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1 Introduction

It was a great breakthrough in algebraic number theory when Minkowski real-
ized that certain geometric ideas are very powerful in dealing with arithmetic
problems. He was able to prove that in a number field K of degree n, every
ideal class in a number ring can be represented by an ideal with norm less than
a constant multiple of

√
∆, where ∆ is the discriminant of the number ring.

His proof relies on two crucial ideas. First, the natural embedding K 7→ Rn
allows us to regard the ring of integer R as a lattice in Rn whose fundamental
parallelotope F has volume a constant multiple of

√
∆. Second, a lattice in Rn

contains a nonzero lattice point in a convex, measurable, centrally symmetric
subset of Rn, as long as the volume of the set is larger than 2n times the volume
of the fundamental parallelotope of the lattice.

The motivation for this paper is a partial converse to Minkowski’s first idea.
He showed that given a basis for a number ring, we have a set of volume a
constant multiple of

√
∆ that contains the image of the basis under the natural

embedding K 7→ Rn. We will show that in poly-quadratic field K, there exists
a set with volume a constant multiple of ∆ that does not contain the image of
any integral basis under the natural map K 7→ Rn.

Theorem 1 Consider a poly-quadratic extension K = Q(
√
m1,
√
m2, ...,

√
mn)

where all of m1,m2, ...,mn are positive and pairwise coprime. Then there exists
a convex, measurable, centrally symmetric subset E of Rn with volume a con-
stant multiple of ∆ that does not contain the image under the natural embedding
K 7→ Rn of any integral basis for the number ring R of K.

Theorem 2 Consider a poly-quadratic extension K = Q(
√
m1,
√
m2, ...,

√
mn)

where not all of m1,m2, ...,mn are positive and m1,m2, ...,mn are pairwise co-
prime. Then there exists a convex, measurable, centrally symmetric subset E of
Rn with volume a constant multiple of ∆ that does not contain the image under
the natural embedding K 7→ Rn of any integral basis for the number ring R of
K.
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2 Preliminaries

First, we would like to state explicitly the definition of the natural embedding
K 7→ Rn.

Definition 1 Let K be a number field with real embeddings σ1, σ2, ..., σr, and
τ1, τ̄1, ..., τs, τ̄s as the remaining embeddings of K 7→ C . Thus, r + 2s =
n. A mapping K 7→ Rn is obtained by sending each α in K to the n-tuple(
σ1(α),..., σr(α),Re(τ1(α)), Im(τ1(α)),..., Re(τs(α)), Im(τs(α))

)
The first step of proving the theorems is to find the Galois group of K. In

order to do so, we first need the degree of K = Q(
√
m1,
√
m2, ...,

√
mn). As we

would expect, the degree is 2n.

Lemma 1 Let K be a field, a and b are elements of K. Then the field L =
K[
√
a,
√
b] has degree 4 over K if and only if

√
a,
√
b and

√
ab are not elements

of K.

Proof. Assume the field L has degree 4 over K. Notice that K ′ = K[
√
a] is a

subfield of L such that L = K ′[
√
b]. Thus, [L : K] = [L : K ′][K ′ : K] ≤ 2.2 = 4.

This forces [K ′ : K] to be 2, or equivalently
√
a is not in K. The proofs for

√
b

and
√
ab are similar.

Conversely, suppose
√
a,
√
b and

√
ab are not elements of K. Then certainly

K ′ = K[
√
a] is an extension field of degree 2 over K, so it suffices to show

that L is an extension field of degree 2 over K[
√
a], as then we would have

[L : K] = [L : K[
√
a]][K[

√
a] : K] = 4. Indeed, we rewrite L as K ′[

√
b]. If

[L : K ′] is not 2, then we would have that K ′[
√
b] = L = K ′. This in turn

implies that
√
b is an element of K ′ = K[

√
a]. Hence we see that there exists

some x, y in K such that: √
b = x+ y

√
a

Squaring both sides and rearrange the terms we have:

(b− x2 − y2a).1− (2xy
√
a) = 0 (1)

Recall that K[
√
a] is an extension field of degree 2 over K, so 1 and

√
a are

linearly independent over K. This implies that the coefficient of
√
a in (1), xy,

must be 0. If x = 0, then we have that
√
b = y

√
a. This implies

√
ab = ya, an

element of K, a contradiction. If y = 0, then we have that
√
b = x, an element

of K, a contradiction. Hence we have that [L : K ′] = 2, which is exactly what
we want.

With the help of lemma 1, we can now find the degree of our poly-quadratic
extension field K.

Proposition 1 Let a1, a2, ..., an be n distinct, square free integers. Let K =
Q(
√
a1,
√
a2, ...,

√
an). Then K has degree 2n over Q if and only if

∏
k∈I ai is

not a perfect square, for all subset I of {1,2,. . . , n}
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Proof. Suppose that K has degree 2n over Q, and
∏
k∈I ai is a square for some

I. Relabel the ai’s if necessary, we can assume that a1a2...ak = c2 for some
integer c. Taking the square root of both sides we have:

√
a1 =

c
√
a2...ak

.

This implies that Q(
√
a1)⊂ Q(

√
a2,
√
a3, ...,

√
ak)⊂ Q(

√
a2,
√
a3, ...,

√
an). Thus,

K = Q(
√
a1,
√
a2, ...,

√
an) = Q(

√
a2,
√
a3, ...,

√
an). Then K has degree at most

2n−1 over Q, a contradiction.
Conversely, suppose that

∏
k∈I ai is not a perfect square, for all subset I of

{1,2,. . . , n}. We will show by induction on n that K has degree 2n over Q. The
base case n = 1 is trivial, and the case n = 2 is our lemma 1.

Now suppose the proposition is true for all k ≤ (n − 1). The inductive
hypothesis gives us that K0 = Q(

√
a1,
√
a2, ...,

√
an−2) has degree 2n−2 over Q.

Notice that K = K0[
√
an−1,

√
an], so we would be done if we are able to show

that [K : K0] = 4. By lemma 1, this is true if
√
an−1,

√
an, and

√
an−1an are

not in K0.
However, again by induction, Q(

√
a1,
√
a2, ...,

√
an−1) has degree 2n−1 over

Q, so
√
an−1 cannot be in K0 = Q(

√
a1,
√
a2, ...,

√
an−2), as we know K0 only

has degree 2n−2 over Q. With a similar reasoning as above, we can also see that√
an and

√
an−1an are not in K0. Now we can apply lemma 1 to show that

[K : K0] = 4.

Remark 1 With the help of this proposition, we can see that K = Q(
√
m1,
√
m2, ...,

√
mn)

where m1,m2, ...,mn are relatively prime, is a number field of degree 2n over Q.

Remark 2 One interesting corollary of this proposition is that the degree of
K = Q(

√
p1,
√
p2, ...,

√
pn) where p1, p2, ..., pn are primes, is 2n.

Remark 3 The Galois group G of K = Q(
√
m1,
√
m2, ...,

√
mn) where m1,m2, ...,mn

are relatively prime must have order 2n, and hence Gal(K/Q) ∼=
∏n
i=1Gal(Q(

√
mi)/Q) ∼=

(Z/2Z)n.

Continue to let m1, . . . ,mn be integers such that they are pairwise co-prime.
Let oK be the ring of integers for a number field K. Let K denote the poly-

quadratic extension Q(
√
m1, . . . ,

√
mn) andKi denote the extension (

√
m1, . . . ,

√
mi−1,

√
mi+1, . . . ,

√
mn).

Then by proposition 1, we see that [K : Q] = 2n = dn. Let

OK := Z1+Z
√
m1+· · ·+Z

√
m1m2+· · ·+Z√mimj+· · ·+Z√mi1mi2 · · ·mik+· · ·+Z

√
m1m2 · · ·mn

where 0 ≤ i1, i2, . . . ik ≤ n, i 6= j, ir 6= is. OK consists of Z-linear combinations
of square roots of all possible combinations of products of m1, . . . ,mn with each
appearing at most once (there are 2n of them). We immediately see that OK ⊆
oK . Also, since mi are pairwise co-prime, the products under the square root
are square-free and these specifically correspond to the 2n quadratic subfields
of K.
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Proposition 2 For any polyquadratic extension K = Q(
√
m1, . . . ,

√
mn) where

m1,m2, ...,mn are pairwise coprime,

OK ⊆ oK ⊆ OK/dn

where dn = [K : Q] = 2n.

Proof. We know that ifK ⊆ L are number fields and α ∈ oL then TrL/K(α) ∈
oK . Let α ∈ oKn . Then,

α = a1+a2
√
m1+· · ·+an+2

√
m1m2+· · ·+as

√
mi1mi2 · · ·mik+· · · a2n

√
m1m2 · · ·mn

where ai ∈ Q since these form a basis of K over Q. Now, consider β1 =
TrK/K1(α) where K1 = Q(

√
m2, . . .

√
mn), as above.

We have that TrK/K1(
√
mi1mi2 · · ·mik) =

{
0 if mij = m1 for any 1 ≤ j ≤ k,
2
√
mi1mi2 · · ·mik if mij 6= m1 for any 1 ≤ j ≤ k

Therefore, it follows that

β1 = 2a1 + a2 · 0 + 2a3
√
m2 + · · ·+ an+2 · 0 + · · ·+ a2n · 0 (2)

By induction hypothesis, we have that β1 ∈ oK1 ⊆ OK1/dn−1 = OK1/2n−1 ⊆
OK/2

n−1 since OK1 ⊆ OK . Let as be the coefficient of a term
√
mi1mi2 · · ·mik

in α which does not contain m1, for example
√
m2m3. Then,

√
mi1mi2 · · ·mik ∈

OK1 and from equation (2), it follows that 2as ∈ Z/2n−1, or as ∈ Z/2n.
Now, for all such

√
mi1mi2 · · ·mik where 0 ≤ i1, i2, . . . ik ≤ n, i 6= j, ir 6= is

except
√
m1m2 · · ·mn, there is at least one mt, 1 ≤ t ≤ n such that mij 6= mt

for any 1 ≤ j ≤ k. Thus by varying i over 1 ≤ i ≤ n and considering TrK/Ki(α),
we get that as ∈ Z/2n for all 1 ≤ s ≤ 2n − 1, similarly as above. So, we are
only left to prove the claim for a2n , the coefficient of

√
m1m2 · · ·mn.

To prove this, we consider γ = TrK/L(α), with L = Q[
√
m1,
√
m2, ...,

√
mn−1mn].

Let < σ >= (K/L) where σ maps
√
mn−1 7→ −√mn−1,

√
mn 7→ −√mn

and acts as identity on everything else. Then, TrK/L(
√
mi1mi2 · · ·mik) ={

0 if
√
mi1mi2 · · ·mik contains either mn−1 or mn but not both,

2
√
mi1mi2 · · ·mik otherwise

Thus,

γ = TrK/L(α) = 2a1 + a2
√
m1 + · · ·+ 2a2n

√
m1m2 · · ·mn

and again by induction hypothesis we see that 2a2n ∈ Z/2n−1, since γ ∈ oL ⊆
OL/2

n−1 ⊂ OK/2
n−1. This implies that a2n ∈ Z/2n and this completes our

proof.
We finally have,

OK ⊆ oK ⊆ OK/dn
where dn = [K : Q] = 2n, for any poly-quadratic extensionK = Q(

√
m1, . . . ,

√
mn)

where mi are relatively prime.
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The bound dn = 2n is the best possible one in the case when m1,m2, ...,mn

are congruent to 1(mod4). In order to prove this, we will state without proof a
lemma:

Lemma 2 Let K and L be number fields with ring of integers R and S, re-
spectively. Let T be the ring of intergers of the compositum KL. Assume
that disc R and disc S are relatively prime. Then T = RS and disc T =
disc R[L:Q] disc S[K:Q]

This is proposition 12 and Exercise 23 in Marcus, Number fields.
Now let Ki = Q(

√
m1, . . . ,

√
mi). We know that each Ki is Galois over Q

and we have the tower of fields

K0 = Q ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn,

where [Ki : Q] = 2i for all 0 ≤ i ≤ n. We observe that Ki+1 = KiQ(
√
mi+1)

for all 0 ≤ i < n and Ki

⋂
Q(
√
mi+1) = Q since mi are relatively prime.

Let Li = Q(
√
mi). Now, we know that ∆Li = mi and from this we can find

the discriminant of Ki for all 1 ≤ i ≤ n. Thus, we see that ∆K1 = m1 and
(∆K1

,∆L2
) = 1 which gives ∆K2

= (∆K1
)2 ·(∆L2

)2 = (∆L1
·∆L2

)2. Proceeding

inductively, it follows that (∆Ki−1 ,∆Li) = 1 and ∆Ki = (∆Ki−1)2 · (∆Li)
2i−1

for all 2 ≤ i ≤ n. So, we get

∆Ki = (∆Ki−1)2·(∆Li)
2i−1

=
(

(∆Ki−2)2 · (∆Li−1)2
i−2
)2

(∆Li)
2i−1

= · · · =

(
i∏

k=1

∆Lk

)2i−1

= (

i∏
k=1

mk)2
i−1

Thus, we can see that (∆Ki ,∆Li+1)=1.
Since (∆Ki−1

,∆Li
) = 1, K1 = L1 and we know the integral basis of each Li,

inductively using lemma 2, we can find an integral basis for Ki by multiplying
pairwise the integral basis of Ki−1 and Li. Let Bi be the integral basis of Ki.
Then we see that

B1 =

{
1,

1 +
√
m1

2

}
, B2 =

{
1,

1 +
√
m1

2
,

1 +
√
m2

2
,

(
1 +
√
m1

2

)
·
(

1 +
√
m2

2

)}
and inductively it follows that

Bn =

{
1,

1 +
√
m1

2
,

1 +
√
m2

2
, . . . ,

(
1 +
√
m1

2

)
·
(

1 +
√
m2

2

)
, . . . ,

n∏
k=1

(
1 +
√
mk

2

)}

We see that the last element of the integral basis of Kn is 1
2n

∏n
k=1

(
1 +
√
mk

)
=

e(say) and e ∈ OKn/2
n. Thus, we see that the bound is sharp for this case.

Lemma 3 Let Q(
√
m1,
√
m2, · · · ,

√
mn) be an extension of degree 2n over Q.

Then this extension can be rewritten as Q(
√
x1,
√
x2, · · · ,

√
xn) where at least

n− 2 of the xi are 1(mod4).
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Proof. By the finiteness of the extension, we can assume that Q(
√
m1, . . . ,

√
mn)

is written such that the maximal number of mi ≡ 1 (mod 4). Also, we assume
for the purpose of contradiction that there are three mi 6≡ 1 (mod 4). We will
call them m1,m2,m3.

If two of these, WLOG, m1 and m2 are 3 mod 4, then

m =
m1m2

(m1,m2)2
≡ 1 (mod 4)

since the both the numerator and denominator will be 1 mod 4. Note that we
could write the extension as

Q(
√
m,
√
m2,
√
m3, . . . ,

√
mn)

and that this extension would have more roots that are 1 mod 4, contradicting
our assumption of maximality.

If two of these, WLOG, m1 and m2 are 2 mod 4 such that m1/2 ≡ m2/2
(mod 4), then m ≡ 1 (mod 4) where m is defined as above and the same con-
tradiction would result.

In the last case, WLOG, we can assume that m1 ≡ 3 (mod 4) and m2,m3 ≡
2 (mod 4) such that m2/2 6≡ m3/2 (mod 4). Let m be defined as above and
note that m ≡ 3 (mod 4). Additionally,

k =
m2m3

(m2,m3)2
≡ 3 (mod 4)

Thus, we can rewrite our extension as

Q(
√
m,
√
k,
√
m3, . . . ,

√
mn)

where m ≡ k ≡ 3 (mod 4) which puts us back in the first case and results in a
contradiction. This completes all possible cases. Therefore, the extension can
be written such that at least n− 2 of the square roots are 1 mod 4.

Corollary 1 Let L = Q(
√
m1, . . .

√
mn). Then there exists an element of o

with denominator greater than or equal to 2n−1.

Proof. From the lemma 3, we write

L = Q(
√
x1,
√
x2)(
√
m1, . . . ,

√
mn−2)

where each mi ≡ 1 (mod 4), x1, x2 6≡ 1 (mod 4). Note that (x1, x2) has an
element in the ring of integers with denominator 2. Adjoining the other n − 2
roots which are all 1 mod 4 one at a time and as we have seen in the discussion
after proposition 2, we have that there exists an element in the ring of integers
with denominator 2n−1 since every adjoined root that is 1 mod 4 has been shown
to increase the denominator of some term by 2.

Remark 4 This corollary shows that the bound dn = 2n is very close to be
optimal.
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In order to find the discriminant, we assume the following proposition that
can be deduced from the conductor-discriminant formula of class field theory.

Proposition 3 Let K be a poly-quadratic extension of Q. Then the discrimi-
nant of K equals the product of the discriminants of all quadratic subfields of
K.

Using the proposition above, we will prove

Proposition 4 Let K = Q(
√
m1,
√
m2, · · · ,

√
mn) with mi distinct and rela-

tively prime, n ≥ 3. Then ∆K = c(m1m2 · · ·mn)2
n−1

where c is a constant

depending only on n. Indeed, c equals one of 1, 162
n−2

, 642
n−2

.

Proof. Since the mi are coprime, there can only at most one mi that is 2(mod4).
Case 1: there is no mi that is 2(mod4).

Suppose among n integers m1,m2, ...,mn, we have k numbers congruent to
1 mod 4, and n − k numbers congruent to 3 mod 4. According to proposition
3, we know that discriminant of K equals the product of the discriminant of
Q(mI), where I ⊂ {1, 2, . . . , n}. We also know that the discriminant of Q(m)
equals m when m is 0 or 1 mod 4, and it equals 4m when m is 2 or 3 mod 4.
Hence, we have that

∆K = 4t
∏

I⊂{1,2,...,n}

mI

where t is the number of subsets I such that mI is not congruent to 1 mod 4.
Note that mI is congruent to 3 mod 4 if and only if mI contains an odd

number of mi that is congruent to 3 mod 4. Thus, the number of such subsets
I is equal to the number of subsets of {m1,m2, . . . ,mn} that contains an odd
number of mi that is congruent to 3 mod 4. That number is

2n−k(

(
k

1

)
+

(
k

1

)
+ ...) = 2k−12n−k = 2n−1

Thus,

∆K = 42
n−1 ∏

I⊂{1,2,...,n}

mI = 42
n−1

(m1m2 · · ·mn)2
n−1

Case 2: there is one mi that is 2(mod4),say m1. As above, we still have that

∆K = 4t
∏

I⊂{1,2,...,n}

mI

where t is the number of subsets I such that mI is not congruent to 1 mod 4.
Note that mI is not congruent to 1 mod 4 if and only if mI contains m1 or mI

contains an odd number of mi that is congruent to 3 mod 4 without containing
m1. In the first case, the number of such subsets I is 2n−1, in the second case
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the number of such subsets is 2n−2. Thus, in total, we have 3.2n−2 such sets I.
Hence

∆K = 43.2
n−2 ∏

I⊂{1,2,...,n}

mI = 642
n−2

(m1m2 · · ·mn)2
n−1

Now we are ready to prove the main theorems.

3 Totally real poly-quadratic fields

In this section, we will construct a set having volume a constant multiple of the
discriminant and not having the image under the Minkowski embedding defined
in section 1 of any integral basis of a poly-quadratic field generated by square
roots of relatively prime positive integers.

By proposititon 4, ∆K = c(m1m2 · · ·mn)2
n−1

where c is a constant depend-
ing on n. Also, recall that the image of any integral basis under the Minkowski
embedding is a R-basis for Rn.

We construct the set for a biquadratic extension(n = 2), and then extend
the same idea to poly-quadratic extensions.

Let K = Q(
√
m1,
√
m2). Consider the Z-module OK/d2 and the lattice LO

generated by the Minkowski embedding of OK/d2.
Consider

LO =
Z
d2

(1, 1, 1, 1) +
Z
d2

(
√
m1,−

√
m1,
√
m1,−

√
m1) +

Z
d2

(
√
m2,
√
m2,−

√
m2,−

√
m2)

+
Z
d2

(
√
m1m2,−

√
m1m2,−

√
m1m2,

√
m1m2)

and

LiO =
Z
d2

(1, 1, 1, 1) +
Z
d2

(
√
m1,−

√
m1,
√
m1,−

√
m1) +

Z
d2

(
√
m2,
√
m2,−

√
m2,−

√
m2)

+
i

d2
(
√
m1m2,−

√
m1m2,−

√
m1m2,

√
m1m2), i ∈ Z

So, we see that L0 =
⋃
i∈ZLi

O
. For x = (x1, x2, x3, x4), define f(x) = x1 −

x2 − x3 + x4. If x ∈ LiO we see that x satisfies the equation

f(x) = x1 − x2 − x3 + x4 =
d2 · i
d2

√
m1m2 = i

√
m1m2 (3)

Consider the convex centrally symmetric compact set C = [−
√
m1m2

2d2
,
√
m1m2

2d2
]d2

in Rd2 . We know that ∆K � (m1m2)2 and we see that V ol(C) = 1

d
d2
2

(m1m2)2 �
(m1m2)2 � ∆K .

Now, if there exists x ∈ LiO
⋂
C for i 6= 0, then we have

√
m1m2 ≤ |i

√
m1m2| = |f(x)| = |x1 − x2 − x3 + x4| ≤ |x1|+|x2|+|x3|+|x4| ≤

√
m1m2

2
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which is a contradiction.
Thus, LiO

⋂
C = φ for i 6= 0 and C can contain points from only L0

O and
hence,

LO
⋂
C ⊂ L0

O ⊂ R
d2

(1, 1, 1, 1)+ R
d2

(
√
m1,−

√
m1,
√
m1,−

√
m1)+ R

d2
(
√
m2,
√
m2,−

√
m2,−

√
m2),

which is a d2 − 1 dimensional R vector space and hence cannot contain d2 R-
linearly independent elements.

Now, let L be the lattice formed using the Minkowski embedding of the ring
of integers oK of K. Since we have oK ⊂ OK/d2 from proposition 2, we see
that L ⊂ LO. Hence L

⋂
C ⊂ LO

⋂
C ⊂ L0

O and from above, L
⋂
C can only

contain ≤ (d2 − 1) linearly independent elements. Thus, C cannot contain any
Z-basis of L.

Now we are ready to prove theorem 1.

Proof (of theorem 1). Let α2j =
√
mj and α0 = 1.

Now we define αi for all 1 ≤ i ≤ 2n − 1 inductively from α2k . Expand
i in the binary system and let i =

∑n−1
k=0 δ(k)2k where δ(k) = 0 or 1. Then

αi =
√∏

1≤k≤n−1,δ(k)=1mk and we see that

{αi| 0 ≤ i ≤ 2n − 1} =
{√∏

j∈J mj | J ⊂ {0, . . . , n− 1}
}

Let G = Gal(K/Q). Let σ0 denote the identity automorphism in G and
σ2p , 0 ≤ p ≤ n− 1 be elements of Gn defined by

σ2p(αp) = −αp and σ2p(αk) = αk for k 6= p and 0 ≤ k ≤ n− 1

Let Gp be the subgroup {σ0, σ2p} of Gn and we know that Gn =
∏n−1
p=0 Gp, as

[K : Q] = 2n.
Now we define all 2n elements σi of G as follows: expand i in the binary

system and let i =
∑n−1
k=0 δ(k)2k where δ(k) = 0 or 1. If k1, . . . , kt are the ones

for which δ(k) = 1, then σi = σ2k1 ◦ · · · ◦ σ2kt .

Now, for β ∈ Kn let the Minkowski embedding be (σ0(β), σ1(β), . . . , σ2n−1(β)).
Let LO be the lattice corresponding to OK/dn and L be the lattice formed by
the Minkowski embedding of the ring of integers. As in the bi-quadratic case,
consider

LO =

2n−1∑
i=0

Z
dn

(σ0(αi), σ1(αi), . . . , σ2n−1(αi))

and for each j ∈ Z, consider

LjO =

2n−2∑
i=0

Z
dn

(σ0(αi), σ1(αi), . . . , σ2n−1(αi))+
j

dn
(σ0(α2n−1), σ1(α2n−1), . . . , σ2n−1(α2n−1))

9



We know that α2n−1 =
√
m20 · · ·m2n−1 � ∆

(1/2n)
K . Also, L0 =

⋃
j∈ L

j
O.

Now we define f(x) for x ∈ Rdn . Let a(i) for 0 ≤ i ≤ 2n − 1 be such that

a(i) =

{
1 if the binary expression of i has even number of ones,

−1 if the binary expression of i has odd number of ones.

Then, define

f(x) =

2n−1∑
i=0

a(i)xi

We have the following observations-

(i) We see that f is linear, i.e., f(x+ y) = f(x) + f(y) for x, y ∈ Rdn and for
c ∈ R, f(cx) = cf(x).

(ii) σi(α2n−1) = a(i)α2n−1 for all 0 ≤ i ≤ 2n − 1. This is because each σi
will flip the sign of

√
mk if and only if the coefficient of 2k in the binary

expansion of i is 1. This implies the number of times σi will flip the sign
of α2n−1 =

√
m1m2 · · ·mn is the same as the number of 1 in the binary

expansion of i, and thus σi(α2n−1) = a(i)α2n−1.

This implies that

f(
j

dn
(σ0(α2n−1), σ1(α2n−1), . . . , σ2n−1(α2n−1))) = jα2n−1 = j

√
m20 · · ·m2n−1 for j ∈ Z

(iii) For 0 ≤ i ≤ 2n − 2, f
(
k
dn

(σ0(αi), σ1(αi), . . . , σ2n−1(αi))
)

= 0.

Notice that each σj will flip or keep the sign of αi, so it suffices to show
that the number of σj that fixes αi is equal to the number of σj that flips
αi. Recall that σj will flip the sign of

√
mk if and only if the coefficient of

2k in the binary expansion of j is 1. Thus, based on the way αi is defined,
σj will flip the sign of αi if and only if the number of common 1 in the
binary expansion of i and j is odd. Thus, the problem of counting σj that
will flip the sign of αi is reduced to the following lemma:

Lemma 4 Given an integer i, 0 ≤ i ≤ 2n − 2, the number of integers
j, 0 ≤ i ≤ 2n−1 such that the number of common 1 in the binary expansion
of i and j is odd is 2n−1.

Proof. Suppose the number of 1 in the binary expansion of i is x. Then
the j that would satisfies the lemma would have 1, 3, 5, · · · 1 in common
with i’s binary expansion in its binary expansion. Such number of j is(
x

1

)
2n−x+

(
x

3

)
2n−x+

(
x

5

)
2n−x+· · · = 2n−x(

(
x

1

)
+

(
x

3

)
+

(
x

5

)
+· · · ) = 2n−x.2x−1 = 2n−1

Thus, we see that for x ∈ LjO, f(x) = jα2n−1 = j
√
m1 · · ·mn for j ∈ Z.
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Consider the convex centrally symmetric compact set

C = [−
√
m1 · · ·mn

2dn
,

√
m1 · · ·mn

2dn
]dn

The volume

V ol(C) =
(m1 · · ·mn)2

n−1

ddnn
� (m20 · · ·m2n−1)2

n−1

� ∆Kn

Now, if there exists x ∈ LjO
⋂
C for j 6= 0, then we have

√
m1 · · ·mn ≤∣∣j√m1 · · ·mn

∣∣ = |f(x)| =
∣∣∣∑2n−1

i=0 a(i)xi

∣∣∣ ≤∑2n−1
i=0 |xi| ≤

√
m1 · · ·mn/2.

This is a contradiction. After this, we can repeat the same argument as in
the case n = 2. We have that LjO

⋂
C = φ for j 6= 0 and C can contain points

from only L0
O and hence,

LO
⋂
C ⊂ L0

O ⊂
∑2n−2
i=0

R
dn

(σ0(αi), σ1(αi), . . . , σ2n−1(αi)) which is a 2n − 1
dimensional R vector space and hence cannot contain 2n R-linearly independent
elements.

Now, let L be the lattice formed using the Minkowski embedding of the ring
of integers oK of K. Since we have oK ⊂ OK/dn from proposition 2, we see
that L ⊂ LO. Hence L

⋂
C ⊂ LO

⋂
C ⊂ L0

O and from above, L
⋂
C can only

contain ≤ (dn − 1) linearly independent elements. Thus, C cannot contain any
Z-basis of L.

4 Totally imaginary poly-quadratic fields

The previous section covers the case of poly-quadratic fieldK = Q[
√
m1, · · · ,

√
mn]

where all the mi are greater than 0. Now we consider the case where one or
more of the mi are negative.

Lemma 5 If K is a number field which is Galois over Q, then it is either totally
real or totally imaginary.

Proof. The lemma follows from the fact that if K has one real embedding then
all the embeddings are real and similarly for the other case.

To see the above fact look at compositionK
φ−→ K

ρ−→ R where φ ∈ Gal(K/Q)
and ρ is a real embedding of K. Now, since ρ is injective, ρ◦φ for φ ∈ Gal(K/Q)
are all distinct, which means they are all the embeddings of K into C , since we
have only n = [K : Q] embeddings of K. Thus, all the embeddings are real if
one of them is real and a similar argument works for the other case.

Since we know that poly-quadratic fields are Galois, from the above lemma,
we conclude that poly-quadratic fields are totally real if and only if all the mi

are greater than zero. If K is a poly-quadratic field with at least one of the
mj < 0, we have an identity embedding of K → Q(

√
m1, . . . ,

√
mn) ⊂ C and

Q(
√
m1, . . . ,

√
mn) 6⊂ R. Hence, K is totally imaginary and r = 0, s = [K:Q]

2 =
2n−1.
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Now we can finally prove theorem 2.
Proof (of theorem 2). Let K = Q(

√
m1, . . . ,

√
mn) with at least one of the

mi < 0. We choose a family F of embeddings σ such that {σ, σ|σ ∈ F} covers
all the embeddings K → C. Also, we can assume that

For I ⊆ {1, 2, . . . , n}, let mI =
∏
i∈I mi and we fix the notation that if I = φ,

thenmI = 1. LetG = Gal(K/Q) and
√
x denote the positive square root of x for

x > 0 and i
√
|x| for x < 0. Consider the Z-module Ok/dn =

∑
I⊂{1,...,n}

Z
dn

√
mI

as in proposition 2. The image of it under the Minkowski embedding is

LO =
∑

I⊂{1,...,n}

Z
dn
emI

where emI
are as follows:

emI
=


(xσ), xσ = 1, xσ = 0 for σ ∈ F if I = φ and hence mI = 1

(xσ), xσ = σ(
√
mI) = ±√mI , xσ = 0 for σ ∈ F if I 6= φ,mI > 0

(xσ), xσ = 0, xσ = −iσ(mI) = ±
√
|mI | for σ ∈ F if I 6= φ,mI < 0

Let

LjO =
∑

I({1,...,n}

Z
dn
emI

+
j

dn
em1···mn

Now, we know that

|∆K | �dn

∣∣∣∣∣∣
n∏
j=1

mj

∣∣∣∣∣∣
2n−1

=

∣∣∣∣∣∣
n∏
j=1

mj

∣∣∣∣∣∣


dn
2

Consider the set B ⊂ Rdn

B =

(xσ) ∈ Rdn | x2σ + x2σ ≤

∣∣∣∏n
j=1mj

∣∣∣
(2dn)

2 for σ ∈ F


Then

Vol(B) =
∏
σ∈F

π ·
∣∣∣∏n

j=1mj

∣∣∣
(2dn)

2

 =
π

dn
2

(2dn)
dn
·

∣∣∣∣∣∣
n∏
j=1

mj

∣∣∣∣∣∣
dn
2

�dn |∆K |

Observe that LO =
⋃
j∈ L

j
O. Define a function f : LO 7→ R such that

f(x) =
∑
σ∈F x

2
σ +x2σ. We want to show that f(x) ≥ j2

2dn
·
∣∣∣∏n

j=1mj

∣∣∣ if x ∈ LjO.

Case 1: If
∏n
j=1mj ≥ 0:

Then f(x) =
∑
σ∈F x

2
σ + x2σ ≥

∑
σ∈F x

2
σ

Suppose x =
∑
I({1,...,n}

aI
dn
emI

+ j
dn
em1···mn .
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Then∑
σ∈F

x2σ =
∑
σ∈F

(
j

dn
σ(
√
m1m2 · · ·mn) +

∑
mI≥0,I({1,...,n}

aI
dn
σ(
√
mI))

2

≥ dn
2 ( j

dn
)2m1m2 · · ·mn +

∑
σ∈F,mI ,mJ≥0 2 j

dn
aI
dn
σ(
√
mImJ)

Note that since mImJ ≥ 0, 2σ(
√
mImJ) = σ(

√
mImJ)+σ(

√
mImJ). Thus,∑

σ∈F
2
j

dn

aI
dn
σ(
√
mImJ) =

j

dn

aI
dn
TrK/Q(

√
mImJ) = 0

This gives us

∑
σ∈F

x2σ ≥
dn
2

(
j

dn
)2m1m2 · · ·mn =

j2

2dn

n∏
j=1

mj

Case 2: If
∏n
j=1mj ≤ 0: This case is entirely similar to case 1.

Now, if there exists x = (xσ) ∈ B
⋂
LjO for j 6= 0, then∣∣∣∏n

j=1mj

∣∣∣
2dn

≤ j2

2dn
·

∣∣∣∣∣∣
n∏
j=1

mj

∣∣∣∣∣∣
≤ f(x) =

∑
σ∈F

x2σ + x2σ [ Since x = (xσ) ∈ LjO ]

≤
∑
σ∈F

∣∣∣∏n
j=1mj

∣∣∣
(2dn)

2 [ Since x = (xσ) ∈ B ]

=

∣∣∣∏n
j=1mj

∣∣∣
(2dn)

2 · dn
2

=

∣∣∣∏n
j=1mj

∣∣∣
8dn

which is a contradiction. So, we get that B
⋂
LjO = φ for j 6= 0. Hence,

LO
⋂
B ⊂ L0

O ⊂
∑

I({1,...,n}

R
dn
emI

Thus, LO
⋂
B is contained in a 2n−1 dimensional R vector space and hence

cannot contain 2n R-linearly independent elements.
Now, let L be the lattice formed using the Minkowski embedding of the ring

of integers oK of K. Since we have oK ⊂ OK/dn from proposition 2, we see
that L ⊂ LO. Hence L

⋂
C ⊂ LO

⋂
C ⊂ L0

O and from above, L
⋂
B can only

contain ≤ (dn − 1) linearly independent elements. Thus, B cannot contain any
Z-basis of L.
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