 7→ x3 is not compatible with the identity
map, as f−1 : x 7→ x1/3 is not smooth at p = 0. But f is also a global coordinate on
R. Hence f and the identity map generate two different differentiable structures.

1By “a neighborhood of p” we mean an open subset containing p.
2Note here superscripts are used instead of subscrips for xi. This is very common in differential

topology.
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Example 1.3. If M,N are manifolds, then M ×N is also a manifold, with atlas
{(Ui × Vj , ϕi × ψj)} where {(Ui, ϕi)}, {(Vj , ψj)} are atlases of M,N .

A Lie group is a manifold G with a group structure s.t. the multiplication map
G×G→ G and the inversion map G→ G are both smooth.

Let M,N be smooth manifolds. A function f : N →M is smooth if ψ ◦ f ◦ϕ−1

is smooth for any chart (U, ϕ) on N and any chart (V, ψ) on M . It follows that
charts on an n-dimensional manifoldM are diffeomorphisms (between open subsets
of M and Rn), and diffeomorphisms (between open subsets of M and Rn) are also
charts.

Given a chart (U, ϕ) onM of dimension n, usually we write ϕ = (x1, ..., xn). The
standard coordinates on Rn is denoted by (r1, ..., rn), so xi = ri ◦ϕ. Let f :M → R
be a smooth function. For p ∈ U , we define the partial derivative ∂f

∂xi of f w.r.t.

xi to be
∂f

∂xi
|p :=

∂(f ◦ ϕ−1)

∂ri
|ϕ(p)

Let F : N → M be a smooth map and (U, ϕ = x1, ..., xn), (V, ψ = y1, ..., ym) be
charts on N,M respectively. We denote by F i := yi ◦ F the i-th component of F
in the chart (V, ψ). Then the matrix

[
∂F i

∂xj
]

is called the Jacobian matrix of F relative to the charts (U, ϕ), (V, ψ). If M,N
have the same dimension, the determinant of the Jacobian matrix is the Jacobian
determinant.

Theorem 1.4. Let F : N →M be a smooth map between manifolds of the same di-

mension. F is locally a diffeomorphism at p iff its Jacobian determinant det[∂F
i

∂rj (p)]
relative to (U, ϕ), (V, ψ) is nonzero.

1.3. The Tangent Space. Let M be a manifold. Similar to Rn, we define an
equivalence relation on real-valued smooth functions defined on a neighborhood of
p ∈ M by identifying them if they agree on some neighborhood of p. The set of
equivalence classes is denoted C∞

p (M).
Similarly, we define a derivation at p or a point derivation of C∞

p to be a
linear map from C∞

p to R satisfying the Leibniz rule. A tangent vector at p ∈M
is a derivation at p. The tangent space, denoted TpM , is the set of all tangent
vectors at p.

Let F : N →M be a smooth map between manifolds. At each p ∈M , F induces
a linear map of tangent spaces, called its differential at p,

F∗ : TpN → TF (p)M

as follows. For Xp ∈ TpN , let F∗(Xp) be the derivation at F (p) defined by

(F∗(Xp))f = Xp(f ◦ F ) for f ∈ C∞
F (p)(M)

Usually we write F∗,p to stress its dependence on p. Other common notations for
the differential include (dF )p, (DF )p.

We have chain rules, meaning (G ◦ F )∗,p = G∗,F (p) ◦ F∗,p. As a corollary of
the chain rule, diffeomorphisms induce isomorphisms on the tangent spaces. Let
(U, ϕ) = (U, x1, ..., xn) be a chart about p in a manifold M . Since a chart is a
diffeomorphism, the partial derivatives ∂

∂xi |p (which are derivations at p) form a
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basis for the tangent space TpM . Relative to such bases, the differential of a smooth

map F : N →M at p ∈ N is represented by the Jacobian matrix [∂F
i

∂xj (p)].
A smooth map F : N → M is an immersion (resp. submersion) at p if its

differential is injective (resp. surjective). A regular value is a point c in M s.t.
F is a submersion at all points in F−1(c).

A subset S of a manifold N of dimension n is a regular submanifold of di-
mension k if for any p ∈ S, there is some chart (U, x1, ..., xn) about p s.t. U ∩ S
is precisely the vanishing of xk+1, ..., xn. We also say S is a regular submanifold of
codimension n− k

Theorem 1.5. Let F : Nn → Mm be smooth, where the superscripts denote di-
mensions. If c ∈ M is a regular value and F−1(c) nonempty, then F−1(c) is a
regular submanifold of N of codimension m.

We also call the image of an injective immersion F with the topology and dif-
ferentiable structure inherited from F to be an immersed submanifold.

The tangent bundle of M is the union of all the tangent spaces TM =
∪p∈MTpM . It is also a manifold. Its charts are of the form ϕ̃ : TU → ϕ(U) × Rn

where (U, ϕ) is a chart on M . There is a natural projection π : TM → M . A
smooth vector field is a smooth map X :M → TM s.t. π ◦X = id. We usually
write Xp to denote the value of X at p.

A smooth curve in M is a smooth map c : (a, b) → M . Usually we assume
0 ∈ (a, b) and say c is a curve starting at p = c(0). We define the velocity vector
at t0 ∈ (a, b)

c′(t0) := c∗(
d

dt
|t0) ∈ Tc(t0)M

Let X be a smooth vector field on a smooth manifold M . An integral curve
of X is a smooth curve c : (a, b) → M s.t. c′(t) = Xc(t) for all t ∈ (a, b). For any
smooth vector field X and any p ∈M , an integral curve of X starting at p always
exists.

Let M be a smooth manifold. A flow domain D ⊂ R ×M is an open subset
s.t. each Dp = {t ∈ R : (t, p) ∈ D} is an open interval containing 0 for all p ∈ M .
A flow on M is a continuous map θ : D →M such that for any p ∈M ,

θ(0, p) = p

and for all s, t,

θ(t, θ(s, p)) = θ(t+ s, p)

when both sides are defined.
We say a flow is global if D = R×M .
Fix p ∈M . We have a curve θp : Dp →M where θp(t) = θ(t, p).
A maximal integral curve is one that cannot be extended to an integral curve

on any larger open interval, and a maximal flow is a flow that admits no extension
to a flow on a larger flow domain.

Theorem 1.6. Let X be a smooth vector field on a smooth manifold M . There
is a unique smooth maximal flow θ : D → M such that, for any p ∈ M , the curve
θp : Dp →M is the unique maximal integral curve of X starting at p.

In particular, θp′(0) = Xp.

We call the flow θ in the above theorem the flow generated by X.
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We have the following nice result for Lie groups. The term “left invariant” will
be defined later when we use it.

Theorem 1.7. A left invariant vector field on a Lie group generates a global flow.

In particular, for any left invariant vector field X on a Lie group G and for any
g ∈ G, the unique maximal integral curve of X starting at g is defined for all t ∈ R.

Given a smooth vector field X and a real-valued smooth function f , Xf is also
a smooth function where (Xf)(p) := Xpf . For vector fields X,Y , we define their
Lie bracket [X,Y ] to be the vector field s.t. [X,Y ]pf := Xp(Y f)− Yp(Xf).

With these preparations, we now proceed to our discussion on Lie groups.

2. Lie Groups: Definitions and Examples

The roots of Lie theory can be traced back to the early 19th century, when
mathematicians such as Évariste Galois and Niels Henrik Abel were working on the
theory of equations and the solvability of algebraic equations by radicals. Galois in
particular used group theory to study polynomial equations.

Inspired by Galois, Sophus Lie, a Norwegian mathematician, began working on
the theory of continuous symmetry groups of differential equations, and showed
how to use them to study differential equations.

Lie’s work on Lie groups and Lie algebras was continued by a number of math-
ematicians in the early 20th century, including Élie Cartan, Wilhelm Killing, and
Hermann Weyl. They developed the theory of semisimple Lie algebras and their
representation theory, which has become a central topic in Lie theory.

We will review the definition of Lie groups and discuss several examples. At the
end of the section, we will prove two lemmas about Lie groups, which will be used
later.

2.1. Definition of Lie Groups. We recall the definition of Lie groups.

Definition 2.1. A Lie group is a group and meanwhile a smooth manifold s.t.
the group operation

× : G×G→ G, (g, h) 7→ gh

and inversion

ι : G→ G, g 7→ g−1

are both smooth maps.

A map between two Lie groups G and H (or a Lie group map) is a map ρ : G→
H that is a group homomorphism and smooth.

Recall that there are two types of submanifolds - regular and immersed. We
define a Lie subgroup of a Lie group G to be a subgroup that is also a regular
submanifolds; and we define an immersed subgroup of G to be the image of an
injective immersion of Lie groups ρ : H → G.

The general linear group GLnR of invertible n×n real matrices is a basic example

of Lie groups. GLnR is an open subset of Rn2

. The matrix multiplication is smooth,
and the inverse map is also smooth as A−1 = adjA

|A| , where adjA is the adjugate of

A or the transpose of the cofactor matrix of A.
If without explanation, by V we will always mean a finite dimensional real vec-

tor space. We will use GLnR and GL(V ) interchangeably; the notation GLnR
emphasizes that its elements are real matrices.
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Definition 2.2. A representation of a Lie group G is a morphism from G to
GL(V ).

We will study the representation theory of Lie groups and Lie algebras. Before
diving into this subject, I want to quickly mention its relation with representation
theory of finite groups.

In representation theory of finite groups, we study how finite groups can act
linearly on vector spaces, or, equivalently, how they can be mapped to GL(V ), the
group of automorphisms of a vector space V (usually V is either real or complex).
To study representation of Lie groups and Lie algebras is much more complicated,
as they come with a topology and additionally a smooth structure. But the finite
group case is still helpful when studying Lie groups and Lie algebras - many of the
ideas used in representation theory of finite groups can be applied to Lie groups
and Lie algebras. In fact, [1], the main reference of this paper, begins by spending
six chapters on representation theory of finite groups and then goes on to discuss
Lie groups and Lie algebras.

2.2. Examples. Many subgroups of GLnR are also Lie groups. For example, we
have:

Example 2.3. The subgroup of GLnR consisting of matrices with positive deter-
minants, GL+

nR, is an open subset and actually connected 3, so it is the connected
component of the identity matrix in GLnR.

Example 2.4. The special linear group SLnR of n×n real matrices with determi-
nant 1 is a connected Lie subgroup of codimension 1 by regular level set theorem.

Example 2.5. The group Bn of upper triangular matrices is a Lie subgroup (of

MnR) of codimension n(n−1)
2 . Similarly the group of invertible upper triangular

matrices (i.e. nonzero on the diagonal) is a Lie subgroup of GLnR of the same
codimension.

Example 2.6. The group Sym nR of symmetric matrices is a Lie subgroup (of

MnR) of codimension n(n−1)
2 . This can be seen by noting that it is the zero set

of the submersion f : MnR → R
n(n−1)

2 , (aij)1≤i,j≤n 7→ (aij − aji)i ̸=j . Similarly
the group of invertible symmetric matrices is a Lie subgroup of GLnR of the same
codimension.

Example 2.7. The orthogonal group O(n) of orthogonal matrices (equivalently,
matrices that preserve the inner product on Rn) is a subgroup of GLnR. To see it is
a Lie subgroup, we consider the smooth map f : GLnR → Sym nR, A 7→ ATA where
it is worth noting that f = f ◦LX for X ∈ O(n), LX being the left-multiplication-
by-X map. Show DfI is surjective, from which we can deduce that f−1(I) is a

regular level set. Hence O(n) is a Lie subgroup of GLnR of dimension n(n−1)
2 . As

SO(n) is an open subset of O(n), SO(n) is a Lie subgroup of the same dimension.

3Adding a scalar multiple of a row to another row can be achieved via a path γ : [0, 1] →
GL+

nR, t 7→ A+ tαRj
i where Rj

i has the i-th row of A on its j-th row. Similar for columns. Thus

we get a path from A to a diagonal matrix. We can even assume that elements on the diagonal
are positive. Finally, any diagonal matrix with positive diagonal is path-connected to the identity
matrix. The same proof works for SLnR.
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We will show later in Example 4.8 that their tangent spaces at the identity -

their Lie algebras - have dimension n(n−1)
2 without knowing the dimension of the

Lie groups.

Example 2.8. There are complex manifolds and hence complex Lie groups. For
example GLnC, U(n), SU(n), etc. Complex Lie groups are naturally also real Lie
groups; their (complex) Lie algebras also naturally real. In the context of this
paper, we only care about real ones.

In the representation theory of Lie groups, once we establish the correspondence
between Lie groups and Lie algebras, one approach is to focus our attention on clas-
sification of Lie algebras, and complex Lie algebras are easier to classify, which we
will not be able to discuss here. In fact, simple complex Lie algebras are completely
classified.

2.3. Two Lemmas. Though with a more complicated structure, in some sense,
Lie groups become a lot “cuter” than groups. Here are two interesting lemmas,
which will be helpful later. We prove them under the Lie group setting, but the
same proofs will work for topological groups in general.

Lemma 2.9. Let G be a connected Lie group, and U ⊂ G any neighborhood of the
identity. Then U generates G.

Proof. Let U−1 = {g−1 : g ∈ U} and V = U ∩ U−1. Note U−1 is open as g 7→ g−1

is a diffeomorphism and hence a homeomorphism, so V is open. The purpose of
this construction is that we now have V −1 = V . Consider G′ = ∪n≥1V

n. We show
that G′ is clopen (closed and open). Hence G′ = G and U generates G.

For any x ∈ G, xV is open as g 7→ xg is a diffeomorphism. Hence V n =
∪x∈V n−1xV is open for any n ≥ 1. ThusG′ is open. Now for any x /∈ G′, xV ∩G′ = ∅
(if xv ∈ xV ∩G′, then xv ∈ V n for some n ≥ 1 and x ∈ V n+1 since v−1 ∈ V −1 = V )
and x ∈ xV , which imply G−G′ is open. We conclude G′ is clopen. □

Note, using a similar argument, one can show that the connected component of
a Lie group containing the identity is an open normal subgroup and hence a Lie
subgroup of the same dimension.

Lemma 2.10. Let G be a connected Lie group, and N ◁ G any discrete normal
subgroup. Then N ≤ Z(G).

Proof. Fix n ∈ N . Consider the following diagram:

G
∆∗
// G×G

m // G×G
µ // G

where
∆∗(g) = (g, g−1),m(g1, g2) = (g1n, g2n

−1), µ(g1, g2) = g1g2

Hence, under the composition of these maps, we have

g 7→ (g, g−1) 7→ (gn, g−1n−1) 7→ gng−1n−1

Note that all maps here are continuous.
Since N is discrete, there is some neighborhood U of the identity, s.t. U ∩N =

{e}. By continuity, there is some neighborhood V of the identity s.t. gng−1n−1 ∈ U
for all g ∈ V . But gng−1n−1 ∈ N as well, for N is a normal subgroup. Thus
gng−1n−1 = e for all g ∈ V , i.e. V ⊂ C(n) where C(n) is the centralizer of n. By
Lemma 2.9, V generates G. Thus G ⊂ C(n). Since n ∈ N is arbitrary, we conclude
N ≤ Z(G). □
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3. Covering Spaces and Isogeny Class

One helpful concept in studying Lie groups is the isogeny class. To introduce
it, we need to know covering spaces, which is itself a topic rich enough to write
a paper on. We will first review some main definitions and properties of covering
spaces, but will not prove them here. A detailed discussion on covering spaces
can be found in any standard text in algebraic topology. Then we will prove two
theorems regarding coverings of Lie groups, and finally we introduce the isogeny
class.

We will see fundamental groups a few times in this section. Readers can also find
them in any text in algebraic topology if they are not familiar with this concept.

3.1. Covering Spaces. Let p : E → B be a map. For any b ∈ B, we call p−1(b)
the fiber of b. If we have maps p1 : E1 → B, p2 : E2 → B, a map ϕ : E1 → E2 is
fiber-preserving if the diagram

E1
ϕ //

p1   

E2

p2~~
B

commutes. We usually call B the base space and E the total space.

Definition 3.1. A covering space or covering of the space B is a surjective map
p : E → B s.t. there is a discrete space F and for each b ∈ B a neighborhood U ,
s.t. p−1(U) is homeomorphic to U × F via fiber-preserving ϕ. That is to say the
diagram

p−1(U)
ϕ

∼=
//

p
##

U × F

πU

||
U

commutes, where πU is the projection onto U . We say such U is evenly covered.
Maps between coverings over B are fiber-preserving maps.

Sometimes we use the term “covering” to mean the total space as well.

In the above definition, since fibers are discrete, p−1(U) ∼= U×F = ⊔x∈FU×{x},
and ϕ−1(U ×{x}) is mapped homeomorphically to U under p. Hence a covering is
locally a homeomorphism (and thus an open map). The summands ϕ−1(U×{x}) =
Ux are the sheets of the covering over U .

Example 3.2. A classical example of covering spaces is p : R → S1, a 7→ e2πia in
which the fiber is Z.

Many nice properties of covering spaces are about liftings. For example,

Proposition 3.3. Let p : E → B be a covering. Let F0, F1 : X → E be liftings of
f : X → B. Suppose F0 and F1 agree somewhere. If X is connected, then F0 = F1.

Proposition 3.4. (Path Lifting Property) Let p : E → B be a covering. Let
w : I → B be a path starting at p(e) = w(0). Then there exists a lifting of w which
begins at e, i.e. a path w̃ : I → E s.t. pw̃ = w and w̃(0) = e.



CORRESPONDENCE BETWEEN LIE GROUPS AND LIE ALGEBRAS 9

In fact, covering spaces are much nicer than this that they have the homotopy
lifting property (HLP) for all spaces, and hence a covering is a fibration. The path
lifting property is the same as to say a covering has the HLP for a single point.

Theorem 3.5. Let p : E → B be a covering. Suppose Z is path-connected and
locally path-connected. Let f : (Z, z) → (B, p(x)) be a map. Then there exists a
lifting Φ : Z → E of f with Φ(z) = x iff f∗π1(Z, z) ⊂ p∗π1(E, x).

(E, x)

p

��
(Z, z)

f //

Φ

99

(B, p(x))

Note liftings in Proposition 3.4 and Theorem 3.5 are unique by Proposition 3.3.
We call a covering p : E → B a universal covering if E is simply connected.
Suppose B is path-connected, locally path-connected and semi-locally simply

connected. Then it is guaranteed that a universal covering of B exists. Suppose
p : (E, x) → (B, b) is a universal cover over B. Since B is locally path-connected
and a covering is a local homeomorphism, the total space of a covering over B is
also locally path-connected. Therefore, for any covering p′ : (E′, x′) → (B, b), we
can apply Theorem 3.5 and lift p to a (unique) pointed map f : (E, x) → (E′, x′)
s.t. p′ ◦ f = p. When E′ is connected, f is also a covering map,

We list some important properties but will not prove them.

Proposition 3.6. For any B path-connected, locally-path-connected and semi-
locally simply connected,

(1) The universal covering p : E → B is unique up to isomorphisms.
(2) The fibers of the universal cover p over B are (set) isomorphic to π1(B).
(3) The group Aut(p) = {α : E → E : α is an automorphism and p ◦ α = p},

called deck transformations, is isomorphic to π1(B)
(4) Any map between connected coverings of B is also a covering map. In

particular, any connected covering of B is also covered by the universal
cover E.

3.2. Coverings of Lie Groups. In this section, we will prove two theorems re-
garding coverings of Lie groups, and then introduce isogeny classes. We will first
prove Theorem 3.9 that the covering of a Lie group is a Lie group. Before that, let
us consider coverings of a manifold.

Recall a manifold is Hausdorff, second-countable and locally Euclidean. Any
manifold is locally path-connected and locally simply connected (which implies
semi-locally simply connected) as any open subset of Rn is. Thus a connected
manifold M has a universal covering.

Let p : E →M be the universal covering of a connected manifold M . A natural
question to ask is that is E also a manifold? The answer is yes. If x, y ∈ E are
distinct points with p(x) ̸= p(y), then since M is Hausdorff, we can take pullbacks
of disjoint neighborhoods of p(x) and p(y), which results in disjoint neighborhoods
of x and y; if p(x) = p(y), then since p is a covering, x, y must lie in different sheets.
Thus E is Hausdorff.
E is locally Euclidean because p is a local homeomorphism and M is locally

Euclidean. To be precise, for any x ∈ E, there is a neighborhood U s.t. U is
a sheet of an evenly covered open subset of M . Now p(x) has a neighborhood
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contained in p(U) that is homeomorphic to an open subset of Rn. Hence we get a
neighborhood of x (contained in U , so homeomorphic to its image under p) that is
homeomorphic to an open subset of Rn. These are the charts on E induced by the
covering map p; they are of the form (V, ϕ ◦ p) where V is a sheet of evenly covered
p(V ) and (p(V ), ϕ) is a chart for M .

Note the charts on E induced by p may not be the unique ones that make E
locally Euclidean. For example, consider p : R′ → R, x 7→ x3 where R′ is also the
reals. The total space R′ has the usual chart (R′, x 7→ x), but the chart induced by
p is (R′, x 7→ x3).

The last thing we want to prove is that E is second-countable. Let U ′ be a
countable basis for M and let U be the subset of all evenly covered ones. We show
U is also a basis. For any open V ⊂ M and any b ∈ V , there is an evenly covered
neighborhood of b, whose intersection with V , denoted by C, is also evenly covered.
Now there exists U ∈ U ′ s.t. b ∈ U ⊂ C ⊂ V , and U is evenly covered as C is.
Thus U ∈ U , and U is a basis. We concludeM has a countable basis in which every
element is evenly covered.

Note we can also assume elements in U to be path-connected4. This is because we
can always take the collection of path-components (which are open) of elements in
U , and the number of path-components of any U ∈ U is countable by the secound-
countability of M . Hence the whole collection is countable.

To proceed, we need Theorem 7.21 in [3] which states that the fundamental
group of a manifold is countable. By Proposition 3.6, the fibers of the universal
cover p : E → M are all countable. Let Ū be the collection of all sheets over
elements in U . Then Ū is countable as Cartesian product of two countable sets is
countable. We show that Ū is a basis for E, so E is second-countable. For any open
set V ⊂ E and any x ∈ V , the point b = p(x) has an evenly covered neighborhood
C and let Cx be a sheet over C containing x. We can assume Cx ⊂ V as we can
always take V ∩Cx, whose image under p is evenly covered as well. Now there exists
U ∈ U s.t. b ∈ U ⊂ C, so the corresponding sheet Ux ⊂ Cx (take Ux = Cx∩p−1(U))
is an element in Ū containing x and contained in V . Thus Ū is a basis for E. We
conclude E is a manifold.

The only thing that takes us some time is the second-countability part, which
is deduced from the fact that the fibers of the universal cover are countable. By
property 4 of Proposition 3.6, any connected covering is covered by the universal
cover. Hence any connected covering must also have countable fibers. We have
proved:

Proposition 3.7. Any connected covering of a manifold is also a manifold.

Furthermore, if M is a smooth manifold, then the differentiable structure on M
induces via p (see here) a differentiable structure on E which makes p : E → M
smooth and a local diffeomorphism (and this is the unique differentiable structure
s.t. p is a smooth covering map5).

4The reason we want path-connectedness is that we want the decomposition of p−1(U) into

sheets to be unique.
5See Chapter 4 of [4]. The definition of a smooth covering map states that any b ∈ M has an

evenly covered open U whose sheets are mapped diffeomorphically to U under p. Our discussion
here provides an example where under the usual differentiable structure (R′, x 7→ x), p is smooth

but not locally a diffeomorphism and hence not a smooth covering map.
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Remark 3.8. In the remaining of this section, we will see the term “smooth cov-
ering map” often. By using this term we are just specifying that the differentiable
structure on the total space is the one induced by the covering map - what we
naturally assume.

Dropping “smooth” and simply using “covering map” are actually harmless in
our case. This is because given the topology and the group structure, the differen-
tiable structure that will make the group a Lie group is unique. For example, in
the next theorem, H is of course given a topology, and the uniqueness of the group
structure will be shown at the very beginning, so the Lie group structure (if exists)
must be unique.

We have the following result for Lie groups, analogous to Proposition 3.7:

Theorem 3.9. Let G be a Lie group, H a connected manifold, and ϕ : H → G
a covering map. Let e′ ∈ H be an element s.t ϕ(e′) = e where e is the identity in
G. Then there is a unique Lie group structure on H s.t. e′ is the identity and ϕ
is a map of Lie groups and a smooth covering map; and the kernel of ϕ lies in the
center of H.

Proof. To construct a group structure, consider the diagram

(H, e′)

ϕ

��
(H ×H, (e′, e′))

ϕ×ϕ //

µ

33

(G×G, (e, e))
m // (G, e)

where m is the multiplication of G and H ×H is path-connected and locally path-
connected. We show that m∗(ϕ × ϕ)∗π1(H × H, (e′, e′)) ⊂ ϕ∗π1(H, e

′). Then by
Theorem 3.5 we conclude that there is a unique pointed lifting µ : (H×H, (e′, e′)) →
(H, e′) of m ◦ (ϕ× ϕ).

Recall that π1(H ×H, (e′, e′)) ∼= π1(H, e
′)×π1(H, e′) via identifying a loop with

its projections. Hence

(ϕ× ϕ)∗π1(H ×H, (e′, e′)) ∼= ϕ∗π1(H, e
′)× ϕ∗π1(H, e

′) ⊂ π1(G, e)× π1(G, e)

Andm∗ maps (f, g) ∈ π1(G, e)×π1(G, e) to f ∗g ∈ π1(G, e). Thusm∗(ϕ∗π1(H, e
′)×

ϕ∗π1(H, e
′)) = ϕ∗π1(H, e

′).
Therefore the (unique) lifting µ exists. We show that µ is a group operation.

(1) Associativity: This is another use of Theorem 3.5. The map we want to
lift is H ×H ×H → G×G×G→ G.

(2) Identity: Consider ι : H → H ×H,h 7→ (h, e′). Note m ◦ (ϕ× ϕ) ◦ ι has a
lifting µ ◦ ι, where m ◦ (ϕ×ϕ) ◦ ι = ϕ. Thus µ ◦ ι must be the identity map
by uniqueness of the lifting (as µ ◦ ι(e′) = e′). We conclude e′ is a right
identity. Similarly we can show it is a left identity.

(3) Inverse: Fix x ∈ H, let b = ϕ(x) and consider ι : H → H ×H,h 7→ (h, x).
Note m ◦ (ϕ × ϕ) ◦ ι which maps h 7→ ϕ(h)b is also a covering over G.
Meanwhile, µ ◦ ι is a lifting of m ◦ (ϕ× ϕ) ◦ ι and hence a map of covering
spaces. Thus by Proposition 3.6, µ ◦ ι is a covering map, so it is surjective.
We conclude x has a left inverse. Similarly we can show it has a right
inverse. They must be the same by associativity.

Thus µ is a group operation, and by construction ϕ is a group homomorphism.
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Let the differentiable structure on H be the one induced by the covering map
ϕ. Next we want to show that µ and the inversion map on H are smooth. Since
m ◦ (ϕ×ϕ) is smooth and ϕ a local diffeomorphism, µ is smooth. Let IvG : G→ G
be the inversion map g 7→ g−1. Note IvG ◦ ϕ is also a covering over G, so it lifts to
a unique map IvH : H → H that maps e′ 7→ e′.

(H, e′)

ϕ

��
(H, e′)

IvH

55

ϕ // (G, e)
IvG // (G, e)

Then the map m ◦ (ϕ × ϕ) ◦ (Id × IvH) : H → G is trivial. Its unique lifting,
µ ◦ (Id× IvH), maps e′ 7→ e′ and maps everything into the (discrete) fiber over e.
Hence µ ◦ (Id × IvH) must be trivial, meaning IvH is indeed the inversion map.
Since IvG ◦ ϕ is smooth and ϕ a local diffeomorphism, IvH is smooth.

We have proven H is a Lie group and ϕ a Lie group map (and a smooth covering
map). For the last statement, note that kerϕ is the fiber of e, which is a discrete
subspace. By Lemma 2.10, kerϕ lies in the center of H. □

Theorem 3.9 shows that connected coverings of a Lie group are also Lie groups.
Furthermore, the universal cover of a Lie group is unique up to Lie group isomor-
phisms:

Proposition 3.10. Let G be a connected Lie group. Let ϕ : H → G, ϕ̃ : H̃ → G
be connected coverings, where ϕ, ϕ̃ are Lie group maps and smooth covering maps.
Suppose H̃ simply connected. Then there is a unique lifting σ : H̃ → H mapping
identity ẽ′ to identity e′ that is a Lie group map and a smooth covering map.

In particular, this implies: The universal covering of a Lie group is unique in
the sense that if G has universal coverings ϕ : H → G, ϕ̃ : H̃ → G where ϕ, ϕ̃ are
Lie group maps and smooth covering maps, then there is a Lie group isomorphism
σ : H̃ → H s.t. ϕ ◦ σ = ϕ̃.

Proof. Let (H, e′), (H̃, ẽ′) be two connected coverings of connected Lie group (G, e),

with ϕ, ϕ̃ being Lie group maps and smooth covering maps. Suppose H̃ simply
connected. By Theorem 3.5, there is a unique map σ : (H̃, ẽ′) → (H, e′) s.t.

(H, e′)

ϕ

��
(H̃, ẽ′)

ϕ̃ //

σ
::

(G, e)

commutes. By Proposition 3.6, σ is a covering map. We want to show σ is a smooth
covering map and a group homomorphism.

We can take an open set U of G that is evenly covered by both ϕ and ϕ̃ where
each sheets are mapped diffeomorphically to U under ϕ, ϕ̃. Taking intersections if
necessary, we can assume U is a chart of G and is path-connected. Note σ maps
a sheet homeomorphically to another sheet. Since ϕ and ϕ̃ are diffeomorphisms
on these sheets, we conclude σ is diffeomorphic when restricted to one sheet. This
shows that σ is a smooth covering map.
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To see σ is a group homomorphism, we consider the diagram

(H̃, ẽ′)

σ

��
(H, e′)

ϕ

��
H̃ × H̃

σ×σ //

µ̃

66

H ×H
ϕ×ϕ //

µ

55

G×G
m // (G, e)

where m,µ, µ̃ are multiplication maps. Note the inner and outer triangles both
commute as ϕ, ϕ̃ = ϕ ◦ σ are both homomorphisms. Hence σ ◦ µ̃, µ ◦ (σ × σ) are
both lifts of the map m ◦ (ϕ× ϕ) ◦ (σ× σ). By Proposition 3.3, σ ◦ µ̃ = µ ◦ (σ× σ).
Thus σ is a Lie group map. □

Note the above proof works for the case ϕ̃∗π1(H̃, ẽ
′) ⊂ ϕ∗π1(H, e

′) (cf. Theo-
rem 3.5).

We also have the following result, which is in some sense the inverse of Theo-
rem 3.9.

Theorem 3.11. Let H be a Lie group, and Γ ⊂ Z(H) a discrete subgroup of its
center. Then there is a unique Lie group structure on the quotient group G = H/Γ
s.t. the quotient map π : H → G is a Lie group map and a smooth covering map.

We need the following lemma:

Lemma 3.12. Let H be a Lie group, and Γ ⊂ Z(H) a discrete subgroup of its
center. For any h ∈ H, there is a neighborhood V of h s.t. V ∩ gV = ∅ for all
e ̸= g ∈ Γ.

In technical terms, this is equivalent to say the action of Γ on H is properly
discontinuous.

Proof. We first consider the identity e. Since Γ is discrete, there is a neighborhood
U of e s.t. U ∩ Γ = e. Note the composition of maps

H ×H
Id×IvH// H ×H

µ // H

is continuous. Hence there exists a neighborhood V of e s.t. V V −1 ⊂ U . Now
for any g ∈ Γ, if V ∩ gV ̸= ∅, then v1 = gv2 for some v1, v2 ∈ V , so g = v1v

−1
2 ∈

V V −1 ∩ Γ = e. Hence g = e.
For any h ∈ H, hV is a neighborhood containing h. If hV ∩ ghV ̸= ∅ for some

g ∈ Γ, then hv1 = ghv2 for some v1, v2 ∈ V . As g is in the center, we again get
g = v1v

−1
2 , so g = e. □

Proof of Theorem 3.11. By Lemma 3.12, each h ∈ H has a neighborhood V s.t.
V ∩ gV = ∅ for all e ̸= g ∈ Γ. It follows immediately that for any distinct x, y ∈ Γ,
xV ∩ yV = ∅. Hence under the qoutient map π, V is mapped homeomorphically to
its image V̄ , and π−1(V̄ ) = ⊔g∈ΓgV ∼= V × Γ. In particular, π is a covering map.
Note we can take V connected, so V̄ will be connnected.

Hausdorff and second-countable are not hard to check. Under the covering π,
G is naturally locally Euclidean. We have charts of the form (U, ϕ ◦ π−1) where
U is connected, evenly covered with a sheet U ′, and (U ′, ϕ) is a chart of H. Note
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the choice of sheet U ′ does not matter, as other sheets are gU ′, g ∈ Γ, which is
diffeomorphic to U ′. Under such charts, π maps U ′ diffeomorphically to U .

Hence G is a smooth manifold and a Lie group6, and π a smooth covering map.
Uniqueness is not hard to check either. □

3.3. Isogeny Class. We are now ready to introduce isogeny class.

Definition 3.13. A map between connected Lie groups G and H is an isogeny if
it is a Lie group map and a smooth covering map of the underlying manifolds; we
say G and H are isogenous if there is an isogeny between them.

Isogeny is not an equivalence class, but generates one. For any connected Lie
group G, by the existence of the universal covering and Theorem 3.9, it is isogenous
to a simply connected Lie group. We define the isogeny class of G as the class of
all connected Lie groups isogenous to the universal cover of G. Note if a simply
connected Lie group is in the isogeny class of G, by Proposition 3.10 it must be Lie
group isomorphic to the universal cover of G. Hence every isogenous class contains
a unique initial member - the simply connected one. Again by Proposition 3.10,
two distinct isogenous classes cannot have a common member; and if H is isogenous
to G, then H lies in the isogenous class of G.

The main result we want to keep in mind is that isogeny classes correspond to
(isomorphism classes of) simply connected Lie groups.

4. Lie Algebras

We can now finally consider our main topic: the representations of Lie groups.
How do we start? Recall that in Lemma 2.9 we showed a connected Lie group is
generated by any neighborhood of the identity. Hence any Lie group map ρ : G→
H, with G being connected, must be determined by what it does on any open set
containing the identity in G. This can be extended further: we will show later in
this section that

Theorem 4.1. (First Principle) Let G and H be Lie groups, with G connected. A
Lie group map ρ : G→ H is uniquely determined by its differentiable dρe : TeG→
TeH at the identity.

Thus by the First Principle we can completely describe a homomorphism by a
linear map between two vector spaces. Given this, a natural question to ask is that
which maps between these two vector spaces actually arise as differentials of Lie
group maps? This is answered by the Second Principle:

Theorem 4.2. (Second Principle) Let G and H be Lie groups, with G simply
connected. A linear map TeG→ TeH is the differential of a Lie group map ρ : G→
H iff it preserves the bracket operation, which we will soon introduce.

Thus by the First and Second Principle, when G is simply connected, there is a
1-1 correspondence between Lie group maps G → H and linear maps TeG → TeH
that preserves the bracket operation.

6To rigorously check this, use the fact that π, π × π are both local diffeomorphisms.
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4.1. Definition of Lie Algebras. In this section, we will start by introducing the
bracket operation, and then introduce the abstract definition of Lie algebras.

Let G be a Lie group. For any g ∈ G, we define the conjugation map

Ψg : G→ G, h 7→ ghg−1

which is a Lie group automorphism. Note Ψg fixes the identity and Ψgg′ = Ψg ◦Ψg′ .
We set

Ad(g) = (dΨg)e : TeG→ TeG

where by the chain rule we have Ad(gg′) = Ad(g) ◦ Ad(g′). This gives us a group
representation

Ad : G→ Aut(TeG) = GL(TeG)

of the group G on its own tangent space, called the adjoint representation of G.
The Ad map is in fact smooth. To see this, consider

F : G×G→ G, (g, h) 7→ ghg−1

ιg : G→ G×G, h 7→ (g, h)

where Ψg = F ◦ ιg. Taking differentials at the identity, we get

TeG
(dιg)e // TgG× TeG

(dF )(g,e)// TeG

X � // (0, X) � // (dF )(g,e)(0, X)

where (dF )(g,e)(0, X) = (dΨg)e(X) for all X ∈ TeG. Under a fixed appropriate
chart (U, ϕ) about the identity e ∈ G, (dΨg)e is represented as a matrix. To show
Ad is smooth, we want to prove that the entries of the matrix (dΨg)e depend
smoothly on g. Fix a chart (V, ψ) about g. Then (dF )(g,e) is represented by a
matrix whose entries are smooth functions on V × U ∋ (g, e). Hence, when e is
fixed, entries of (dF )(g,e) depend smoothly on g. Now (dΨg)e(−) = (dF )(g,e)(0,−),
so entries of (dΨg)e depend smoothly on g.

Next we take the differential of the map Ad. Since Aut(TeG) = GL(TeG) is just
an open subset of End(TeG), its tangent space at the identity is naturally identified
with End(TeG). The differential of Ad at the identity yields a map

ad : TeG→ End(TeG)

which can be identified with a bilinear map

[ , ] : TeG× TeG→ TeG

by defining

[X,Y ] := ad(X)(Y )

This is called the bracket operation.
We observe that the bracket operation behaves well with Lie group maps. Let

ρ : G → H be a Lie group map. We have ρ ◦ Ψg = Ψρ(g) ◦ ρ. Hence, taking
differentials at the identity, we get

dρe ◦Ad(g) = Ad(ρ(g)) ◦ dρe
Note the above compositions can be regarded as matrix multiplications. Taking
differentials on both sides w.r.t. g at the identity, we get

dρe ◦ ad(X) = (ad(dρe(X))) ◦ (dρ)e
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for all X ∈ TeG, i.e.

dρe(ad(X)(Y )) = ad(dρe(X))(dρe(Y ))

or, equivalently,

dρe([X,Y ]) = [dρe(X), dρe(Y )]

This proves one direction of the Second Principle.
All above could be fairly confusing. In Example 4.5 we will see why we define the

bracket in this way more explicitly. But now let us look at two important properties
of the bracket operation.

Proposition 4.3. With the notations as in the above discussion, we have

(1) The bracket operation is skew-commutative, meaning [X,X] = 0 for all
X ∈ TeG.

(2) The bracket operation satisfies the Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Proof. For the first one, we use the fact that any X ∈ TeG is the derivative of a
Lie group map ρ : R → G at 0 (we will prove this fact later). Note the Ad map
on R is constant, so ad is the zero map for R. Hence [X,X] = [dρ0(1), dρ0(1)] =
dρ0[1, 1] = 0.

For the second one, note that ad([X,Y ]) = [ad(X), ad(Y )], as ad : TeG →
End(TeG) is the differential of Ad at the identity. Using the fact that bracket
operation for GL(V ) is [M1,M2] =M1M2 −M2M1 (see Example 4.5), we get

[[X,Y ], Z] = ad([X,Y ])(Z)

= [ad(X), ad(Y )](Z)

= ad(X)(ad(Y )(Z))− ad(Y )(ad(X)(Z))

= [X, [Y,Z]] + [Y, [Z,X]]

□

Definition 4.4. A Lie algebra g is a vector space together with a skew-symmetric
bilinear map

[ , ] : g× g → g

satisfying the Jacobi identity.

A map of Lie algebras is a linear map ρ : g → h that preserves the bracket, i.e.

ρ([X,Y ]) = [ρ(X), ρ(Y )]

For a Lie group G, its Lie algebra g is the tangent space at the identity with the
bracket operation we just defined. By the above discussion, the differential of a Lie
group map at the identity is a Lie algebra map.

4.2. Examples. In this section, we will see some interesting examples and intro-
duce the definition of representations of Lie algebras.

Example 4.5. Let G = GLnR. For any g ∈ G, the map Ψg(x) = gxg−1 is, after
all, a linear map. Hence Ψg is represented by a matrix, and the differential (dΨg)e
is then just the same matrix. Thus Ad(g) = (dΨg)e, when acting on g = glnR =
End(Rn) =MnR, is still the same conjugation, i.e. Ad(g)(M) = gMg−1.
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For any X,Y ∈ g, let γ : I → G be an arc starting at e with tangent vector
γ′(0) = X. Then our definition of [X,Y ] is that

[X,Y ] = ad(X)(Y ) =
d

dt
|t=0(Ad(γ(t))(Y ))

Applying the product rule to Ad(γ(t))(Y ) = γ(t)Y γ(t)−17, this yields

= γ′(0)Y γ(0) + γ(0)Y (−γ(0)−1γ′(0)γ(0)−1)

= XY − Y X

which explains the bracket notation.
In general, when a Lie group is a subgroup of GLnR, its Lie algebra is naturally

embedded in glnR via the differential of the inclusion ι : G ↪→ GLnR; since bracket
is preserved by this differential, the bracket operation on g = TeG coincides with
the matrix bracket, i.e. the commutator.

Definition 4.6. A representation of Lie algebra g on a vector space V is a
map of Lie algebras

ρ : g → gl(V ) = End(V )

i.e., a linear map s.t. ρ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X).
Viewing ρ as an action of g on V , we have

[X,Y ]v = X(Y v)− Y (Xv)

for all v ∈ V .

By the First Principle a representation ρ : G→ GLnR of a connected Lie group
G is completely determined by the representation of its Lie algebra α : g → glnR
given by the differential of ρ. By the Second Principle the representations of a
simply connected Lie group are in 1-1 correspondence with the representations of
its Lie algebra.

Example 4.7. Consider the special linear group SLnR. Let A(t) be an arc in
SLnR starting at A(0) = I and with tangent vector A′(0) = X at t = 0. Then

detA(t) =
∑
σ∈Sn

sgnσ

n∏
i=1

A(t)(i,σ(i)) = 1

for all t, where A(t)(i,j) is the (i, j)-entry of A(t). Taking derivative and evaluating
at t = 0, we have by the product rule

0 =
∑
σ∈Sn

sgnσ(

n∑
j=1

A′(0)(j,σ(j))
∏

1≤i≤n,i ̸=j

A(0)(i,σ(i)))

where, since A(0) = I, A(0)(i,σ(i)) = 0 for some i when σ ̸= id. Hence we get

0 =

n∑
j=1

A′(0)(j,j) = Tr(X)

The elements in slnR thus all have trace 0. Comparing dimensions, we see that
slnR is exactly the vector space of traceless n× n matrices.

7γ(t)γ(t)−1 = I, differentiating on both sides to get (γ(t)−1)′.
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Example 4.8. Consider the orthogonal group OnR, as the group of automorphisms
on V = Rn preserving the inner product. Let A(t) be an arc in OnR starting at
A(0) = I and with tangent vector A′(0) = X at t = 0. We know A(t)TA(t) = I for
all t. Hence, taking derivatives and evaluating at t = 0, we get

XT +X = 0

i.e. elements in onR are skew-symmetric matrices.
We will show later using exponential map that any skew-symmetric matrix lies

in onR. Thus onR is precisely the space of skew-symmetric matrices, which clearly

has dimension n(n−1)
2 . Since SOnR is an open subset of OnR, sonR = onR.

We close this section by stating a deep result about Lie algebras, which we will
use later. Interested readers can find the proofs in Chapter 3.17 of [6] and Appendix
E of [1].

Theorem 4.9. (Ado’s Theorem) Every finite-dimensional real Lie algebra admits
a faithful finite-dimensional representation.

Hence any finite-dimensional Lie algebra is isomorphic to a Lie subalgebra of
glnR for some n.

4.3. The Exponential Map. The exponential map is an essential topic in study-
ing the relationship between a Lie group and its Lie algebra. Precisely, it gives a
map from a Lie algebra to its Lie group.

Let G be a Lie group. We will first associate 1-1 correspondences between the
following sets:

(1) The Lie algebra g of Lie group G, i.e. the tangent space at the identity.
(2) The left invariant vector fields on G.
(3) The one-parameter subgroups of G.

Definition 4.10. Let X be a (smooth) vector field on G. We say X is left in-
variant if,

(DLx)gXg = Xxg, for all x, g ∈ G

where Lx : g 7→ xg is the left-multiplication-by-x map.

One can see from the definition that a left invariant vector field is uniquely
determined by its value at any point. Let Lie(G) denote the set of all left invariant
vector fields on G. Then the evaluation map ϵ : Lie(G) → g, X 7→ Xe is an linear
monomorphism. It is also surjective: For any v ∈ g, we can define a vector field X
by

Xg := (DLg)ev

which is clearly left invariant. For smoothness of X, a detailed proof can be found
in Theorem 8.37 of [4]. Thus ϵ is a linear isomorphism.

Remark 4.11. It is worth noting that in many texts (e.g. [4]), authors start by
defining the Lie algebra of a Lie group G as the set of left invariant vector fields.
Then the Lie bracket operation on vector fields carries to a bracket operation on the
Lie algebra. Via the linear isomorphism we just introduced, they identify the Lie
algebra with the tangent space at the identity, and the Lie bracket induces a bracket
operation on the tangent space. The adjoint representation of G is defined in the
same way. Then they show that for X,Y ∈ TeG = g, we have ad(X)(Y ) = [X,Y ],
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where the bracket is induced by the Lie bracket on the vector fields (see Theorem
20.27 in [4]).

Definition 4.12. A one-parameter subgroup of G is a Lie group homomor-
phism γ : R → G where R is considered as a Lie group under addition.

First we show that a one-parameter subgroup γ is uniquely determined by the
tangent vector γ′(0) at the identity. Let X = γ′(0) and let X also denote the left
invariant vector field generated by γ′(0) by abusing the use of notations. Since γ(s+
t) = γ(s)γ(t), differentiating on both sides w.r.t. t and evaluating at t = 0 results
in γ′(s) = (DLγ(s))eγ

′(0) = (DLγ(s))eXe = Xγ(s). Thus γ is an integral curve of
X starting at the identity (and a maximal one), and γ is uniquely determined by
γ′(0).

Next we show that given a left invariant vector field X on G, we can gener-
ate a unique one-parameter subgroup. Together with the previous paragraph, we
conclude one-parameter subgroups are isomorphic to left invariant vector fields.

By Theorem 1.7, there is a unique maximal integral curve ϕ of X starting at the
identity that is defined on all t ∈ R, i.e. a smooth curve ϕ : R → G, with ϕ(0) = e
and ϕ′(t) = Xϕ(t). We will show that ϕ is a one-parameter subgroup. That means
we need to show ϕ is a homomorphism, i.e. ϕ(s+ t) = ϕ(s)ϕ(t).

Let s be fixed and define two arcs α, β by

α(t) = ϕ(s)ϕ(t), β(t) = ϕ(s+ t), t ∈ R
Then α(t) = (Lϕ(s) ◦ ϕ)(t), so α′(t) = (DLϕ(s))ϕ(t)ϕ

′(t) = Xϕ(s)ϕ(t) = Xα(t) as X is
left invariant. On the other hand, β′(t) = ϕ′(s+ t) = Xϕ(s+t) = Xβ(t). Hence α, β
are integral curves of X with the same starting point. Thus α(t) = β(t) for all t,
and ϕ(s+ t) = ϕ(s)ϕ(t). We conclude ϕ is a one-parameter subgroup and denote it
by ϕX .

To sum up, the following are identified with each other:

(1) The tangent vector X ∈ g;
(2) The left invariant vector field generated by X ∈ g;
(3) The one-parameter subgroup with tangent vector X at 0 (or generated by

X), which is the same as
(4) The maximal integral curve of vector field X starting at e.

We are now ready to define the exponential map.

Definition 4.13. We define the exponential map

exp : g → G

by
exp(X) = ϕX(1)

where ϕX is the unique one-parameter subgroup with tangent vector X at 0.

Proposition 4.14. Let G be a Lie group. For any X ∈ g, γ(s) = exp(sX) is the
one-parameter subgroup of G generated by X.

Proof. Let γ : R → G be the one-parameter subgroup of G generated by X. For
any s ∈ R, consider the rescaled one-parameter subgroup γ̃(t) = γ(st). Note
γ̃′(0) = sX. Hence γ̃ is the one-parameter subgroup generated by sX. Thus
exp(sX) = γ̃(1) = γ(s). □

Proposition 4.15. Let G be a Lie group and g its Lie algebra.
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(1) The exponential map is smooth.
(2) For any X ∈ g, s, t ∈ R, exp(s+ t)X = exp sX exp tX.
(3) For any X ∈ g, (expX)−1 = exp(−X).
(4) The differential (D exp)0 is the identity map8.
(5) The exponential map restricts to a diffeomorphism from some neighborhood

of 0 ∈ g to a neighborhood of e ∈ G.
(6) If f : G→ H is a Lie group map, then the following diagram commutes:

g
f∗ //

exp

��

h

exp

��
G

f
// H

Proof. For any X ∈ g, let θX denote the (global) flow generated by (the left invari-
ant vector field generated by) X. To show that exp : g → G is smooth, we need to
show that θeX(1) = expX depends smoothly on X.

Define a vector field Ξ on the product manifold G× g by

Ξ(g,X) = (Xg, 0) ∈ TgG⊕ TXg ∼= T(g,X)(G× g)

To see that Ξ is a smooth vector field, we show that Ξf is smooth for any f ∈
C∞(G× g).

Let (X1, ..., Xk) be a basis for g (Xi,g denotes Xi being pushed into TgG). Let
(x1, ..., xk) be the corresponding global coordinates for g (i.e. xj :

∑
ciXi 7→

cj). Let (w1, ..., wk) be a local coordinates for G. Abusing the use of notations,
we think of xi, wi as the input variables (in some sense g = (w1, ..., wk), X =∑
xiXi = (x1, ..., xk)) and show that Ξf(w1, ..., wk, x1, ..., xk) depends smoothly

on (w1, ..., wk, x1, ..., xk). Now we have

Ξf(w1, ..., wk, x1, ..., xk) = Ξ(w1,...,wk,x1,...,xk)f

= (
∑
j

xjXj,(w1,...,wk), 0)f

=
∑
j

xj(Xj , 0)f(w
1, ..., wk, x1, ..., xk)

where (Xj , 0) : (g,X) 7→ (Xj,g, 0) is a smooth vector field (this is the left in-
variant vector field on G × g generated by (Xj,e, 0)) that differentiates f only in
wi-directions, and hence (Xj , 0)f depends smoothly on (w1, ..., wk, x1, ..., xk). We
conclude the last expression depends smoothly on (w1, ..., wk, x1, ..., xk).

Thus Ξ is a smooth vector field. Let Θ be the flow generated by Ξ. We note
that Θ(t, (g,X)) = (θX(t, g), X), as (θX(0, g), X) = (g,X) and (θX(t, g), X)′(t) =

(θgX
′
(t), 0) = (XθX(t,g), 0) = Ξ(θX(t,g),X). By Theorem 1.6, Θ is smooth. But

expX = πG(Θ1(e,X)) where πG : G× g → G is the projection. It follows that exp
is smooth.

(2) and (3) follow directly from Proposition 4.14.
(4): For any X ∈ g, let σ : R → g be σ(t) = tX. Then σ′(0) = X. Hence

(D exp)0(X) = (exp ◦σ)′(0) = (exp tX)′(0) = X

8To be precise, we identify T0g with g in the following way. Let (X1, ..., Xk) be a basis for g.

Then (x1, ..., xk) where xj :
∑

ciXi 7→ cj is a global chart on g. We identify Xj ↔ ∂
∂xj |0.



CORRESPONDENCE BETWEEN LIE GROUPS AND LIE ALGEBRAS 21

by Proposition 4.14.
(5) follows immediately from (4) and Theorem 1.4.
(6): To show the diagram commutes, i.e. f(expX) = exp(f∗X) for all X ∈ g,

we note that f(exp tX) is a one-parameter subgroup of H whose tangent vector at
0 is

d

dt
|t=0(f exp tX) = f∗((exp tX)′(0)) = f∗X

Hence f(expX) = exp(f∗X). □

Example 4.16. Recall the matrix exponential. For a matrix A ∈MnR, we define

eA :=

∞∑
n=0

1

n!
An = I +A+

1

2
A2 + ...

which always converges and the result eA is invertible with inverse e−A. Let γ :
R → GLnR be the map t 7→ etA. Then γ′(0) = A; i.e. γ is the one-parameter
subgroup of GLnR with tangent vector A at 0. We now see that the exp map we
define previously coincides with the matrix exponential, which explains the name
“exponential map”.

Example 4.17. Let A be a skew-symmetric matrix, i.e. AT = −A. Then
exp(A) exp(A)T = exp(A) exp(AT ) = exp(A) exp(−A) = I

meaning that exp(A) is orthogonal. Hence exp(tA) is a one-parameter subgroup of
O(n), so A = exp(tA)′|t=0 ∈ o(n). This completes Example 4.8.

There are a lot of interesting results we can derive from the exponential map. For
example, the fact that any continuous group homomorphism between Lie groups is
smooth, from which we deduce that given the topology and the group structure on
G, the smooth structure that makes G a Lie group is unique. I would really like to
elaborate here, but it is going to be too long. Interested readers can take a look at
Exercise 20-11 in [4].

Recall that exp is a diffeomorphism around the identities. However, in general
exp is not a group homomorphism i.e. exp(X) exp(Y ) ̸= exp(X + Y ). Then a
natural question one can ask is that, supposing exp(X) exp(Y ) = exp(Z) for some
Z ∈ g, what is the relation of Z to X and Y ? The answer to this question is
provided in the Baker–Campbell–Hausdorff formula (BCH formula), which states

Theorem 4.18. (BCH Formula) Let G be a Lie group and g its Lie algebra. For
sufficiently small X,Y ∈ g, we have exp(X) exp(Y ) = exp(Z) where

Z = (X + Y ) +
1

2
[X,Y ] +

1

12
([X, [X,Y ]]− [Y, [X,Y ]]) + ...

and the RHS is a convergent series.

It is not meant to be evident what the omitted terms are. The important point is
that all of the terms are given by iterated brackets of X and Y . Of all the references
I could find, the proofs of the BCH formula are very analytical. Interested readers
can read Section 2.15 of [6] or Chapter 3 of [2] for a complete formula and detailed
proofs.

With the BCH formula, we now see some hope in proving Second Principle.
Since exp is locally a diffeomorphism, given a Lie algebra map f : g → h, if the
corresponding Lie group map F : G → H exists, then near the identity it must
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satisfy F (exp(X)) = exp(f(X)). If everything is nice enough (e.g. supposing
exp(X) exp(Y ) = exp(Z) and exp(f(X)) exp(f(Y )) = exp(f(Z))), we would have

F (exp(X) exp(Y )) = F (exp(Z))

= exp(f(Z))

= exp(f(X)) exp(f(Z))

= F (exp(X))F (exp(Y ))

which is what we want to make F a group homomorphism.

5. Lie Group-Lie Algebra Correspondence

With all things we have introduced, we will now prove our main results - the
correspondence between Lie groups and Lie algebras. This correspondence consists
of several crucial results, including the forementioned First Principle and Second
Principle.

The First Principle follows easily from Property (5) and (6) of Proposition 4.15
and Lemma 2.9. If we are given the differential of a Lie group map f : G → H,
then, as exp is a local diffeomorphism at the identity and G is connected, f is
completely determined by its differential.

Next we prove the following correspondence between Lie subgroups and
Lie subalgebras. 9

Theorem 5.1. Let G be a Lie group, g its Lie algebra, and h ⊂ g a Lie subalgebra.
Then the subgroup of G generated by exp(h) is an immersed subgroup H with tangent
space TeH = h.

Proof. Note that the subgroup generated by exp(h) is the same as the subgroup
generated by exp(U) for any neighborhood U of the origin in h.

Let ∆ be a disk centered at the origin in g on which exp is a diffeomorphism
and the BCH formula holds. I.e., for X,Y ∈ ∆, we have exp(X) exp(Y ) = exp(Z)
where Z can be represented by the convergent series:

Z = (X + Y ) +
1

2
[X,Y ] +

1

12
([X, [X,Y ]]− [Y, [X,Y ]]) + ...

Let G0 = exp(∆), H0 = exp(∆∩ h). We show that the subgroup H of G generated
by H0 is an immersed subgroup of G with tangent space TeH = h.

Observe that, as ∆ is a disk, we have G−1
0 = G0 and H−1

0 = H0. Hence the
subgroup H generated by H0 is precisely

H = ∪n≥1H
n
0

We put a topology on H. Let H0 be open in H, which is naturally homeomorphic
to ∆ ∩ h under exp. Any coset hH0 is naturally homeomorphic to H0. In such
a way we generate a topology on H which at the same time gives a differentiable
structure via exp10. H is a Lie group as locally it behaves like a regular submanifold
(H0 is a regular submanifold of G0). Then the smooth inclusion H ↪→ G is an
immersion: It is clearly an immersion at the identity; then we use the fact that

9The following proof is slightly adjusted from [1]’s proof of Proposition 8.41. There is another

proof using distributions, which is more commonly seen, done in Theorem 19.26 of [4].
10There are some nontrivil details that I am skipping here.
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a Lie group homomorphism is always of constant rank. Thus H is our desired
immersed subgroup whose Lie algebra is (isomorphic to) h. 11 □

Note that the connected component of H in Theorem 5.1 is the unique con-
nected immersed subgroup of G with Lie algebra h. This is because any connected
immersed subgroup with Lie algebra h must contain exp(h).

Recall that by Ado’s Theorem, every finite-dimensional real Lie algebra is iso-
morphic to a Lie subalgebra of glnR for some n. Thus Theorem 5.1 tells us that
every finite-dimensional Lie algebra is (isomorphic to) the Lie algebra of a Lie group
and, by Theorem 3.9, of a simply connected Lie group. This is nowadays known as
the Lie’s Third Theorem:

Theorem 5.2. Every finite-dimensional real Lie algebra is the Lie algebra of some
simply connected Lie group.

As a another consequence of Theorem 5.1, we are now ready to prove the Second
Principle, also called the homomorphism theorem:

Theorem 5.3. Let G and H be Lie groups, with G simply connected. A linear
map α : g → h is the differential of a Lie group map ρ : G → H iff it preserves
brackets, i.e. a Lie algebra map.

Proof. Consider the product G×H, whose Lie algebra is (isomorphic to) g⊕h. Let
j ⊂ g⊕ h be the graph of the map α; i.e. j = {(v, α(v)) : v ∈ g}. First we show that
j is a Lie subalgebra. Clearly it is a subspace. We need to show that it is closed
under bracket.

Note that the left invariant vector field on G×H generated by (v, 0) ∈ g⊕ h is
X(g,h) = (Xg, 0) where Xg = (DLg)ev, the left invariant vector field on G generated
by v. This is because left multiplication by (g, h) is the same as multiplied by
(e, h) then (g, e); and (DL(e,h))(e,e) does not change (v, 0). Similarly (0, w) would
generated a vector field of the form Y(g,h) = (0, Yh). Thus, for any v ∈ g, w ∈ h and
any f ∈ C∞(G×H),

[(v, 0), (0, w)]f = (X(e,e)Y − Y(e,e)X)f = 0

where X,Y denote the left invariant vector fields generated by (v, 0), (0, w) respec-
tively. We conclude [(v, 0), (0, w)] = 0 for any v ∈ g, w ∈ h. It follows that j is
closed under bracket, as readers can verify.

By Theorem 5.1, there is an immersed (connected) subgroup J ⊂ G × H with
tangent space T(e,e)J = j. Consider the projection π : J → G to the first factor.
Note the differential (Dπ)(e,e) is an isomorphism. Thus the map π : J → G is a
local diffeomorphism at the identity, which implies π is surjective by Lemma 2.9.
Since G is simply connected, π is also a (smooth) covering map, and therefore an
isogeny. It follows that π is an isomorphism12.

Finally, the projection η : G ∼= J → H is a Lie group map whose differential at
the identity is precisely α. □

An immediate corollary of Theorem 5.3 is:

11Readers may be aware that we did not prove secound-countable (Hausdorff part isn’t hard

from the construction). It is a fact that a non-second-countable connected manifold M cannot be

immersed into a second countable manifold N. See this post for details.
12π is injective by Proposition 3.10.
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Corollary 5.4. If G,H are simply connected Lie groups with isomorphic Lie alge-
bras, then G,H are isomorphic.

Proof. By Theorem 5.3 we have Lie group maps in both directions, and the dif-
ferentials of their compositions are the identity maps on the Lie algebras. Thus
their compositions must be the identity maps on the Lie groups by the First Prin-
ciple. □

The three theorems we introduced in this section are the main results of the Lie
group-Lie algebra correspondence. We collect them as follows:

• (The Subgroup-Subalgebra Correspondence, done in Theorem 5.1) Let G
be a Lie group, g its Lie algebra, and h ⊂ g a Lie subalgebra. Then there
is a unique immersed subgroup H of G with Lie algebra TeH = h.

• (Lie’s Third Theorem, done in Theorem 5.2) Every finite-dimensional real
Lie algebra is the Lie algebra of some simply connected Lie group.

• (The Homomorphism Theorem, done in Theorem 5.3) Let G and H be Lie
groups, with G simply connected. Any Lie algebra map α : g → h is the
differential of a unique Lie group map ρ : G→ H.

Together they give the Lie Correspondence:

Theorem 5.5. (The Lie Correspondence) There is a one-to-one correspondence
between isomorphism classes of finite-dimensional Lie algebras and isomorphism
classes of simply connected Lie groups, given by associating each simply connected
Lie group with its Lie algebra.

Proof. Injectivity is given by Corollary 5.4 and surjectivity by Theorem 5.2. □

6. A Word on Representation of Lie Groups

At the end of this paper, let’s take a quick look at how representation theory of
Lie groups develop.

Recall that by the First Principle, a representation ρ : G→ GLnR of a connected
Lie group is uniquely determined by the corresponding Lie algebra representation
ρ∗ : g → glnR. Together with the Lie group-Lie algebra correspondence, we reduce
the representation theory of Lie groups to representation theory of Lie algebras,
which is much easier to study as they are linear spaces. Let’s now change our focus
to complex Lie algebras. Real Lie algebras can be complexified, so if we understand
complex ones, real ones are almost equally understood, and complex Lie algebras
are simpler to analyse.

By Levi’s Theorem, any (real or complex) Lie algebra is isomorphic to a direct
sum of two Lie subalgebras, in which one is solvable and the other semisimple.
The Ado’s Theorem also holds for complex Lie algebras. It turns out that complex
solvable Lie algebras can be (faithfully) represented as upper triangular matrices.
For (real or complex) semisimple Lie algebras, they are direct sums of simple Lie
algebras (sometimes this is taken as the definition for “semisimple”). Finally, com-
plex simple Lie algebras is completely classified - every complex simple Lie algebra
is isomorphic to either slnC, sonC, or spnC for some n except for five strange ones,
denoted g2, f4, e6, e7 and e8.
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