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Abstract

This paper is a discussion of the development of the Hardy Inequality. We detail the

inequality in both the discrete and continuous cases, as well as notable work, by Hardy

and other mathematicians at the time, that contributed to its development. Much of the

content draws upon an article from The American Mathematical Monthly by Alois Kufner,

Lech Maligranda and Lars-Erik Persson [8].

1 Introduction

In this paper, we will discuss the Hardy inequality (in both the continuous and discrete cases),

Hardy’s motivation for his research that culminated in these results, and notable intermediate

results by Hardy and his contemporaries. We will then present Hardy’s proofs of his inequalities

and conclude with further results and proofs by other mathematicians.

The Hardy Inequality can be stated as follows:

1. Discrete case: if p > 1 and {ak}∞k=1 is a sequence of nonnegative real numbers, then

∞∑
n=1

(
1

n

n∑
k=1

ak

)p
≤
(

p

p− 1

)p ∞∑
n=1

apn (1)

2. Continuous case: if p > 1 and f is a nonnegative function on (0,∞) such that
∫∞

0
|f(x)|pdx <

∞, then f is integrable over the interval (0, x) for all x > 0 and∫ ∞
0

(
1

x

∫ x

0

f(t)dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)pdx. (2)

In both cases, ( p
p−1 )p is a sharp constant: it cannot be replaced by a smaller number such

that the inequality will remain true for all relevant sequences and functions.
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1.1 Lebesgue Spaces

Before going on to discuss these inequalities, we will first briefly discuss the Lebesgue Spaces Lp

and `p and related notation and terminology. We will be using the notation used in [1].

Given a measure space (X,S, µ) and 0 < p ≤ ∞, the Lebesgue Space Lp, or Lp(X,S, µ), is the

set of S-measurable functions f : X −→ F such that ||f ||p < ∞, where ||f ||p is the p-norm of f ,

and is defined as follows:

• if 0 < p <∞: ||f ||p =
(∫
|f |pdµ

) 1
p

• ||f ||∞ = inf{t > 0 : µ({x ∈ X : |f(x)| > t}) = 0}.

Moreover, when the measure µ is the counting measure on Z+, and a = (a1, a2, ...) is a

sequence in F and 0 < p <∞, then

||a||p =

( ∞∑
n=1

|an|p
) 1

p

; and ||a||∞ = sup{|an| : k ∈ Z+}

and we write `p in place of Lp(µ).

If we restrict p to the interval [1,∞] and write that Z(µ) be the set of S-measurable functions

that vanish except on a set of order zero, and denote the quotient space Lp(µ)/Z(µ) as Lp(µ),

we construct a Banach space of p-integrable functions. In Lp we simply say that the p-norm of

a function f , ||f ||p, is equal to the norm of its representative in Lp. In the case of the counting

measure, Lp(µ) = Lp(µ) = `p(µ) as, with respect to this measure, the only set of measure zero

is the empty set.

2 Motivation and Prior Results

Before detailing Hardy’s proofs of the main results, we will address Hardy’s motivation for

beginning work toward these results, important theorems that will be of use to a reader of this

paper, and Hardy’s related results prior to his proof of his continuous and discrete inequalities.

2.1 Motivation: The Hilbert Inequality

In the article by Kufner, Maligranda, and Persson [8], they write that ”it seems completely clear

that Hardy’s original motivation when he began the research that culminated in his discovery

of the inequalities [(1) and (2)] was to prove (the weak form of) the Hilbert inequality.” This

inequality (and variants of it) pertains to sequences {am}m≥1 and {bn}m≥1 of nonnegative real

numbers such that
∑∞
m=1 a

2
m <∞ and

∑∞
n=1 b

2
n <∞, or in the notation we introduced earlier:

a, b ∈ `2(µ). In this context, we have the following variants of the Hilbert Inequality:
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• Weak form: the double series

∞∑
n=1

∞∑
m=1

ambn
m+ n

converges (3)

• Typical (Strong) form: the inequality

∞∑
n=1

∞∑
m=1

ambn
m+ n

≤ π

( ∞∑
m=1

a2
m

) 1
2
( ∞∑
n=1

b2n

) 1
2

(4)

holds, and π is a sharp constant.

• Generalization to `p: for p > 1

∞∑
n=1

∞∑
m=1

ambn
m+ n

≤ π

sin (πp )

( ∞∑
m=1

apm

) 1
p
( ∞∑
n=1

bp
′

n

) 1
p′

(5)

These aforementioned inequalities, in the special case where our sequences a and b are the

same sequence, imply the weaker inequality that was of interest to Hardy: if for a nonnegative

sequence {am}m≥1 such that a ∈ `2(µ), then

∞∑
n=1

∞∑
m=1

aman
m+ n

converges. (6)

2.2 Useful Theorems and Inequalities

In the discussion and proofs that follow, there will applications of several inequalities. These

inequalities are included here for ease of reading.

2.2.1 Dual Exponent

For 1 ≤ p ≤ ∞, the dual exponent of p is p′ ∈ [1,∞] such that

1

p
+

1

p′
= 1

2.2.2 Young’s Inequality

If 1 < p <∞, then ∀a, b ≥ 0

ab ≤ ap

p
+
bp

′

p′
(7)
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2.2.3 Hölder’s Inequality

If (X,S, µ) is a measure space, 1 ≤ p ≤ ∞, and f, h : X −→ F are S-measurable, then

||fh||1 ≤ ||f ||p||h||p′ (8)

2.2.4 Minkowski’s Inequality

If (X,S, µ) is a measure space, 1 ≤ p ≤ ∞, and f, h ∈ Lp(µ) then

||f + h||p ≤ ||f ||p + ||h||p (9)

2.3 Intermediate Results

In the course of proving the final form of each the discrete and continuous cases of the Hardy

Inequality, Hardy and his contemporaries proved various related results. Focusing primarily on

the contributions from Hardy’s 1915 [4], 1919 [5], and 1920 [6] articles, relevant results will be

presented here.

2.3.1 1915 Article

Theorem 2.1. let a > 0, f(x) be non-negative and integrable on (a,∞), and denote F (x) =∫ x
a
f(t)dt. The convergence of the any of the integrals

∫ ∞
a

f(x)F (x)

x
dx,

∫ ∞
a

(
F (x)

x

)2

dx,

∫ ∞
a

∫ ∞
a

f(x)f(y)

x+ y
dxdy

implies that of the others.

Theorem 2.2. The convergence of
∫∞
a
f(x)2dx for f non-negative implies that of

∫ ∞
a

(
F (x)

x

)2

dx

Corollary 2.2.1. The convergence of
∫∞
a
f(x)2dx for f non-negative implies that of the integrals

in Theorem 2.1.

Theorem 2.3. The convergence of
∑
a2
n when an ≥ 0 implies that of

∞∑
n=0

(
An
n

)2

where An =
∑n
k=1 ak.
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Theorem 2.4. let a > 0, f(x), g(x) be non-negative and integrable on (a,∞), and denote F (x) =∫ x
a
f(t)dt, G(x) =

∫ x
a
g(t)dt The following hypotheses are equivalent:

(1)

∫ ∞
a

f(x)G(x)

x
dx and

∫ ∞
a

F (x)g(x)

x
dx are convergent,

(2)

∫ ∞
a

F (x)G(x)

x2
dx is convergent,

(3)

∫ ∞
a

f(x)g(y)

x+ y
dxdy is convergent.

Corollary 2.4.1. The convergence of
∫∞
a
f(x)2dx and

∫∞
a
g(x)2dx implies that of the integrals

in Theorem 2.4.

2.3.2 1919 Article

This article included a proof of the continuous case of the Hardy Inequality for p = 2, with the

sharp constant 4, although there was no mention of it being a sharp constant.

Theorem 2.5. When an ≥ 0 and
∫∞
a
f(x)2dx is convergent,

∫ ∞
a

(
F (x)

x

)2

dx =

∫ ∞
a

(
1

x

∫ x

a

f(t)dt

)2

dx ≤ 4

∫ ∞
0

f(x)2dx.

2.3.3 1920 Article

The most relevant contributions from this article are Hardy’s presentation of a proof by Frigyes

Riesz of the Hardy Inequality in the discrete case with a weaker constant, as well as a subsequent

improvement to said constant.

Theorem 2.6 (Proved by Riesz). If p > 1, an ≥ 0, and
∑
axn is convergent, then

N∑
n=1

(
1

n

n∑
k=1

ak

)p
≤
(

p2

p− 1

)p N∑
n=1

apn

Theorem 2.7. If p > 1, an ≥ 0, and
∑
axn is convergent, then

N∑
n=1

(
1

n

n∑
k=1

ak

)p
≤ (p ζ(p))

p
N∑
n=1

apn

where ζ(p) =
∑∞
n=1 n

−p.

2.3.4 Lead up to the 1925 Article

In the 1925 article, Hardy first published the inequalities of interest, with the sharp constants.

Prior to this paper, however, in a 1921 letter to Hardy from Edmund Landau, Landau provided
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a proof of the discrete inequality in the following form [8]:

Theorem 2.8 (Proved by Landau). If p > 1, an ≥ 0,
∑
axn is convergent, then

N∑
n=1

(
1

n

n∑
k=1

ak

)p
≤
(

p

p− 1

)p N∑
n=1

apn

and the constant
(

p
p−1

)p
is sharp when N =∞.

Additionally, in another letter, Landau drew Hardy’s attention to the fact that, in his 1920

paper, Hardy had remarked that (p/(p − 1))p was the best constant in the continuous case,

without providing a proof. This exchange was addressed in Hardy’s 1925 paper alongside such a

proof.

3 Proof of the Hardy Inequality

We will now present Hardy’s proofs of (1) and (2) as they were originally presented in his 1925

paper [7], albeit with slight modification for notational simplicity.

3.1 Continuous Case

Theorem 3.1. Suppose that f(x) ≥ 0, p > 1, that f Lebesgue integrable over any finite interval

(0, X), and

F (x) =

∫ x

0

f(t)dt;

and that f ∈ Lp(R+). Then∫ ∞
0

(
F (x)

x

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)pdx.

Proof. By applying integration by parts and making use of the chain rule
(
d
dxF (x)p = pF (x)p−1f(x)

)
:

∫ X

ε

(
F (x)

x

)p
dx = − 1

p− 1

∫ X

ε

F (x)p
d

dx
(x1−p)dx

=
ε1−p

p− 1
F (ε)p − X1−p

p− 1
F (X)p +

1

p− 1

∫ X

ε

x1−p d

dx
(F (x)p)dx

=
ε1−p

p− 1
F (ε)p − X1−p

p− 1
F (X)p +

p

p− 1

∫ X

ε

x1−pF (x)p−1f(x)dx

≤ ε1−p

p− 1
F (ε)p +

p

p− 1

∫ X

ε

x1−pF (x)p−1f(x)dx.
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When ε −→ 0, by Hölder’s Inequality (8), we have that

F (ε)p =

(∫ ε

0

f(t)dt

)p
≤
∫ ε

0

f(t)pdt

(∫ ε

0

dt

)p−1

= o(εp−1).

For δ > 0,∃εδ so that ∀ε ≤ εδ:
F (ε)p < (p− 1)δ||f ||ppεp−1.

Also,

∫ X

ε

F (x)

x

p−1

f(x)dx ≤

(∫ X

ε

f(x)pdx

) 1
p
(∫ X

ε

F (x)

x

p

dx

) 1
p′

≤ ||f ||pp

(∫ X

ε

F (x)

x

p

dx

) 1
p′

Denoting W =
(∫X

ε
F (x)
x

p
dx
)

, this yields that:

W < δ||f ||pp +
p

p− 1
||f ||pW 1/p′

or, equivalently, (
W

||f ||pp

)p
− p

p− 1

(
W

||f ||pp

)p−1

− δ < 0.

As the equation ayp+byp−1−1 = 0 has just one positive root, so too does this previous equation.

If we denote that root by η, it is clear that W
||f ||pp < η. On the other hand, however, as p

p−1 > 1

(
p

p− 1
+ δ

)p
− p

p− 1

(
p

p− 1
+ δ

)p−1

− δ = δ

((
p

p− 1
+ δ

)p−1

− 1

)
> 0.

As such, η < p
p−1 + δ, W

||f ||pp <
p
p−1 + δ, and

W =

∫ X

ε

(
F (x)

x

)p
dx < ||f ||pp

(
p

p− 1
+ δ

)p
.

As this will hold ∀ε ≤ εδ and all X > 0, we have that∫ ∞
0

(
F (x)

x

)p
dx ≤

(
p

p− 1
+ δ

)p ∫ ∞
0

f(x)pdx,

which is equivalent to our claim, as δ is arbitrary.

Later in the paper, Hardy proves that (p/(p− 1))p is the best possible constant:
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Theorem 3.2. The inequality (2) is strict ((p/(p− 1))p is the best possible constant).

Proof. To show that this is the best possible constant, we proceed as follows:

let δ > 0, f =

0 0 ≤ x < 1

x−(λ+ε) 1 < x
,

where λ = 1/p, 0 < ε < 1
2 (1− λ) < 1− λ; and choose X = X(p, δ) so that

X−1 < δX−
1
2 (1+λ) < δX−(λ+ ε).

This gives us that ∫ ∞
0

f(x)pdx =

∫ ∞
1

x−(1+pε)dx =
1

pε

F (x)

x
=

1

x

∫ x

1

t−(λ+ε) =
1

x

x1−(λ+ε) − 1

1− (λ+ ε)
(for x > 1),∫ ∞

0

(
F (x)

x

)p
dx =

(
p

p− 1− pε

)p ∫ ∞
1

(x−(λ+ε) − x−1)pdx

>

(
p

p− 1

)p ∫ ∞
X

x−(1+pε)dx

=

(
p

p− 1− pε

)p
(1− δ)pX

−pε

pε
=

(
p

p− 1− pε

)p
(1− δ)pX−pε

∫ ∞
0

f(x)pdx.

As delta is arbitrary, we can make (1− δ)p as close to 1 as we like. Similarly, we can make X−pε

as close to 1 as we like through our choice of ε. By doing so, we get the following result for this

choice of f(x): ∫ ∞
0

(
F (x)

x

)p
dx >

(
p

p− 1

)p ∫ ∞
0

f(x)pdx

As such, for this choice of f(x) we have equality. Thus, there can be no smaller constant in (2)

that will still hold for all functions of interest.

3.2 Discrete Case

In his 1925 paper, Hardy utilizes the continuous inequality to prove a more general version of

the discrete inequality. We will present this proof here:

Theorem 3.3. Suppose that an > 0 and λ > 0 ∀n > 0, that An = λ1a1 + ... + λnan, that

Λn = λ1 + ...+ λn, and that
∑
λna

p
n is convergent. Then

∞∑
n=1

λn

(
An
Λn

)p
≤
(

p

p− 1

) ∞∑
n=1

λna
p
n.
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Proof. Denote bn = An/Λn. First, note that we need only prove the claim for a sum from

n = 1 up to an arbitrary, finite N , as our claim will then follow by taking the limit as n −→ ∞.

What’s more, we will simply look at the special case of a monotonically decreasing sequence

(a1 ≥ ... ≥ aN ). To justify this, we claim that, as
∑
λna

p
n is convergent,

∑
λnb

p
n will attain a

maximal value for some sub-sequence of {an}n≥1.

To see this, suppose that aµ < aµ for some µ < ν, and define α by

αp =
λµa

p
µ + λνa

p
ν

λµ + λν

so that aµ < α < aν . We then have that

λµaµ + λνaν ≤ (λµ + λν)1/p′(λµa
p
µ + λνa

p
ν)1/p = (λµ + λν)α.

If An became A′n when α is substituted for both aµ and aν , then when n < µ An = A′n, when

µ ≤ n < ν An < A′n because aµ is replaced by α, and An ≤ A′n when ν < n because (λµaµ+λνaν)

will be replaced by (λµ + λν)α. This replacement would thus increase
∑
λnb

p
n. As such, the

sub-sequence was not the maximal one. Thus, we need only work with monotonically decreasing

sequences.

Next, we note that if {an}n>0 is monotonically decreasing, then {bn}n>0 = {An/Λn}n>0 will

also be monotonically decreasing. The condition for that is bn−1 ≥ bn or An−1Λn ≥ AnΛn−1.

Expanded, this can be written as the condition:

(λ1 + ...+ λn)(λ1a1 + ...+ λn−1an−1) ≥ (λ1 + ...+ λn−1)(λ1a1 + ...+ λnan)

Removing common factors yields:

λn(λ1a1 + ...+ λn−1an−1) ≥ (λ1 + ...+ λn−1)λnan

λ1a1 + ...+ λn−1an−1 ≥ λ1an + ...+ λn−1an,

which is clearly true as a1 ≥ an, ..., an−1 ≥ an.

Finally, we will now proceed by utilizing Theorem 3.1 and applying it to a carefully chosen

step function:

f(x) =


a1 0 ≤ x < Λ1

an Λn−1 ≤ x ≤ Λn, n = 2, 3, ..., N

0 ΛN ≤ x

For this function, ∫ ∞
0

f(x)pdx =

∞∑
n=1

(Λn − Λn−1)apn =

∞∑
n=1

λna
p
n
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If Λn−1 ≤ x ≤ Λn, then

F (x)

x
=
λ1a1 + ...+ λn−1an−1 + (x− Λn−1)an

x
,

which will decrease monotonically from An−1/Λn−1 to An/Λn as x increases from Λn−1 to Λn.

Thus
F (x)

x
≥ An

Λn
when Λn−1 ≤ x < Λn.

Combining these observations with Theorem 3.1 and the earlier simplifications that we made

yields the desired result:

N∑
n=1

λn

(
An
Λn

)p
≤
∫ ∞

0

(
F (x)

x

)p
≤
(

p

p− 1

)p ∫ ∞
0

f(x)pdx =

(
p

p− 1

) N∑
n=1

λna
p
n

4 Further Results

Having proven our main result, we will now proceed to explore alternative proofs and further

results.

4.1 Pólya’s Proof

In that very same article, Hardy also shared an alternative proof of Theorem 3.1 which had been

pointed out to him by George Pólya in their correspondence. This proof, while beginning in

the same way, makes a few notable simplifications and thus avoids some of the more technical

arguments in Hardy’s proof. We present this alternative proof here:

Proof. Suppose that 0 < α < β < X. Recall, from Hardy’s proof, that:∫ X

ε

(
F (x)

x

)p
dx ≤ ε1−p

p− 1
F (ε)p +

p

p− 1

∫ X

ε

x1−pF (x)p−1f(x)dx

By taking this inequality and replacing F (x) with F (x)− F (α) and ε with α, dropping the first

term (which is non-negative), and applying Hölder’s inequality (8) in the same way we do in

Hardy’s proof, this yields:∫ X

α

(
F (x)− F (α)

x

)p
dx ≤ p

p− 1

∫ X

α

(
F (x)− F (α)

x

)p−1

f(x)dx ≤
(

p

p− 1

)p ∫ X

α

f(x)pdx.

and ∫ X

β

(
F (x)− F (α)

x

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)pdx.
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As f(x) is non-negative, F (x) will be monotonically increasing. Thus, F (x) − F (α) increases

monotonically to F (x) as α −→ 0. Hence:∫ X

β

(
F (x)

x

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)pdx,

which proves the theorem, as β and X are arbitrary and we can apply this inequality for β −→ 0

and X −→∞.

4.2 The Hardy Operator

One consequence of Hardy’s Inequality, is that the discrete Hardy operator h and the continuous

Hardy operator H, defined by:

h(an) =

{
1

n

n∑
k=1

ak

}
, Hf(x) =

1

x

∫ x

0

f(t)dt,

map the spaces lp and Lp (p > 1) into themselves, respectively. Moreover, each of these operators

have norm p′ = p
p−1 .

Proof. First, we recall that Lp and lp are Banach spaces. The norm of a linear map, T between

Banach spaces V and W is given by ||T || = sup{||Tf ||W : f ∈ V and ||f ||V ≤ 1}. Rephrasing

Hardy’s inequality in terms of the lp and Lp norms and the continuous and discrete Hardy

operators yields:

||h({an})||plp ≤
(

p

p− 1

)p
||a||plp

||Hf(x)||pLp
≤
(

p

p− 1

)p
||f(x)||pLp

.

By exponentiation of both equations by 1/p, we arrive at:

||h({an})||lp ≤
p

p− 1
||a||lp

||Hf(x)||Lp
≤ p

p− 1
||f(x)||Lp

,

where the constant p′ = p
p−1 is the best constant (for any sequence or function). Paying special

attention to the case of functions in Lp whose norms are less than or equal to 1, by the definition

of the norm of a linear map and these inequalities, we immediately arrive at the desired result.
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4.3 Ingham’s Proof of The Hardy Inequality

By making use of the Hardy operator and Minkowski’s Inequality (9), Albert Ingham was able

to provide the following, much simpler, proof [8]:

Proof. By a simple change of variables, we can write that

Hf(x) =
1

x

∫ x

0

f(t)dt =

∫ 1

0

f(tx)dt.

By applying Minkowski’s inequality, it follows that(∫ ∞
0

(Hf(x)))pdx

)1/p

= ||Hf(x)||p =

∣∣∣∣∣∣∣∣∫ 1

0

f(tx)dt

∣∣∣∣∣∣∣∣
p

≤
∫ 1

0

||f(tx)||pdt =

∫ 1

0

(∫ ∞
0

f(tx)pdx

)1/p

dt

=

∫ 1

0

(∫ ∞
0

f(s)p
ds

t

)1/p

dt =
p

p− 1

(∫ ∞
0

f(s)pds

)1/p

By exponentiation of both sides of this equation, we arrive at the desired result:∫ ∞
0

(Hf(x)))pdx =

∫ ∞
0

(
1

x

∫ x

0

f(t)dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)pdx

4.4 Carleman’s Inequality

The 1925 paper [7] also presented the following inequality, which is derived by taking a limit of

the discrete case of Hardy’s inequality. This result was pointed out to Hardy by Pólya in one of

the many letters that they had sent to one another, and can be stated as:

Theorem 4.1. Suppose that bn > 0 and λ > 0 ∀n > 0, that Λn = λ1 + ...+λn, and that
∑
λnbn

is convergent. Then ∀N
N∑
n=1

λn(bλ1
1 ...bλn

n )1/Λn ≤ e
N∑
n=1

λnbn,

and e is the best possible constant for this inequality.

Proof. In the inequality in Theorem 3.3,

N∑
n=1

an

(
λ1a1 + ...+ λnan
λ1 + ...+ λn

)p
≤
(

p

p− 1

)p N∑
n=1

λna
p
n
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we proceed by denoting apn as bn, and take the limit as p −→∞. The right hand side becomes

lim
p−→∞

(
p

p− 1

)p N∑
n=1

λnbn = lim
p−→∞

(
1 +

1

p− 1

)p N∑
n=1

λnbn = e

N∑
n=1

λnbn,

and on the left hand side, we will address each term of the sum,

lim
p−→∞

(
λ1b

1/p
1 + ...+ λnb

1/p
n

λ1 + ...+ λn

)p
,

separately. For each such term, we can rewrite it as

lim
p−→∞

(
n∑
i=1

wib
1/p
i

)p
,

where wi = λi/Λn and
∑n
i=1 wi = 1. Letting k = 1/p, we can proceed as follows, making use of

the fact that exp is a continuous function on R:

lim
p−→∞

(
n∑
i=1

wib
1/p
i

)p
= lim
k−→0

(
n∑
i=1

wib
k
i

)1/k

= lim
k−→0

exp

log

( n∑
i=1

wib
k
i

)1/k


= lim
k−→0

exp

{
log
(∑n

i=1 wib
k
i

)
k

}
= exp

{
lim
k−→0

log
(∑n

i=1 wib
k
i

)
k

}
.

We will next make use of L’Hôpital’s rule for limits. This is justified, as

lim
k−→0

log

(
n∑
i=1

wib
k
i

)
= log

(
n∑
i=1

wi

)
= log(1) = 0 and lim

k−→0
k = 0.

As such,

lim
k−→0

log
(∑n

i=1 wib
k
i

)
k

= lim
k−→0

d
dk log

(∑n
i=1 wib

k
i

)
d
dkk

= lim
k−→0

∑n
i=1 wib

k
i log(bi)∑n

j=1 wjb
k
j

=

∑n
i=1 wi log(bi)∑n

j=1 wj
=

n∑
i=1

wi log(bi).

Utilizing this, our limit becomes,

lim
p−→∞

(
n∑
i=1

wib
1/p
i

)p
= exp

{
n∑
i=1

wi log(bi)

}
= exp

{
log

(
n∏
i=1

bwi
i

)}
=

n∏
i=1

bwi
i .
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Returning to our original notation, this can be written as:

lim
p−→∞

(
λ1b

1/p
1 + ...+ λnb

1/p
n

λ1 + ...+ λn

)p
= (bλ1

1 ...bλn
n )1/Λn .

Combined with our previous result when taking the limit of the right hand side of Hardy’s

inequality, we arrive at our desired result:

N∑
n=1

λn(bλ1
1 ...bλn

n )1/Λn ≤ e
N∑
n=1

λnbn.

By applying this result to the special case where ∀n λn = 1, and thus Λn = n, we can arrive at

the following result:

Theorem 4.2 (Carleman’s Inequality). Suppose that {an}n>0 is a sequence of non-negative real

numbers. Then
N∑
n=1

(a1...an)1/n ≤ e
N∑
n=1

an.

This result was originally proven by Torsten Carleman in 1923.

4.5 The Copson Inequality

In a 1927 article in the Journal of the London Mathematical Society [2], E. T. Copson presented

an inequality, which I will refer to as “The Copson Inequality”. The following year, Hardy

explained that this inequality and his own (the discrete case) were “...‘reciprocal’ in the sense

that either can be deduced from the other...” [3]. This inequality can be stated as:

Theorem 4.3 (Copson’s Inequality). Suppose p > 1, λn > 0, an > 0 for n = 1, 2, ..., that

Λn = λ1 + ...+ λn, and that
∑∞
n=1 λna

p
n converges. Then

∞∑
n=1

λn

( ∞∑
k=n

λkak
Λk

)p
≤ pp

∞∑
n=1

λna
p
n.

Hardy’s observation that the two inequalities are “reciprocal”, or dual, can be phrased as follows:

Theorem 4.4. Suppose p > 1, that λn > 0, an ≥ 0, Λn = λ1 + ...+ λn, An = λ1a1 + ...+ λnan,

and A?n = λnan
Λn

+ λn+1an+1

Λn+1
+ ..., for n ≥ 1. Then:

∞∑
n=1

λn

(
An
Λn

)p
≤
(

p

p− 1

)p ∞∑
n=1

λna
p
n

∞∑
n=1

λn A
?
n
p ≤ pp

∞∑
n=1

λna
p
n,
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and the constants ( p
p−1 )p and pp are the best such constants in each case respectively. Moreover,

each of these inequalities may be deduced from the other.
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