On NP-intermediate, Isomorphism problems, and Polynomial
Hierarchy

Xin Lu

Abstract. Since being introduced, P and NP problems have been the main focus
in complexity theory. Despite decades of efforts being put, it remains as an open
problem whether P = NP. However, most professionals hold the belief that the two
classes differ. In this paper, discussion on these two categories of problems will be
hold, assuming P # NP. Work of Richard Ladner that shows the existence of N P-
intermediate class of problems given P # NP will first be discussed. Then, graph
isomorphism problem, a commonly believed member of the intermediate class, and
subgraph isomorphism problem will be discussed,primarily on a type of algorithm for
them. Then, a brief discussion on polynomial hierarchy will be displayed, grounding on
discussion of the isomorphism problems. At the end, a brief summary on significance
and hardness of P vs.N P problem will be put.

I. Background

Ever since computational models have been introduced, people have been working on clas-
sifying problems. The first generic question was whether all problems could be solved by a
computational model. In 1936, Alan Turing showed that this question had a negative answer
[1]. That is, there exists a problem that could not be solved by computational models. One
of the example is the classic Halting problem. With this answer, people then turned toward
problems that could be solved by computational models, or in other words, computable prob-
lems, and tried to analyze the hardness of these problems in terms of run time complexity.
This is when class P and N P were introduced.

In 1970s, Stephen Cook published a paper, defining two classes of problems, P and NP,
and proposed a question to the community: is P = NP [2]? This problem, despite decades
of efforts, remains to be an open problem. However, in order to understand these two classes,
one will need to first understand some basic concepts in complexity theory.

Definition 1 (Language). A language L over ¥ is simply a subset of ¥*. Here, 3 can be
considered as a set of finite alphabet. In other words, a language is just a collection of some
strings formed by characters inside the given alphabet .

Each decidable problem can in fact be viewed as a language. For instance, consider the
relative prime problem: given two inputs x and y, one wants to know whether x and y are
relatively prime. One can view it as a language that collects all the strings x#y with = and
y being integers that are relative prime. For example, a specific instance of this problem,
like 243, will be in language L, as 2 and 3 are relatively prime.

For the rest of the paper, problem and language will be used interchangeably in order to
ease the discussion.

Besides the definition of language, one will also want a formal definition for computational
model in order to define P and N P. The formalization of computational models is provided
by Turing in his thesis, which is called the Turing machine.

In informal term, one can consider a Turing machine as a machine composed by tapes,
state register, head pointers and a finite table of instruction. The tape will be used to record
input, output and work done so far and is in general considered to have infinite length. The
state register records the current state the Turing machine is in. The head pointers point
to the current symbol read on tapes and the finite table of instruction instructs the Turing
machine based on current symbol pointed by the pointers and the state the Turing machine
is in. Once the Turing machine reaches end state, it will be able to output the answer, which
in general is either yes or not, identifying if the input is accepted by the Turing machine.

Formally, a Turing machine can be defined via a tuple of seven elements.

Definition 2 (Turing machine). A Turing machine M can be described by a tuple containing
Q,1,b,%.0,q, F, with Q a finite, non-empty set of states, I' a finite, non-empty set of tape
alphabet symbols, b € T" the special symbol reserved for blank space, ¥ a finite, non-empty set
of input symbols not containing b, qy the initial state and F C @ a non-empty set of final
states notifying the Turing machine to stop.

0, depending on whether it is a deterministic or non-deterministic Turing machine, will
be function or a relation. It serves as the finite table of instruction that instructs the action
of pointers, modification on content of tapes and update the state it is in.

With the definition of Turing machine, one can define a language in terms of Turing
machine: L(M) = {z | x is accepted by M} is a language decided by M.

With these definitions, one can define the class P. In layman term, problems in class
P can be considered as problems that could be solved by a computational model within
polynomial time. The polynomial time indicates that the run time of the model can be
written as a polynomial function of input length. An easy example will be to find the
maximum number inside the input parsed in. This problem can be solved within O(n)
times, as one can update maximum when enumerating over all

Definition 3 (class P).

P ={L(M) | Mis a Turing machine that runs in polynomial time}

On the other hand, class NP is considered to be a collection of all problems that can
easily verified, while not necessarily easy to solve. When one says it can be easily verified,
it means that one can find a polynomial time Turing machine such that given input z#vy
where z is a description of the problem and y a proposal for this problem, the machine can
check if y is a solution to problem x.

To formally define NP, one will not need the below definition. However, it is important
for reducibility, which defines a special class of problem in N P. Thus, oracle Turing machine
is introduced here with its definition shown as below.

Definition 4 (Oracle Turing machine). An oracle Turing machine is a Turing machine
augmented by an oracle. During the execution of Turing machine, it can enter the state such
that it will plug in certain input into the oracle and return the answer based on the output
of the oracle.

Naturally, one can view oracle as a black box. It empowers Turing machine the ability
to process the input into certain format such that once it is solved by the oracle, the output
of the Turing machine can be built.

Definition 5 (Class NP). A language L is in NP if there exists a polynomial time oracle
Turing machine M such that x is accepted by M if and only if x € L.

It is obvious that if a problem is in P, then a problem is in N P. In other words, P C NP.
However, whether this inclusion is a proper one is the famous Pvs.NP problem. Yet, it
will seem to be more natural to believe that not all computable problems can be solved in
polynomial time. Hence, computer scientists in general hold the belief that P # N P, despite
the lacking of actual proof.

With a more in-depth study in the class NP, Stephen Cook discovered a special class of
problems within N P. That is, the N P-complete problems. These problems can be viewed
as the upper bound of the level of difficulty for problems in N P. In other words, if a problem
is in NP, then any solver that solves N P-complete problems will be able to solve it. Its
rigorous definition will require knowledge on reducibility, and hence is postponed to the next
section.

However, one can see that if any N P-complete problem is shown to be in P, then NP
will collapse to P. Yet if NP turns out not to collapse to P, are these two classes close?
In other words, if a problem does not belong to P, will it indicates that this problem is
N P-complete? In 1975, Richard Ladner showed that under the assumption that P # NP,
one can prove that there exists an intermediate class of problems between them. That is,
there exist problems that belongs to neither P nor N P-complete, if P # NP.

The actual proof of this theorem is too long to be included in this paper. Yet, in the
next section, one will discuss the idea behind this theorem, and at the same time offering a
better preparation for later discussion.

II. Ladner’s Theorem

With the belief that P # N P, one is likely to think about the distinction between these two
classes. Are these two classes differ significantly in level of hardness, or are they actually
close? In other words, is there a problem that falls between the two classes but lands in
neither of them, or if a problem is in NP\ P, then it is N P-complete? This thought sparkles
Richard Ladner to analyze the level of difficulty, later named as polynomial hierarchy, be-
tween P and NP. As a result, he showed that if P # NP, the two classes differed enough
such that there would be an intermediate class such that problems in it were neither P nor
N P-complete.

As laid out in previous section, to understand the idea behind Ladner’s theorem, it is
important to define N P-complete formally. As its definition depends on reducibility, one
will first see the definition for reducibility.

Definition 6 (Reducibility). A problem A is said to be reducible to problem B if there is a
polynomial time Turing machine T with oracle B such that on input x, T accepts x if and
only if its output T'(x) being accepted by the oracle with respect to B.

One can see that A being reducible to B can be viewed as saying A is an ‘easier’ problem
compared to B, in the sense that solving B provides a solution to a twisted version of A.
With this definition, one is able to define N P-complete.

Definition 7 (N P-complete). A problem A is said to be N P-complete if the following two
conditions hold:

i) Ae NP

i1) VB € NP, B is reducible to A.

Before jumping into the idea behind Ladner’s theorem, a few N P-complete problems are
worth mentioning here. The first proven N P-complete problem is the so-called SAT problem,
which asks for a satisfying assignment to a CNF formula. Since then, various N P-complete
problems have been found by different computer scientists. In later section, this paper will
focus on subgraph isomorphism problem, which is another proven N P-complete problem.
Along with it, k-clique problem, a problem subgraph isomorphism problem can be reduced
to (so it is also N P-complete), is also relatively important.

Now, one turns back to the main focus of this section: ‘proof’ of Ladner’s theorem, whose
statement is as below:

Theorem 1 (Ladner’s Theorem [3]). If P # NP, then there exists a problem in NP such
that it is in neither P nor N P-complete.

As mentioned earlier, this proof will be done through a proof by construction. In other
words, using the assumption that P # NP, one will construct a problem that does not
belong to either P or N P-complete.

That being said, one will like to construct a problem A such that A ¢ P, A is reducible
to B but B is not reducible to A, where B is another problem that falls in N P-P.

The first condition one wants to meet is probably that A is reducible to B. This condition
can be easily met if one defines A C B under certain criterion that can be tested within
polynomial time. Then, a Turing machine that checks for this criterion will do the reduction
job.

The hart part is to ensure that A ¢ P and B is not reducible to A. The key idea to
formalize a construction meeting these two conditions is similar to the Cantor’s diagonal
argument. In order to say a problem A is not in P, one will like all Turing machines
that decide languages in P fail to decide A. The way to do it follows strictly the diagonal
argument: let P, P, --- denotes an enumeration of all polynomial time Turing machine. If

4

for each i, A contains a string © ¢ Lp,, then clearly A cannot be decided by F;. If one is
able to identify a systematic way to include a string « not in Lp, in A for all ¢, then one will
complete the proof for A & P.

Similar idea holds for showing B is not reducible to A. Saying that B is reducible to A
means that there exists an oracle Turing machine M (A) such that it decides B. Hence, to
show that B is not reducible to A, one can again enumerates over all polynomial time Turing
machine M; with oracle A, denoting as M;(A). Then, for each M;(A), if A is constructed so
that there exists a string x € B having its output M;(x) € A, one will show that B is not
decided by M;(A).

Conceptually, this is easy to see why in this way, the theorem can be proven. The point is,
though, whether such A can be constructed, in a formal and systematical way. As mentioned,
a formal proof of this theorem will be too long to include. The definition of the problem
A provided by Ladner will be listed below, and a brief explanation on why it works will be
supplied. Yet for interesting reader, they can turn towards the paper itself to see the full
formal proof.

One will put A = {x € B | |T(z)| is even}. The key then becomes if 7" is a Turing
machine that makes A a set satisfying conditions mentioned above. In the paper, T is
defined as:

On input = # 0" of length |z| = n, output 7°(0").
On input 0", if » = 0(so input is the empty string), output the empty string.
Otherwise, for n moves, reconstruct the sequence T'(\), T(0), - - - , T'(0™), with m being
the last number computed within n moves.

If |T(0™)] is even, let i be the number such that 2¢ = |T°(0™)|. Then for n steps,
explore all strings z in lexicon order and see if z € P;. If not, output 1%. Otherwise, output
12i+1

If |T(0™)] is odd, let ¢ be the number such that 2i + 1 = |T°(0™)|. Perform the

same thing as above, but this time see if z & M;(A). If not, output 1%+ otherwise, output
12042

It might be hard to understand in an intuitive way what 7' is doing. Yet, once you see
one step, you will understand all others. Viewing the case |7°(0™)| being even as marking T
being in the state to construct A so that A # P;, for the i defined in the step. In this case,
it will consecutively output even length for any input, making these strings a member of A
as long as it belongs to B. In other words, in this phrase, set A is made similar to B, where
B is chosen to be in NP-P. As a result, there must be strings belong to B but not Lp, and
as A starts to look similar to B, the string z will eventually be found. Other steps could be
explained similarly, and again detailed explanation is included in Ladner’s paper.

Concluding this section, a detailed explanation on the intuition behind Ladner’s proof is
supplied. As a consequence of the theorem, one knows that if P # N P, there exist problems
in the middle. However, if so, what are those problems? If one is able to identify these
potential intermediate problems, analysis on their algorithms might be able to offer some
insights into the entire complexity hierarchy.

One of the candidates is the graph isomorphism problem. It is one of the few problems

that have not yet been shown to be in P or N P-complete, leading into a strong belief that
it belongs to N P-intermediate.

On the other hand, subgraph isomorphism problem, a proven N P-complete problem,
holds similarity with graph isomorphism problem: it is clear that a solver for subgraph
isomorphism problem can easily solve graph isomorphism. Meanwhile, checking graph iso-
morphism seems to also be a necessary step in solving subgraph isomorphism problem. These
two problems will, in fact, be the main focus of the following two sections.

In the next section, one will explore the current developed algorithm for subgraph isomor-
phism problem, capturing the key characteristic of the algorithm and study its complexity
in terms of P and N P under certain condition.

III. Discussion on Subgraph Isomorphism Problem and
Its Algorithms

Motivated by the similarity between subgraph isomorphism problem and graph isomorphism
problem, one will like to compare these two problems in terms of their complexity, partic-
ularly since subgraph isomorphism problem is proven to be in N P-complete, while graph
isomorphism’s run time complexity remains as a mystery.

As planned above, in this section, discussion on the current algorithm for subgraph
isomorphism will be displayed. In fact, one will characterizes the algorithm and defines it as
a type. Then, a discussion on the lower bound of this algorithm will be held.

Before entering into the discussion, it is worthy to present a formal definition for the
subgraph isomorphism problem.

Definition 8 (Subgraph Isomorphism Problem). Given input G and H, return whether or
not H is a subgraph of G.

Through years, there are various attempts on building up algorithms that will solve this
problem.However, in general, these algorithms run in exponential time of the input size,
unless the input is of a special type of graphs.

In this paper, the algorithm proposed by Cordella in 2004 will be the main focus. This
algorithm starts of with an empty proposal (which refers to proposed solution). Then, rely-
ing on a checker function F, it will attempt to extend the proposal and F' will check if the
extended one remains a valid partial solution. In other words, if the extended proposal can
not be extend to a full valid solution, F' will propagate this branch. A detailed high-level
description of the algorithm is as below [5] :

Input: G, H, and initial node(state) s with M(sy) =0.
Output: mappings between two graphs, null if DNE
M(s):

IF M(s) covers all the nodes of H:

QUTPUT M (s)
ELSE:
FOREACH (n,m) edge can be extended
IF F(s,n,m) THEN
Compute next node(state) s obtained by this extension
CALL M (s")
OUTPUT null

So far, most algorithms that attempt to solve subgraph isomorphism problems are of
this manner. The question is, is this type of algorithm promising? In other words, will the
optimal algorithm shares the same structure as Cordella’s algorithm?

To think of that question, one should first consider the trivial algorithm, which constructs
all possible proposals and then check for validity. This algorithm, in general, is considered
not to be extendable to an algorithm with the optimal run time, as the number of subgraphs
in G with k vertices are exponentially many. Hence, the question becomes whether by
ensuring the current proposal is yet a valid partial solution, one is able to propagate enough
number of proposals so that the algorithm runs in optimal run time.

To formalize this idea, this paper proposes the below definition to captures the charac-
teristic of this type of algorithm.

Definition 9 (Propogating Algorithm). An algorithm is said to be of propagating type if its
structure fits in the below description:

i) Starts at root node ng representing the initial state where the proposal is empty

it) If at node n;, propagation checker returns false for current proposal, propagate all
proposals having the current proposal as a partial proposal.

iii) Otherise, extends the proposal by choosing available actions at node n;, proceeds to
the node directed by the action, repeat step ii).

Note, the propagation checker returns false for node n; if and only if the proposal rep-
resented by node n; cannot be extended to a full solution, grounding on the information
contained in the constructed proposal.

It will be helpful to understand this algorithm if one considers the solution space (includ-
ing both full and partial solutions) as a graph. Starting at initial node, the algorithm has
no idea about the feature of a solution. Then, it will explore action in order. By action it
refers to an atomic choice that extends the proposal. This will take one to the specific node
representing the extended proposal depending on the action chosen. Hence, this process is
like exploring the solution space as if the space is of a tree structure. To better illustrate the
idea, consider the example displayed in Figure 1.

In this example, each action represents the inclusion of an edge (and corresponding
vertices) into the subgraph constructed so far, and the next node induced by this action is
the extended subgraph.

On the other hand, an example for the behavior of the propagation checker may be
helpful. Hence, another example is provided in Figure 2.

Ny = empty
T~
{a,b} __/-"'{f f'!f HH“‘*-E{F'} c d
- {a,c} /oo ~_
n;:V={a b}, E={{a, b}} — : ~,
SN / \nz:v={a; C},E={{H, E}} FARN

//(\ / \ /,/ \

a b
ny = empty
._/_./"'f.{uh ~
~ y ress
n,:V={a, b,c}, _ - e c d a
E={{a b}, fa,ch fadlt - ©
- \ c

Figure 2: Propagate at ny

Notice that when the algorithm reaches ny, as by no way can a graph isomorphic to H
has a node with degree > 2, the algorithm will propagate all nodes living in the subtree

rooted at ny.

Now, to analyze the potential of this type of algorithms, one can spot the two main parts
that play a crucial role in it. The first is that how many nodes the algorithm has to explored.
This determine the number of time the propagation checker will be invoked. The second
is how expensive it is to run the checker. In the remaining part of this paper, these two
portions will be decomposed and analyzed separately. The discussion will be laid out under
the assumption that this type of algorithm can actually achieve the actual optimal run time
for the problem, and hence directing the potential of this type of algorithm.

In this section, one will focus on the problem that how many time the propagation checker
is called. Since it is hard to model the efficiency of the propagation checker, it will be hard
to approach it directly. In fact, this paper does not have a solid answer to this question.
Yet, instead, this paper consider the same question for the k-clique problem, which is an
N P-complete problem. Hence, subgraph isomorphism problem and the k-clique problem
should have the same solver, which indicates that the answer to this problem for k-clique
might as well apply to subgraph isomorphism problem.

In order to proceed, of course, a definition for the k-clique problem is needed.

Definition 10 (k-clique). A clique C = (V', E’) of a graph G = (V,E) has V' CV and
E = {{v,w} | v,w € E}, where E' C E as well. In other words, a clique is a complete
subgraph of G.

Naturally, one puts a k-clique of G as a k-complete subgraph of G.

With the definition of clique, one will be able to define k-clique problem.

Definition 11 (k-clique problem). Given a graph G and an input k, finds if there exists a
k-clique in graph G.

Notice that both k-clique problem and subgraph isomorphism problem contains an ex-
ploration on subgraph of G, which is the primary intuition why these two problems are
equivalent (and in fact they are). Hence, perhaps with further work, one will be able to
nail down the bound for the number of time propagation checker is invoked for subgraph
isomorphism problem as well.

Theorem 2. If P # NP and a propagating algorithm can be the optimal algorithm for
k-clique problem, then enumerating all nodes visited by the propagating algorithm will be a
problem in NP — P.

Proof. Clearly, as k-clique problem is in N P, if the propagating algorithm achieves optimal
run time, its subprocess should not exceed the total run time. Thus, enumerating all nodes
visited by the propagating algorithm should be a problem in NP as well. Hence, if one can
show that the enumeration can not be done in P, the proof is completed.

The proof will proceed by contradiction. Suppose the enumeration can be done in poly-
nomial time (i.e. the problem is in P). Then, by definition of propagation algorithm, the
propagation checker is called f(n) times, where n is the input size and f a polynomial
function.

As illustrated by the definition, a propagation checker return false if and only if the
proposal representing by the current node cannot be extended into a full solution. As
illustrated by the example, that is saying the current proposal is already inconsistent with
the desire solution. For k-clique problem, one candidate proposal checker will be the one that
checks if the current subgraph is partial isomorphic to k-complete graph. This is clear: if the
graph is not partially isomorphic to the k-complete graph, then no matter how one extends
the graph, the proposal contains a portion of graph that cannot be map isomorphically to
the k-complete graph. Hence, any graph extended from this point will fail to be a k-clique.
On the other hand, if the graph is partially isomorphic to the k-complete graph, simply
appending the difference of the vertex and edge sets on current proposal and k-complete
graph will yield a k-complete graph. Thus, this is a valid propagation checker.

Yet, this propagation checker only takes polynomial time. One only needs to verify if
all nodes included in current partial solution has fewer than (g) edges, which takes at most
O(m + n) times where m marks the size of edge set of G. Hence, the optimal propagation
algorithm should have the propagation checker with run time at most as bad as polynomial

run time.

Then, if there are only polynomial amount of nodes being visited by the propagation
algorithm of k-clique problem, it will run within polynomial time. Under NP # P and the
fact that k-clique problem is N P-complete, this cannot be the case. Hence, one has proven
the statement. O]

Thus, one has shown that for propagating algorithm, enumerating the nodes being visited
by the algorithm will be a problem in N P-P. If one believe in the similarity among subgraph
isomorphism problem and clique problem, one has the below conjecture.

Conjecture. If the optimal algorithm for subgraph isomorphism problem can be a propagat-
ing algorithm, enumerating nodes visited by this propagating algorithm for subgraph ismor-
phism will be a problem in NP — P, supposing P # NP.

However, only propagating when the algorithm finds an inconsistency seems to be not
efficient enough. Consider graph G and H where almost all subgraphs of G are isomorphic
to H except for one edge. If only propagating when inconsistency is met, for this example,
the algorithm have to almost fully explored all possible subgraphs before encountering an
inconsistency, assuming the worst case. This will indicate that such algorithm will remain
to be of exponential run time, unless certain order is put on the exploration to avoid the
worst case. In fact, Bonnici actually improves Cordella’s algorithm by assigning a heuristic
on the nodes such that exploration happens in a more favorable order [6]. Yet, despite this
modification, the algorithm remains to have exponential run time.

All being said, it is hard to believe that the optimal algorithm for these problems could
be done by such algorithm, if one believes that the optimal algorithm does not run in
exponential time. This introduces another open problem that has not yet been proven:
does EXPTIME = NP? Here, EXPTIMEFE captures all problems that can be decided in
exponential time.

10

Concluding this section, the paper has shown that if the optimal algorithm can be sit-
uated into a propagating algorithm, the enumeration part, i.e., visiting all nodes not being
propagated by the checker, is the hard part and will be a problem in NP — P, assuming
inequality of the two classes. However, then, an example is given to show that by the defined
checker, it seems unlikely that the propagating algorithm can be improved to reach below
the exponential run time.

In the next section, the complexity of the checker will be analyzed. In particular, one
will compare the propagation checker in propagating algorithm for subgraph isomorphism
problem against the graph isomorphism. A few discussion will be put there, and then a
theorem will be used to conclude the entire paper.

IV. Discussion on Graph Isomorphism and Polynomial
Hierarchy

As mentioned in the last section, this section will focus on discussing the complexity of
the propagation checker of subgraph isomorphism problem . This will be conducted via a
comparison between the propagation checker and the graph isomorphism.

As usual, one should first see the formal definition of graph isomorphism.

Definition 12 (Graph Isomorphism). Given two graphs G and H, determine whether these
two graphs are isomorphic.

On the other hand, by the definition of propagation checker for algorithm solving sub-
graph isomorphism, one will naturally think of partial isomorphism. If a checker checks for
existence of partial isomorphism between two graphs, it is easy to verify that it serves as a
valid propagation checker for propagating algorithm.

However, a partial isomorphism checker is apparently stronger than graph isomorphism
checker. In fact, one can easily reduce graph isomorphism problem to partial isomorphism
problem.

Theorem 3. Graph isomorphism is reducible to partial isomorphism problem.

Proof. Given input G and H in the graph isomorphism problem. One can run a Turing
machine that counts the number of vertices and edges in each graph. This can be done
easily within polynomial time with respect to input size, as one only needs to visit all edges
and nodes in both graphs.

If the number is distinct, then they cannot be isomorphic to each other, as isomorphism
requires a bijective function while in this case the domain and range differs in size.

If the number is the same, then plug G and H into the partial isomorphism solver. If the
partial isomorphism solver accepts, it means that H is isomorphic partially to graph G. Yet
G and H have the same size, and thus induced an isomorphism. O]

11

Therefore, one can see that a propagating algorithm for subgraph isomorphism problem
will have its propagation checker runs at a complexity at least as bad as solver for graph iso-
morphism. This seems to suggest that if graph isomorphism is N P-complete, then subgraph
isomorphism will be harder than it non-trivially, if P # NP.

In fact, this intuition seems to be in right direction. It has been proven by Schoning that
under the certain assumption, graph isomorphism will not be N P-complete [4]. To close this
section, a brief introduction of this theorem will be provided.

In order to introduce this theorem, certain background on polynomial hierarchy will be
necessary. Polynomial Hierarchy is a generalization on P, NP, and coN P class of problems.
In laymen term, it is a hierarchy of problems such that each layer of problems are constructed
using previous layer and is anticipated to be of different classes, unless the hierarchy collapses.
In fact, if NP = P, then polynomial hierarchy collapses completely.

There are various types of definitions for polynomial hierarchy. In here, the paper offers
the definition of polynomial hierarchy used by Schoning Uwe.

Definition 13 (Polynomial Hierarchy). Define Ay = ¥F = HOP = P, then one define,
recursively,

Azﬂl = P EZPH = NP> and Hﬁl — coN P

where P4 is the set of decision problems solvable in polynomial time by a Turing machine
augmented by an oracle for some complete problem in set A, and others are defined similarly.

From the definition, a notice that should be mentioned here is that if indeed the propagat-
ing algorithm is an optimal algorithm for subgraph isomorphism, then with the assumption
that graph isomorphism is N P-complete, one will ends up showing that subgraph isomor-
phism problem is actually in X2 if the enumeration part is in NP-P, as stated by the
conjecture in early section. This is because the propagating algorithm can be decomposed
as an oracle Turing machine 7" that runs the exploration part of the propagating algorithm
and an oracle on the partial isomorphism problem, which is at least N P-complete. Hence,
it falls in the definition of ¥I. On the other hand, if the enumeration part can be shown to
be N P-complete, this will indicate that in fact, 3" collapses to £ = N P.

Yet, this conjecture is grounded on several unanswered questions and therefore will not
be fully extended in this section. Rather, the theorem proven by Schoning on the complexity
of graph isomorphism will be displayed [4].

Theorem 4. Graph isomorphism cannot be N P-complete unless the polynomial hierarchy
collapses to L.

The proof of this theorem requires solid understanding on a few different classes of prob-
lems, such as coN P and coAM . Hence, its proof will be out of the scoop of this paper and
again is left to readers who are interested in it.

12

V. Conclusion

In this paper, one starts off with basic facts in complexity theory. Then, an in-depth look
on the Ladner’s theorem, which shows the existence of intermediate class given P # NP
is supplied. After this, a detailed exploration on current algorithm that solves subgraph
isomorphism problem is conducted, with various analysis on it, suggesting it might not be
close to the optimal run time for this problem unless NP = EXPTIME. Then, a brief dis-
cussion on polynomial hierarchy and a theorem about complexity of the graph isomorphism
problem is mentioned.

In general, there are a lot of extensions can be made grounded on the assumption that
P # NP. However, the direction to prove this assumption itself remains unclear. Initially,
this paper starts off to investigate whether the complexity of graph isomorphism problem
might offer some hints on differing P and N P, while in the end the statement that P # NP
is at least as strong as saying graph isomorphism is N P-intermediate. The difficulty here is
that there exists not yet a statement that seems to be stronger than the statement P # NP,
or equivalent but with a clearer direction to approach.

Despite the little progress on this problem, the introduction of quantum computing might
relieve people from this long lasting open problem. If a quantum computer is devised, the
run time difference between P and NP will in fact be as of less important, as it bestows a
more powerful computing machine. Either way, the unexplored field in complexity theory
remains wide open and deserves successive input.

References

[1] Turing Alan Mathison, ”On computable numbers, with an application to the Entschei-
dungsproblem.”, J. of Math 58.345-363 (1936): 5.

[2] Cook Stephen, "The P versus NP problem.”, The millennium prize problems (2006):
87-104.

[3] Ladner Richard E., ”On the structure of polynomial time reducibility.”, Journal of the
ACM (JACM) 22.1 (1975): 155-171.

[4] Schéning Uwe, ”Graph isomorphism is in the low hierarchy.”, Journal of Computer and
System Sciences 37.3 (1988): 312-323.

[5] Cordella Luigi Pietro et al, ”An improved algorithm for matching large graphs.”, 3rd
TAPR-TC15 workshop on graph-based representations in pattern recognition(2001).

[6] Bonnici Vincenzo et al, ” A subgraph isomorphism algorithm and its application to bio-
chemical data.”, BMC bioinformatics 14.S7 (2013): S13.

13

