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Abstract. First, we show that the number of ordered right triangles with ver-
tices in a subset E of the vector space F2

q over the finite field Fq is equal to the

expected value q�1|E|3 up to an error term O(q
3
2 |E| 32 ). Second, let E ⇢ Fd

q .
We give a lower bound for the maximum discrepancy between |E \ H| and the
expected value q�1|E| taken over all hyperplanes H in Fd

q . This result is easily
extended to take H over all hyperplanes and spheres in Fd

q .
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1. Introduction

Geometric combinatorics in the Euclidean setting is a classical area of study.
Recently, problems in the setting of vector spaces over finite fields have garnered
much attention. Many of the results in the finite setting have continuous analogues.
Consequentially, vector spaces over finite fields provide an excellent setting in which
to study problems which may have similar results in Euclidean space [6]. In general,
we are concerned with the asymptotic behavior of quantities dependent on a subset
E of Fd

q as q ! 1, e.g. the number of distinct distances between points in E, or
the number of distinct areas of triangles with vertices in E (see [10] and [11]). The
following notation will be useful in our treatment of such quantities. Let X and Y
be quantities dependent on q. We write X . Y if X  CY for all large q, where C is
some constant. X & Y means Y . X. We write X ⇡ Y if X . Y and Y . X. We
write X ⌧ Y if X/Y ! 0 as q ! 1 and we write X � Y if Y ⌧ X. In addition,
we will use big O and little O notation: Y = O(X) if there exists a constant C such
that |Y | < C|X| for all large q, and X = o(Y ) if X/Y ! 0 as q ! 1.
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Often, we will ask how large a subset E of Fd
q must be in order to ensure that

it contains a certain kind of geometric structure, such as a simplex of particular
volume or triangle with a particular angle. A k-simplex in Fd

q is a set of k+1 points

such that any n� 1-dimension subspace of Fd
q contains no more than n of them. In

[9], D. Hart and A. Iosevich prove that any subset E of Fd
q such that d >

�
k+1
2

�
and

|E| > Cq
dk
k+1+

k
2 where C is a universal constant, then E contains a copy of every

k-simplex up to a rotation (a transformation by a matrix in the orthogonal group)

and translation. In [4], the authors prove that if |E| > Cq
d+k
2 , then E contains a

positive proportion of non-congruent k-simplices.
In [20], L. A. Vinh gives the following result regarding triangles with vertices in

a subset E of the plane F2
q : Let s 2 Fq and suppose |E| � q

3
2 , then the number

A(E, s) = |{(x, y, z) 2 E3 : s = (x� y) · (x� z)?}| of ordered triangles with vertices
in E of area s is equal to (1 + o(1))q�1|E|3. This result demonstrates that if E is
large enough, then the number of triangles of area s determined by E converges to
the expected value q�1|E|3. Vinh goes on to prove that A(E, 0) = (1+ o(1))q�1|E|3

if |E| � q
5
3 . We will prove an analogous result for angles using a similar method.

Another result of interest is due to L. A. Vinh [19] regarding the proportion of
right triangles determined by a subset E of the vector space Fd

q over the finite field
Fq of q elements for d � 2, as follows.

Theorem 1. Let E ⇢ Fd
q and let D(E) = {(x, y, z) 2 E⇥E⇥E : (x�y)·(x�z) = 0}

denote the set of ordered right triangles with vertices in E. Then D(E) contains at

least one element if |E| > 2q
2d+1

3 .

We will give a mild improvement on the constant for the case of d = 2.
In 1954, K. F. Roth published On irregularities of distribution in Mathematika,

which proves the following result. Let E be a collection of points in the square
[0, 1]⇥[0, 1]. The maximum discrepancy between |E\([0, x]⇥[0, y])| and the expected
value xy|E| is bounded below by C log |E| where C is a universal constant (see [14]).
We will prove a result in a similar spirit in the finite field setting. Let E ⇢ Fd

q and

consider the di↵erence DE(H) = |E \H|� q�1|E| for each hyperplane H in Fd
q . We

will show that if E is a su�ciently small subset of Fd
q , then there exists a hyperplane

H such that |DE(H)| is asymptotic to q�
1
2 |E|

1
2 .

2. Fourier Analysis in Fd
q

Fourier analysis in Fd
q is a key technique applied to many problems in geomet-

ric combinatorics, and it will be an invaluable tool in the study of the problems
presented herein. In the following section, we state and prove some of the tools of
Fourier analysis in Fd

q . Let x = (x1, . . . , xd) and y = (y1, . . . , yd) 2 Fd
q . Then we

define the dot product

x · y := x1y1 + · · ·+ xdyd.
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We will also write
kxk := x · x = x21 + · · ·x2d.

Let � : Fq ! C be a nontrivial additive character with the following properties.
1. �(x+ y) = �(x)�(y)
2. For each x 2 Fq,

X

m2Fq

�(mx) =

(
q if x = 0,

0 if m 6= 0.

It follows from the above properties that �(0) = 1, �(x) = �(�x). Moreover, for
any x 2 Fd

q

X

m2Fd
q

�(x ·m) =

(
qd if x = 0,

0 if m 6= 0.

For more information regarding additive characters, see [6]. We now define the
Fourier transform on Fd

q and prove some useful properties.

Definition 1. Let f : Fd
q ! C. The Fourier transform f̂ of f is defined to be

f̂(m) := q�d
X

x2Fd
q

f(x)�(�x ·m).

Note that, in particular, the Fourier transform of f at 0 evaluates to

f̂(0) = q�d
X

x2Fd
q

f(x),

the average of f over Fd
q .

Proposition 1. (Fourier Inversion Formula) Let f : Fd
q ! C. Then

f(x) =
X

m2Fd
q

f̂(m)�(x ·m).

Proof.
X

m2Fd
q

f̂(m)�(x ·m) = q�d
X

m2Fd
q

X

y2Fd
q

f(y)�(�m · y)�(m · x)

= q�d
X

y2Fd
q

f(y)
X

y2Fd
q

�(m · (x� y))

= q�d
X

y2Fd
q

(
qd if x = y

0 if x 6= y

= f(x).

⇤
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Proposition 2. (Plancherel’s Formula) Let f, g : Fd
q ! C. Then

X

m2Fd
q

f̂(m)ĝ(m) = q�d
X

x2Fd
q

f(x)g(x).

Proof.
X

m2Fd
q

f̂(m)ĝ(m) = q�2d
X

m2Fd
q

X

x2Fd
q

f(y)�(�x ·m)
X

y2Fd
q

g(y)�(y ·m)

= q�2d
X

x,y2Fd
q

f(x)g(y)
X

m2Fd
q

�((y � x) ·m)

= q�2d
X

x,y2Fd
q

f(x)g(y)

(
qd if x = y

0 if x 6= y

= q�d
X

x2Fd
q

f(x)g(x).

⇤
We obtain Parseval’s formula,

X

m2Fd
q

|f̂(m)|2 = q�d
X

x2Fd
q

|f(x)|2,

a special case of Plancherel’s formula, by setting f = g in Plancherel’s formula.

3. Right Triangles

3.1. Statement of Results. Here we state the main theorem for the distribution
of right triangles in the plane.

Theorem 2. Let E ⇢ Fd
q and D(E) = {(x, y, z) 2 E⇥E⇥E : (x�y) · (x� z) = 0}.

Then

|D(E)| = q�1|E|3 + ✓q
3
2 |E|

3
2 ,

where |✓| < 21/2, with the leading term dominating if |E| > 2
1
3 q

5
3 . If we assume

q ⌘ 3 (mod 4), then |✓| < 1 + o(1) and the leading term will dominate when |E| >
(1 + o(1))q

5
3 .

A remark: The main term is the expected value of |D(E)| in the following sense.
If we define

Dr(E) = {(x, y, z) 2 E3 : (x� y) · (x� z) = r},
then E3 can be expressed as the disjoint union

S
r2Fq

Dr(E). Hence

|E|3 =
X

r2Fq

|Dr(E)|,

and so we expect to find |E|3/q elements in D0(E) = D(E).
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3.2. Proof of Theorem 2. We will make use of the following counting lemmas.

Lemma 1. Let q be a prime power such that q ⌘ 3 (mod 4). Then for each r 2 Fq,

|{(x, y) 2 F2
q : x

2 + y2 = r}|  q + 1.

Proof. We have that

q2 =
X

r2Fq

|{(x, y) 2 F2
q : x

2 + y2 = r}|.

Since q ⌘ 3 (mod 4), the only solution to x2+y2 = 0 is the trivial solution x = y = 0.
Moreover, if r1 and r2 are both nonzero quadratic residues in Fq, there exists � 2 Fq

such that r1 = �2r2. Hence

|{(x, y) 2 F2
q : x

2 + y2 = r1}| = |{(�x,�y) 2 F2
q : (�x)

2 + (�y)2 = r1}|
= |{�(x, y) 2 F2

q : (�x)
2 + (�y)2 = �2r2}|

= |{(x, y) 2 F2
q : x

2 + y2 = r2}|.

This works similarly if r1 and r2 are quadratic nonresidues. Note that since �1 is a
quadratic nonresidue, we have

q2 � 1 =
X

r2Fq\{0}

|{(x, y) 2 F2
q : x

2 + y2 = r}|

=
q � 1

2
|{(x, y) 2 F2

q : x
2 + y2 = 1}|+ q � 1

2
|{(x, y) 2 F2

q : x
2 + y2 = �1}|,

and so

2(q + 1) = |{(x, y) 2 F2
q : x

2 + y2 = 1}|+ |{(x, y) 2 F2
q : x

2 + y2 = �1}|.

Now the number of solutions to x2 + y2 = 1 where y 6= 0 is the same as the number
of solutions to b2 � a2 = 1 where b 6= 0 (divide through by y2 and let a = x/y and
b = 1/y), which is equal to the number of solutions to b2 � a2 = 1 if b is allowed
to be 0. This, however, is equal to the number of solutions to ↵� = 1 by letting
↵ = b � a and � = b + a. This has q � 1 solutions, and so x2 + y2 = 1 has q + 1
solutions, the extra two solutions coming from x = ±1, y = 0. It follows from the
above equation that x2 + y2 = �1 also has q + 1 solutions. The lemma follows. ⇤

Lemma 2. Let E ⇢ F2
q. Then

|{(y, z, y0, z0) 2 E4 : y + z = y0 + z0 and y · z = y0 · z0}|


(
(q + 2)|E|2 if q ⌘ 3 (mod 4)

(2q + 1)|E|2 otherwise.

Proof. First consider the case where z = z0. Then y = y0 and the equation y·z = y0·z0
is automatically satisfied. There are |E| options for both z and y, and so this case
contributes |E|2 elements. Now consider the case where z 6= z0. We may choose y
and z in |E| di↵erent ways each. After we determine y0, there is at most one value
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for z0 2 E. This yields at most |E|2 combinations of values for y, z, and z0. Then
we write z0 = y + z � y0. Plugging into y · z = y0 · z0 yields

(⇤) 0 = y · z � y0 · (y + z) + ky0k.

Now write y0 = (y01, y
0
2), z = (z1, z2), and y = (y1, y2). There are at most q values

which we could fix for y01, and then the above equation becomes the quadratic

0 = (y · z + y021 � y01(y1 + z1))� y02(y1 + z1) + y022

as a function of y02. Hence there are at most two values for which y02 can take,
yielding 2q|E|2 for this case. Hence, we have (2q + 1)|E|2 as an upper bound. Now
suppose q ⌘ 3 (mod 4). First note that q cannot be a power of 2, and so at (⇤) we
complete the square to obtain

ky + zk
4

� y · z =
ky + zk

4
� y0 · (y + z) + ky0k =

����y
0 � y + z

2

���� .

There are, by Lemma 1, at most q + 1 possible values y0 may take to satisfy this
equation. Hence our upper bound becomes (q + 2)|E|2. ⇤

With the above lemmas in hand, we proceed with the proof of Theorem 2.

Proof. We write

|{(x, y, z) 2 E3 : (x� y) · (x� z) = 0}| = q�1
X

s2Fq

X

x,y,z2E
�(s(x� y) · (x� z))

and split the sum into two terms: one for s = 0 and one for s 6= 0, so that the above
becomes

= q�1
X

x,y,z2E
�(0) + q�1

X

s 6=0

X

x,y,z2E
�(s(x� y) · (x� z)).
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The first term is evaluated to q�1|E|3, the main term. Now we estimate the second
term. Applying the Cauchy-Schwarz inequality twice yields

������
q�1

X

s 6=0

X

x,y,z2E
�(s(x� y) · (x� z))

������

2

 q�2(q � 1)
X

s 6=0

������

X

x,y,z2E
�(s(x� y) · (x� z))

������

2

 q�2(q � 1)|E|
X

s 6=0

X

x2E

������

X

y,z2E
�(s(x� y) · (x� z))

������

2

 q�2(q � 1)|E|
X

s 6=0

X

x2F2
q

������

X

y,z2E
�(s(x� y) · (x� z))

������

2

= q�2(q � 1)|E|
X

s 6=0

X

x2F2
q

X

y,z,y0,z02E
�(s(x� y) · (x� z)� s(x� y0) · (x� z0))

= q�2(q � 1)|E|
X

s 6=0

X

x2F2
q

X

y,z,y0,z02E
�(s(y · z � y0 · z0))�(sx · (�y � z + y0 + z0)).

Then by the properties of the character �, we have

= (q � 1)|E|
X

s 6=0

X

y,z,y0,z02E
y+z=y0+z0

�(s(y · z � y0 · z0))

 (q � 1)|E|
X

s2Fq

X

y,z,y0,z02E
y+z=y0+z0

�(s(y · z � y0 · z0))

= q(q � 1)|E|
X

y,z,y0,z02E
y+z=y0+z0

y·z=y0·z0

1.

Then by Lemma 2,

q(q � 1)|E|
X

y,z,y0,z02E
y+z=y0+z0

y·z=y0·z0

1  q(q � 1)|E|3(2q + 1)  2q3|E|3.

Hence the second term is bounded above by 2
1
2 q

3
2 |E|

3
2 , and so we write

|D(E)| = q�1|E|3 + ✓q
3
2 |E|

3
2 .
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where |✓| < 21/2. It follows from direct computation that the first term exceeds the

second if |E| > 2
1
3 q

5
3 . Now if q ⌘ 3 (mod 4), Lemma 2 instead yields

q(q � 1)|E|
X

y,z,y0,z02E
y+z=y0+z0

y·z=y0·z0

1  q(q � 1)|E|3(q + 2) = (q3 + q2 � 2q)|E|3.

Hence the second term is bounded by q
3
2 |E|

3
2 (1+o(1)). Hence the first term exceeds

the second when q�1|E|3 > q
3
2 |E|

3
2 (1 + o(1)), i.e. when

|E| > q
5
3 (1 + o(1)).

This concludes the proof of Theorem 2. ⇤

4. Discrepancies

4.1. Statement of Results. A hyperplane in Fd
q is a set of the form {x 2 Fd

q :

x ·m = t} for some t 2 Fq and some nonzero m 2 Fd
q . A sphere in Fd

q is a set in the

form {x 2 Fd
q : kxk + x · m = t} for some t 2 Fq and m 2 Fd

q . Let H (Fd
q) denote

the set of all hyperplanes in Fd
q . We will write H = H (Fd

q) if it is clear that we

are referring to the space Fd
q . Similarly, we define S = S (Fd

q) to be the set of all

spheres and hyperplanes in Fd
q . We now state our primary result.

Theorem 3. Let E ⇢ Fd
q and let DE(H) = |E \ H| � q�1|E| for each H 2 H .

Then

sup
H2H

|DE(H)| � q�1/2|E|1/2(1� q�d|E|)1/2(1 +O(q�
1
2 )).

It follows that if |E| ⌧ qd, then the lower bound becomes q�1/2|E|1/2(1+O(q�1/2)).

The above theorem tells us something about the distribution of points on each
hyperplane. Suppose that we have |H | slots, and |E||V (Fd

q)| points to assign ran-
domly to each slot, the same number we get when we sum up |E \ H| over the
H 2 H . The “square root principle” tells us that each slot will have about |E|/q
points, plus or minus something akin to q�1/2|E|1/2. Theorem 3, however, tells us
that there will always be a plane with - roughly - a higher deviation than q�1/2|E|1/2
from the mean. In fact, it tells us if |E \H| is very close to |E|/q for many planes,
then there must be a plane with a high deviation from the mean.

If we let DE(S) = |E\S|�q�1|E| for each S 2 S , we have the following corollary.

Corollary 1. Let E ⇢ Fd
q . Then

sup
S2S

|DE(S)| � q�1/2|E|1/2(1 + o(1)).
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The corollary follows trivially from Theorem 3 if |E| ⌧ qd since H ⇢ S .
The corollary is nontrivial only if |E| & qd, in which case supS2S |DE(S)| �
q�1/2|E|1/2(1 + o(1)) may be significantly larger than supH2H |DE(H)|.

4.2. Proof of Theorem 3.

Definition 2. We say that V is a direction set of a space Fd
q if for each nonzero

vector x 2 Fd
q , there exists a unique v 2 V such that �v = x for some � 2 Fq. For

each q and d, we fix a direction set denoted by V (Fd
q).

In the following proposition, we construct each V (Fd
q) inductively on d. In the

process, we will determine the size of V (Fd
q).

Proposition 3. There exists a direction set V of Fd
q for each q and d, and |V | =

(qd � 1)/(q � 1).

Proof. We prove the size of V first. Suppose that V is a direction set of Fd
q . Then

since each nonzero element in Fd
q is uniquely expressed as �v for some nonzero � 2 Fq

and v 2 V , we have (q � 1)|V | = |Fd
q \ {0}| = qd � 1.

We prove that a direction set V exists for each Fd
q by induction on d. Clearly,

V = {1} is a direction set for F1
q . Assume now that V is a direction set for Fd

q . Let

V 0 = (Fd
q ⇥ {1}) [ (V ⇥ {0}).

Suppose (x, xd+1) 2 Fd
q ⇥ Fq is nonzero. Suppose xd+1 = 0 and x 6= 0, in which case

by the inductive hypothesis there exists a unique v 2 V and � such that x = �v,
from which we obtain �(v, 0) = (x, xd+1), where (v, 0) 2 V 0. If xd+1 6= 0, then
(x�1

d+1x, 1) 2 V 0 and (x, xd+1) = xd+1(x
�1
d+1x, 1). Moreover, (x�1

d+1x, 1) is the only

point in Fd
q ⇥ {1} which can be scaled to (x, xd+1). Hence, V 0 is a direction set for

Fd+1
q . ⇤

Proposition 4. Each hyperplane H 2 H (Fd
q) is uniquely expressible as Hv,t ⌘ {x 2

Fd
q : x · v = 1} where v 2 V (Fd

q) and t 2 Fq. It follows that |H (Fd
q)| = q|V (Fd

q)|.

Proof. We will show that the map

Fq ⇥ V (Fq) ! H

(v, t) 7! Hv,t

is a bijection. To show that the map is one-to-one, let v1, v2 2 V (Fd
q) and t1, t2 2 Fq

such that Hv1,t1 = Hv2,t2 . Then by definition of the hyperplane, x · v1 = t1 and
x · v2 = t2 have the same solution set. Now pick any x0 in Hv1,t1 , then Hv1,t1 �x0 =
Hv1,0 and Hv2,t2 � x0 = Hv2,0. Then x · v1 = 0 and x · v2 = 0 have the same solution
set, and so v1 = �v2. But then v1 = v2. Now t1 = x0 · v1 = x0 · v2 = t2. Hence the
map is one-to-one.
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To show that the map is onto, we recall that every H 2 H can be written as
{x 2 Fd

q : x ·m = s} for some s 2 Fq and nonzero m in Fd
q . Then there exist unique

v 2 V (Fd
q) and � 2 Fq \ {0} such that m = �v. Then we write

{x 2 Fd
q : x ·m = s} = {x 2 Fd

q : x · �v = s}
= {x 2 Fd

q : x · v = ��1s}
= Hv,��1s.

⇤

The thrust of the proof of Theorem 3 comes from the following lemma, which is
interesting in its own right. It states that the l2 norm of the size of the intersection
|E \ H| over H 2 H only depends on the size of E, as opposed to its structure.
Hence, it is a very useful tool for when trying to find a lower bound on the maxi-
mum discrepancy supH2H |DE(H)| of E when nothing about the structure of E is
assumed.

Lemma 3. Let E ⇢ Fd
q . Then

X

H2H

|E \H|2 = qd�1|E|+ q�1(|V (Fd
q)|� 1)|E|2.

We conclude that

X

H2H

|DE(H)|2 = q�1|E|(qd � |E|).
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Proof. We have by the above proposition,

X

H2H

|E \H|2 =
X

v2V (Fd
q)

t2Fq

|E \Hv,t|2

=
X

v2V (Fd
q)

t2Fq

������
q�1

X

x2Fd
q

E(x)
X

s2Fq

�(s(t� x · v))

������

2

= q�2
X

v2V (Fd
q)

t2Fq

X

x,x02Fd
q

s,s02Fq

E(x)E(x0)�((s� s0)t)�((�sx+ s0x0) · v)

= q�1
X

v2V (Fd
q)

X

x,x02Fd
q

s2Fq

E(x)E(x0)�(s(�x+ x0) · v)

= q2d�1
X

v2V (Fd
q)

s2Fq

������
q�d

X

x2Fd
q

E(x)�(�sx · v)

������

2

= q2d�1
X

v2V (Fd
q)

s2Fq

|Ê(sv)|2

= q2d�1
X

v2V (Fd
q)

s2F⇤
q

|Ê(sv)|2 + q2d�1
X

v2V (Fd
q)

|Ê(0)|2.

Since V (Fd
q) is a direction set, we have

= q2d�1
X

m2Fd
q\{0}

|Ê(m)|2 + q�1|V (Fd
q)||E|2

= q2d�1
X

m2Fd
q

|Ê(m)|2 � q2d�1|Ê(0)|2 + q�1|V (Fd
q)||E|2.

Then by Parseval’s formula,

= qd�1
X

x2Fd
q

|E(x)|2 � q�1|E|2 + q�1|V (Fd
q)||E|2

= qd�1|E|+ q�1(|V (Fd
q)|� 1)|E|2.
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Hence
P

H2H |E \H|2 = qd�1|E|+ q�1(|V (Fd
q)|� 1)|E|2. Applying this formula toP

H2H |DE(H)|2 yields

X

H2H

|DE(H)|2 =
X

v2D(Fd
q)

t2Fq

(|E \Hv,t|� q�1|E|)2

=
X

v2D(Fd
q)

t2Fq

(|E \Hv,t|2 � 2q�1|E||E \Hv,t|+ q�2|E|2)

= qd�1|E|+ q�1(|D(Fd
q)|� 1)|E|2 � 2q�1|D(Fd

q)||E|2 + q�1|D(Fd
q)||E|2

= qd�1|E|� q�1|E|2

= q�1|E|(qd � |E|),

as desired. ⇤

We now proceed with the proof of Theorem 3 below.

Proof. Suppose M � |DE(H)| for each H 2 H . Then by Proposition 4 and Lemma
3,

q�1|E|(qd � |E|) =
X

H2H

|DE(H)|2  M2|H | = M2q(qd � 1)(q � 1)�1.

Hence

M2 � q�1|E|(1� q�d|E|)1� q�1

1� q�d
.

Now ����1�
1� q�1

1� q�d

���� =
����
�q�d + q�1

1� q�d

����  q�1,

so we have

M � q�
1
2 |E|

1
2 (1� q�d|E|)

1
2 (1 +O(q�1))

1
2 = q�

1
2 |E|

1
2 (1� q�d|E|)

1
2 (1 +O(q�

1
2 )).

Hence

sup
H2H

|DE(H)| � q�
1
2 |E|

1
2 (1� q�d|E|)

1
2 (1 +O(q�

1
2 ))

as desired. ⇤

We now prepare to prove the corollary to Theorem 3. Let P (Fd+1
q ) denote the

paraboloid {(x, kxk) 2 Fd
q ⇥ Fq : x 2 Fd

q}. As for hyperplanes and spheres, we may

suppress the dependence on Fd+1
q in the notation if it is clear from context.
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Proposition 5. Let ⇡ : Fd+1
q ! Fd

q be the projection given by ⇡(x1, . . . , xd+1) =

(x1, . . . , xd) for each (x1, . . . , xd+1) 2 Fd+1
q . ⇡ gives a natural bijective correspon-

dence between H (Fd+1
q ) and S (Fd

q) given by

⇡̄ : {H \ P (Fd+1
q ) : H 2 H (Fd+1

q )} ! S (Fd
q)

{(x, kxk) 2 Fd+1
q : (x, kxk) · (v, vd+1) = t} 7! {x 2 Fd

q : vd+1kxk+ v · x = t}.

Proof. Since the restriction ⇡|P (Fd+1
q ) : P (Fd+1

q ) ! Fd
q is a bijection, the map ⇡̄ is

injective. It remains to show that ⇡̄ is surjective. Note that for each Hm,s 2 S (Fd
q),

we have ⇡̄(H(m,0),s \ P (Fd+1
q )) = Hm,s. Now if we have a sphere

{x 2 Fd
q : kxk+m · x = s} 2 S (Fd

q),

Then

⇡̄{H(m,1),s \ P (Fd+1
q )} = ⇡̄{(x, kxk) 2 Fd+1

q : (x, kxk) · (m, 1) = s}
= {⇡(x, kxk) : kxk+m · x = s}
= {x 2 Fd

q : kxk+m · x = s}
= Hm,s.

⇤

We now prove Corollary 1.

Proof. Let E ⇢ Fd
q . Then consider the set E0 ⇢ Fd+1

q given by E0 = (⇡|P (Fd+1
q ))

�1(E).

Then since |E0|  qd ⌧ qd+1, by Theorem 3,

sup
H2H (Fd+1

q )

|DE0(H)| � (1 + o(1))q�1/2|E0|1/2

= (1 + o(1))q�1/2|E|1/2.

Now if H 2 H (Fd+1
q ), let S = ⇡̄(H \ P (Fd+1

q )). Then

⇡(E0 \H) = E \ S.

Then since ⇡|P (Fd+1
q ) is bijective,

|E0 \H| = |E \ S|,
and so

|DE0(H)| = ||E0 \H|� q�1|E|| = ||E \ S|� q�1|E|| = |DE(S)|.
Then by Proposition 5,

sup
S2S

|DE(S)| = sup
H2H

|DE0(H)| � (1 + o(1))q�1/2|E|1/2.

⇤
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