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1 Introduction

It was a great breakthrough in algebraic number theory when Minkowski real-
ized that certain geometric ideas are very powerful in dealing with arithmetic
problems. He was able to prove that in a number field K of degree n, every
ideal class in a number ring can be represented by an ideal with norm less than
a constant multiple of VA, where A is the discriminant of the number ring.
His proof relies on two crucial ideas. First, the natural embedding K + R"™
allows us to regard the ring of integer R as a lattice in R™ whose fundamental
parallelotope F' has volume a constant multiple of v/A. Second, a lattice in R”
contains a nonzero lattice point in a convex, measurable, centrally symmetric
subset of R”, as long as the volume of the set is larger than 2™ times the volume
of the fundamental parallelotope of the lattice.

The motivation for this paper is a partial converse to Minkowski’s first idea.
He showed that given a basis for a number ring, we have a set of volume a
constant multiple of v/A that contains the image of the basis under the natural
embedding K +— R". We will show that in poly-quadratic field K, there exists
a set with volume a constant multiple of A that does not contain the image of
any integral basis under the natural map K +— R".

Theorem 1 Consider a poly-quadratic extension K = Q(\/my, /M2, ..., /My)
where all of my, ma, ..., my, are positive and pairwise coprime. Then there exists
a convex, measurable, centrally symmetric subset E of R™ with volume a con-
stant multiple of A that does not contain the image under the natural embedding
K — R"™ of any integral basis for the number ring R of K.

Theorem 2 Consider a poly-quadratic extension K = Q(y/my, /Mg, ..., /My)
where not all of my, ma, ..., m, are positive and my, ma, ..., My, are pairwise co-
prime. Then there exists a convex, measurable, centrally symmetric subset E of
R"™ with volume a constant multiple of A that does not contain the image under

the natural embedding K — R™ of any integral basis for the number ring R of
K.



2 Preliminaries

First, we would like to state explicitly the definition of the natural embedding
K — R™.

Definition 1 Let K be a number field with real embeddings 01,02, ...,0., and
T1,T1,---, Tss Ts S the remaining embeddings of K — C . Thus, r + 2s =
n. A mapping K — R"™ is obtained by sending each o in K to the n-tuple

(al(a),..., or(a),Re(r1(a)), Im(mi(c)),..., Re(ts()), Im(7s(x)) )

The first step of proving the theorems is to find the Galois group of K. In
order to do so, we first need the degree of K = Q(y/m1, /M2, ...,/My). As we
would expect, the degree is 2™.

Lemma 1 Let K be a field, a and b are elements of K. Then the field L =
K[/a,V/b] has degree 4 over K if and only if \/a, /b and v/ab are not elements
of K.

Proof. Assume the field L has degree 4 over K. Notice that K’ = K[/a] is a
subfield of L such that L = K'[v/b]. Thus, [L: K| = [L: K'|][K': K] < 2.2 = 4.
This forces [K' : K] to be 2, or equivalently v/a is not in K. The proofs for v/b
and /ab are similar.

Conversely, suppose \/a, Vb and vab are not elements of K. Then certainly
K’ = K[y/a] is an extension field of degree 2 over K, so it suffices to show
that L is an extension field of degree 2 over K[i/a], as then we would have
[L: K] =|[L: K[Ja]][K[va] : K] = 4. Indeed, we rewrite L as K'[Vb]. If
[L : K'] is not 2, then we would have that K’[vb] = L = K’. This in turn
implies that v/b is an element of K’ = K[\/a]. Hence we see that there exists
some x,¥y in K such that:

Vb =2z +yva

Squaring both sides and rearrange the terms we have:

(b—2® - y?a).1 - (2xyv/a) = 0 (1)

Recall that K[y/a] is an extension field of degree 2 over K, so 1 and /a are
linearly independent over K. This implies that the coefficient of \/a in (1), zy,
must be 0. If z = 0, then we have that vb = y/a. This implies vab = ya, an
element of K, a contradiction. If y = 0, then we have that v/b = z, an element
of K, a contradiction. Hence we have that [L : K] = 2, which is exactly what
we want.

With the help of lemma 1, we can now find the degree of our poly-quadratic
extension field K.

Proposition 1 Let ay,as,...,a, be n distinct, square free integers. Let K =

Q(v/a1,\/az, ..., /an). Then K has degree 2" over Q if and only if [],c; a: is
not a perfect square, for all subset I of {1,2,..., n}



Proof. Suppose that K has degree 2" over Q, and [],; a; is a square for some
I. Relabel the a;’s if necessary, we can assume that ajas...ar = c? for some
integer c. Taking the square root of both sides we have:

Vai =

c

,/ag...ak'

This implies that Q(\/a1) C Q(y/az, /as, ..., /ar) C Q(\/az, /a3, ..., /an). Thus,
K = Q(/a1, /a2, ..., /an) = Q(\/az,/as, ..., /arn). Then K has degree at most

271 over Q, a contradiction.

Conversely, suppose that [, ., a; is not a perfect square, for all subset I of
{1,2,..., n}. We will show by induction on n that K has degree 2" over Q. The
base case n = 1 is trivial, and the case n = 2 is our lemma 1.

Now suppose the proposition is true for all & < (n — 1). The inductive
hypothesis gives us that Ko = Q(\/a1, \/az, ..., \/an_2) has degree 272 over Q.
Notice that K = Ko[\/@n_1,/x), so we would be done if we are able to show
that [K : Ko] = 4. By lemma 1, this is true if \/a,_1, /an, and \/a,_1a, are
not in K.

However, again by induction, Q(y/a1,\/az, ..., /an_1) has degree 271 over
Q, so /a,_1 cannot be in Ko = Q(\/a1,/az, ...,\/dn_2), as we know K, only
has degree 2”2 over Q. With a similar reasoning as above, we can also see that
Van and /a,—1a, are not in Ky. Now we can apply lemma 1 to show that
(K : Ko = 4.

Remark 1 With the help of this proposition, we can see that K = Q(\/m1, /M2, ..., /My )
where my, Ma, ..., My, are relatively prime, is a number field of degree 2" over Q.

Remark 2 One interesting corollary of this proposition is that the degree of
K = Q(\/P1,\/D2; -, \/Prn) where p1,pa,...,pn are primes, is 2".

Remark 3 The Galois group G of K = Q(\/m1, /M2, ..., /My,) where my, ma, ..., My,
are relatively prime must have order 2", and hence Gal(K/Q) = [[i-, Gal(Q(y/m;)/Q) =
(z)27)".

Continue to let myq, ..., m, be integers such that they are pairwise co-prime.
Let o be the ring of integers for a number field K. Let K denote the poly-

quadratic extension Q(y/my, - - ., /My, ) and K* denote the extension (\/m1, - . -, /i1, /Tt 1s - - - /Tn)-

Then by proposition 1, we see that [K : Q] = 2" =d,,. Let

Ok 1= LAI+Ln/ig+ - AL/ imig++ - -+ LT+ - A+ L/ iy~ T+ -+ L /mymg -~ i,

where 0 < i1,4s,...5k < n, ©# j, i, # is. Ok consists of Z-linear combinations
of square roots of all possible combinations of products of my, ..., m, with each
appearing at most once (there are 2" of them). We immediately see that O C
ok . Also, since m; are pairwise co-prime, the products under the square root
are square-free and these specifically correspond to the 2™ quadratic subfields
of K.



Proposition 2 For any polyquadratic extension K = Q(y/mq, ..., /m,) where
mi, M2, ..., My ATE PAITWISE COPTIME,

where d, = [K : Q] = 2".

Proof. We know that if K C L are number fields and o € or, then T'r, /i (o) €
ok. Let o € og,,. Then,

= a1+tagy/Mi+- - +Appo/M1Mot- - Qs /M, My -+ - My T+ -+ Aon /MM - - - My,

where a; € Q since these form a basis of K over Q. Now, consider 5; =
Trg k1 (a) where K' = Q(y/ma,...\/my), as above.

0 if m;. = fi 1<j <k,
We have that T g1 (/T i, -, ) = thme; =malorany L= J =

2\/m 1fmij7ém1forany1§g§k
Therefore, it follows that

61:2a1—|—a2-O—|—2a3w/m2+---+an+2-0+-~-—|—a2n~0 (2)

By induction hypothesis, we have that 3; € og1 C Og1/d,_1 = O /271 C
Ok /2" ! since Og1 C Ok . Let a, be the coefficient of a term /m; m;, -~ m;,
in a which does not contain my, for example \/moms. Then, |/m;, mq, - My, €
O+ and from equation (2), it follows that 2a, € Z/2"1, or a, € Z/2".

Now, for all such ,/m; m;, ---m;, where 0 <iy,42,...9 < n, ©F# j, i, # i
except \/mimz My, there is at least one my, 1 < ¢ < n such that m;; %+ my
for any 1 < j < k. Thus by varying i over 1 <7 < n and considering T7 gk (),
we get that as € Z/2" for all 1 < s < 2" — 1, similarly as above. So, we are
only left to prove the claim for agn, the coefficient of \/mima -~ m,,.

To prove this, we consider v = Trg,(a), with L = Q[\/m1, /Mz, ..., /M _117].
Let < 0 >= (K/L) where 0 maps /M, _1 = —/Mn_1, /My = —/My,
and acts as identity on everything else. Then, Trg/r (/M Mg, My, ) =

0 it \/m;, my, - -~ m;, contains either m,,_1 or m,, but not both,
2, /mg, my, -~ - my, otherwise
Thus,

v =Trg/r(a) = 2a1 + azy/my + - - + 2a2n/mymy - -y,

and again by induction hypothesis we see that 2as. € Z/2"71, since v € of, C
Or/2""1 C Ok /2"~ !. This implies that asn € Z/2" and this completes our
proof.
We finally have,
Ok Cox C Ok/d,

where d,, = [K : Q] = 2", for any poly-quadratic extension K = Q(\/m1,...,/Mn)
where m; are relatively prime.



The bound d,, = 2" is the best possible one in the case when my, ma, ..., m,
are congruent to 1(mod4). In order to prove this, we will state without proof a
lemma:

Lemma 2 Let K and L be number fields with ring of integers R and S, re-
spectively. Let T be the ring of intergers of the compositum KL. Assume
that disc R and disc S are relatively prime. Then T = RS and disc T =
disc RIFQ dise SIK:Q

This is proposition 12 and Exercise 23 in Marcus, Number fields.
Now let K; = Q(y/m1,...,/m;). We know that each K; is Galois over Q
and we have the tower of fields

Ko=QCcKyCKyC---CK,,

where [K; : Q] = 2! for all 0 < i < n. We observe that K; | = K;Q(y/miy1)
for all 0 <4 < n and K; (\Q(y/miy1) = Q since m; are relatively prime.

Let L; = Q(\/m;). Now, we know that Az, = m; and from this we can find
the discriminant of K; for all 1 < i < n. Thus, we see that A, = m; and
(A, ,Ar,) = 1 which gives Ax, = (Ax,)? (Ar,)? = (AL, -Ar,)?. Proceeding
inductively, it follows that (Ag, ,,Az) =1 and Ak, = (Ag, )2 - (Ap,)?
for all 2 < i < n. So, we get

i 2 i _
Ak, = (B ) = (B P (B )7 ) (B == (H Au) = (Lm0
k=1 k=1

Thus, we can see that (Ax,, Az, )=1-

Since (Ag,_,,Ar,) =1, K1 = L; and we know the integral basis of each L;,
inductively using lemma 2, we can find an integral basis for K; by multiplying
pairwise the integral basis of K;_; and L;. Let B; be the integral basis of K;.
Then we see that

O e I TN )

and inductively it follows that

, {11+m1+m<1+ﬁ><1+ﬁ>ﬁ<W)}

" 2 2

We see that the last element of the integral basis of K, is 2% | (1 + 4 /mk) =
e(say) and e € Ok, /2™. Thus, we see that the bound is sharp for this case.

Lemma 3 Let Q(\/m1,/ma, -+ ,\/My) be an extension of degree 2™ over Q.
Then this extension can be rewritten as Q(\/T1, /T2, ,/Tn) where at least
n — 2 of the x; are 1(mod4).



Proof. By the finiteness of the extension, we can assume that Q(\/m1, ..., /my)
is written such that the maximal number of m; = 1 (mod 4). Also, we assume
for the purpose of contradiction that there are three m; Z 1 (mod 4). We will
call them my, mg, m3.

If two of these, WLOG, m; and ms are 3 mod 4, then

mim
m=—32_ 5 =1 (mod 4)
(mla m2)
since the both the numerator and denominator will be 1 mod 4. Note that we
could write the extension as

Q(Vm, yma, yms, ... \/m)

and that this extension would have more roots that are 1 mod 4, contradicting
our assumption of maximality.

If two of these, WLOG, m; and ms are 2 mod 4 such that mq/2 = mo/2
(mod 4), then m = 1 (mod 4) where m is defined as above and the same con-
tradiction would result.

In the last case, WLOG, we can assume that m; =3 (mod 4) and may, m3 =
2 (mod 4) such that ms/2 £ m3/2 (mod 4). Let m be defined as above and
note that m =3 (mod 4). Additionally,

mams

k=23
(ma,ms3)?

=3 (mod 4)

Thus, we can rewrite our extension as

Q(m, Vk, /i, ..., \/my)

where m = k =3 (mod 4) which puts us back in the first case and results in a
contradiction. This completes all possible cases. Therefore, the extension can
be written such that at least n — 2 of the square roots are 1 mod 4.

Corollary 1 Let L = Q(y/m1,.../my,). Then there exists an element of o
with denominator greater than or equal to 2" 1.

Proof. From the lemma 3, we write

L = Q(V1, V&2 (L, - -, /i 3)

where each m; = 1 (mod 4), x1,2z2 # 1 (mod 4). Note that (z1,23) has an
element in the ring of integers with denominator 2. Adjoining the other n — 2
roots which are all 1 mod 4 one at a time and as we have seen in the discussion
after proposition 2, we have that there exists an element in the ring of integers
with denominator 27! since every adjoined root that is 1 mod 4 has been shown
to increase the denominator of some term by 2.

Remark 4 This corollary shows that the bound d, = 2™ is very close to be
optimal.



In order to find the discriminant, we assume the following proposition that
can be deduced from the conductor-discriminant formula of class field theory.

Proposition 3 Let K be a poly-quadratic extension of Q. Then the discrimi-
nant of K equals the product of the discriminants of all quadratic subfields of
K.

Using the proposition above, we will prove

Proposition 4 Let K = Q(y/m1,\/ma, - ,/My,) with m; distinct and rela-
tively prime, n > 3. Then A = c(mymg---my,)2" where ¢ is a constant
depending only on n. Indeed, c equals one of 1,162 ", 642" .

Proof. Since the m,; are coprime, there can only at most one m; that is 2(mod4).
Case 1: there is no m; that is 2(mod4).

Suppose among n integers my, ma, ..., m,, we have k numbers congruent to
1 mod 4, and n — k numbers congruent to 3 mod 4. According to proposition
3, we know that discriminant of K equals the product of the discriminant of
Q(my), where I C {1,2,...,n}. We also know that the discriminant of Q(m)
equals m when m is 0 or 1 mod 4, and it equals 4m when m is 2 or 3 mod 4.
Hence, we have that

AK = 4t H mr
Ic{1,2,...,n}
where ¢ is the number of subsets I such that m; is not congruent to 1 mod 4.
Note that m; is congruent to 3 mod 4 if and only if m; contains an odd
number of m; that is congruent to 3 mod 4. Thus, the number of such subsets
I is equal to the number of subsets of {mj, ms,...,m,} that contains an odd
number of m; that is congruent to 3 mod 4. That number is

k k
2n—k(<1) + (1) + ) — 2k—12n—k — 2n—1

n—1 n—1 n—1
Ag = 42 H mp =42 (myimy---my)?
I1Cc{1,2,...,n}

Thus,

Case 2: there is one m; that is 2(mod4),say m. As above, we still have that

AK = 4t H mr
Ic{1,2,...,n}

where t is the number of subsets I such that m; is not congruent to 1 mod 4.
Note that m; is not congruent to 1 mod 4 if and only if m; contains m; or m;
contains an odd number of m; that is congruent to 3 mod 4 without containing
m1. In the first case, the number of such subsets I is 2"~!, in the second case



the number of such subsets is 272, Thus, in total, we have 3.2"~2 such sets I.
Hence
A = 43277 H my = 642" " (mymg - - - mn)T%1
Ic{1,2,...,n}

Now we are ready to prove the main theorems.

3 Totally real poly-quadratic fields

In this section, we will construct a set having volume a constant multiple of the
discriminant and not having the image under the Minkowski embedding defined
in section 1 of any integral basis of a poly-quadratic field generated by square
roots of relatively prime positive integers.

By proposititon 4, AK = ¢(myms - - - mn)TH1 where c is a constant depend-
ing on n. Also, recall that the image of any integral basis under the Minkowski
embedding is a R-basis for R".

We construct the set for a biquadratic extension(n = 2), and then extend
the same idea to poly-quadratic extensions.

Let K = Q(y/m1,/mz). Consider the Z-module Ok /dy and the lattice Lo
generated by the Minkowski embedding of O /ds.

Consider

Z Z Z,
LO = d72(1713171) + @(\/m17_\/m17 \/m17_\/m1) + d72(\/m23 \/m27_\/m27_\/m2)

+ —(Vmima, —/mima, —/mima, /mims)

do
and
i Z Z Z
Lo = 672(17171’1)+@(lea_\/mly\/mh—\/ml)'i'@(Vm27\/m2a_\/m27_\/m2)
7 .
+ £(¢m1m27 —y/mima, —y/mima, /mima), i€ Z

So, we see that Ly = UiEZLE. For © = (z1, x2,x3,24), define f(x) = z1 —

To —x3+x4. Ifx € Lb we see that x satisfies the equation

dy -1 .
f(.I) =21 — Ty — T3+ T4 = 72\/m1m2 = Z\/mlmg (3)
Consider the convex centrally symmetric compact set C = [— ";;:127 ’;;:12]‘12

in R%. We know that A < (mims)? and we see that Vol(C) = -1 (mimz)? =<
(m1m2)2 = AK. )
Now, if there exists z € L, [ C for i # 0, then we have

mims

Vimms < liy/mime| = |f(2)] = |21 — 22 — 23 + 24| < |z1]+H|zo| s Hae| < T



which is a contradiction.

Thus, L, C = ¢ for i # 0 and C can contain points from only L2 and
hence,

LoNC C LY C (L, 1,1, D g (Vm, =/, /i, =)+ g (2, /i, =Tz, — /),
which is a dy — 1 dimensional R vector space and hence cannot contain ds R-
linearly independent elements.

Now, let L be the lattice formed using the Minkowski embedding of the ring
of integers ox of K. Since we have o C O /ds from proposition 2, we see
that L C Lo. Hence L(NC C Lo(\C C LY and from above, L\ C can only
contain < (dy — 1) linearly independent elements. Thus, C' cannot contain any
Z-basis of L.

Now we are ready to prove theorem 1.

Proof (of theorem 1). Let ag; = ,/m; and o = 1.
Now we define «; for all 1 < i < 2™ — 1 inductively from aqgr. Expand
i in the binary system and let i = Z;é §(k)2* where 6(k) = 0 or 1. Then

o; = \/IT1<k<n—1,5(k)=1 Mr and we see that

{ai\Ogigzn—l}:{ Hje(,mjuc{o,...,nq}}

Let G = Gal(K/Q). Let og denote the identity automorphism in G and
o9r, 0 < p <mn—1 be elements of G,, defined by

oo (ap) = —ap and oo (ag) = ap for k #pand 0<k<n-—1

Let G, be the subgroup {og, 02} of G,, and we know that G,, = HZ;& Gy, as
[K: Q] =2".

Now we define all 2" elements o; of G as follows: expand 4 in the binary
system and let i = Yp—0 (k)2F where §(k) = 0 or 1. If k..., k; are the ones
for which §(k) = 1, then o; = o9x, 0« 0 o9k, .

Now, for § € K, let the Minkowski embedding be (a¢(8),01(8), ..., 02n_1(5)).
Let Lo be the lattice corresponding to Ok /d,, and L be the lattice formed by
the Minkowski embedding of the ring of integers. As in the bi-quadratic case,
consider

on_1
/
Lo= ) 7 (o0(ai), o1(), ..., o2n—1(e))
i=0 "

and for each j € Z, consider

2" -2 .
j J
LJO = ; a(ao(ai)agl(ai)w'~70'2"—1(047;))"'%(0'0(05271_1),O'l(OQn_l),...,O’Qn_l(OQn_l))



We know that aon_1 = /Mg - - Mgn-1 < A(Ii/Zn). Also, Ly = Uj€ LZ).
Now we define f(z) for z € Ré». Let a(i) for 0 < i < 2" — 1 be such that

(@) 1 if the binary expression of ¢ has even number of ones,
a(i) =
—1  if the binary expression of ¢ has odd number of ones.
Then, define
2n 1
fl@) =" a(i)z;
i=0

We have the following observations-

(i) We see that f is linear, i.e., f(z +y) = f(z) + f(y) for z,y € R and for
ceR, flex) =cf(x).

(ii) oi(aan—1) = a(i)agn_q for all 0 < ¢ < 2™ — 1. This is because each o;
will flip the sign of \/my, if and only if the coefficient of 2% in the binary
expansion of ¢ is 1. This implies the number of times o; will flip the sign
of agn_y = \/mimy---m, is the same as the number of 1 in the binary
expansion of 4, and thus o;(azn_1) = a(i)agn_1.

This implies that

f(di (0'0(0[271,1),0'1(0[271,1), .. .,O’Qn,l(CVQn,l))) = jO[Qn,l = j\/mQO e Mon—1 for _] eEZ

(ili) For 0 <i<2"—2, f (ﬁ(ao(ai),ol(ai), e ,Uznfl(ai))) =0.

Notice that each o; will flip or keep the sign of «;, so it suffices to show
that the number of o; that fixes o; is equal to the number of o; that flips
a;. Recall that o; will flip the sign of |/my if and only if the coefficient of
2% in the binary expansion of j is 1. Thus, based on the way «; is defined,
o; will flip the sign of «; if and only if the number of common 1 in the
binary expansion of ¢ and j is odd. Thus, the problem of counting o; that
will flip the sign of a; is reduced to the following lemma:

Lemma 4 Given an integer i,0 < ¢ < 2™ — 2, the number of integers
74,0 <i < 2™—1 such that the number of common 1 in the binary expansion
of i and j is odd is 2" 1.

Proof. Suppose the number of 1 in the binary expansion of 7 is . Then

the j that would satisfies the lemma would have 1,3,5,--- 1 in common
with ¢’s binary expansion in its binary expansion. Such number of j is

e S UL OO e

Thus, we see that for x € Lé, f(x) = jagn_1 = j\/mi---my for j € Z.

10



Consider the convex centrally symmetric compact set

. _\/mlmn \/mlmn d,
C=I 2d, 2d,, )
The volume
(my - mn)?”*l e

Vol(C) = = (mago - -mgn—1)?®" = Ag,

dar
Now, if there exists =z € LjOﬂC for j # 0, then we have /my---m, <

. "1 . 2" —1

|Jm| =|f(z)] = ‘Zi:o a(z)xi‘ <YYo lwil Symamy /2.

This is a contradiction. After this, we can repeat the same argument as in
the case n = 2. We have that L}, (C = ¢ for j # 0 and C can contain points
from only LY and hence,

LoNC c LY € X207 E (gy(ai), o1 (i), . -, 0an—1(;)) which is a 27 — 1
dimensional R vector space and hence cannot contain 2" R-linearly independent
elements.

Now, let L be the lattice formed using the Minkowski embedding of the ring
of integers ok of K. Since we have o C Og/d,, from proposition 2, we see
that L C Lo. Hence L(NC C Lo(\C C LY and from above, L(\C can only
contain < (d,, — 1) linearly independent elements. Thus, C' cannot contain any
Z-basis of L.

4 Totally imaginary poly-quadratic fields

The previous section covers the case of poly-quadratic field K = Q[/m1, - , /M)
where all the m; are greater than 0. Now we consider the case where one or
more of the m; are negative.

Lemma 5 If K is a number field which is Galois over Q, then it is either totally
real or totally imaginary.

Proof. The lemma follows from the fact that if K has one real embedding then
all the embeddings are real and similarly for the other case.

To see the above fact look at composition K 2 K 2 R where ¢ € Gal(K/Q)
and p is a real embedding of K. Now, since p is injective, po¢ for ¢ € Gal(K/Q)
are all distinct, which means they are all the embeddings of K into C , since we
have only n = [K : Q] embeddings of K. Thus, all the embeddings are real if
one of them is real and a similar argument works for the other case.

Since we know that poly-quadratic fields are Galois, from the above lemma,
we conclude that poly-quadratic fields are totally real if and only if all the m;
are greater than zero. If K is a poly-quadratic field with at least one of the
m; < 0, we have an identity embedding of K — Q(y/m1,...,y/m,) C C and
Q(y/m1,...,/myn) ¢ R. Hence, K is totally imaginary and r = 0,s = @ =
n—1,

11



Now we can finally prove theorem 2.

Proof (of theorem 2). Let K = Q(y/mu,...,/my) with at least one of the
m; < 0. We choose a family F of embeddings o such that {o,7|o € F} covers
all the embeddings K — C. Also, we can assume that

For I C {1,2,...,n},let m; = [[,c; m; and we fix the notation that if I = ¢,
thenm; = 1. Let G = Gal(K/Q) and v/x denote the positive square root of z for

.....

as in proposition 2. The image of it under the Minkowski embedding is
Z
Lo= >, em
Ic{t,..n} "

where e,,, are as follows:

(5), 2o =1, 27 =0for c € F if I = ¢ and hence m; =1
em; =4 (o), 2o =0(y/my) = £ymy, zz=0for o € F if I #¢,mr>0
(0), 2o =0, 27 = —io(m;) = £+/Imy|forc € F if I #¢,m; <0

Let 7 )
j J
L]O = Z d—eml —+ Ieml...m7L
IC{1,..n} " n
Now, we know that
271—1 dTn
|Ax| =a, | |[]mi =TT
j=1 j=1
Consider the set B C Ri»
‘anl m]’
B =1 (z,) € R |22 4+ 22 < (JQd ? foro e F
Then
dy
S LA | W P L
o = - = : m; =d, |AK
ceF (2dn)? (d)" |75

Observe that Lo = Uje Ljo. Define a function f : Lo — R such that
f(@) =3, crai+aZ. We want to show that f(z) > % : ‘H?Zl m]—‘ if ¢ € L),

Case 1: If H;;l m; > 0:

Then f(.]?) = ZUE}' Qfg + .13% Z ZGE}' $§

Suppose & = ZIg{L...,n} asem; + djjem1~~-mn'
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Then

Soat= 3 (ol + Y Ghelym)?

ceF oeF m;>0,IC{1,...,n}

> G () mame i+ X e r iy myzo 24 gEo(Vmrmy)

n

Note that since mymy > 0, 20(y/mymy) = o(/mrymy)+a(y/mrmy). Thus,

a | a
> 2dj dl (Vmimy) = LiTTK/Q( mymy) =0

ocEF

This gives us

Case 2: If H —_;m; < 0: This case is entirely similar to case 1.
Now, if there exists z = (z,) € B[ L}, for j # 0, then

‘HJ 1M 2 n
J 4
2, = aa, (1™
j=1
:ngqu% [ Since = = (z,) € LY, |
oeF
-,
< — [ Since z = (x,) € B]
2
2 e,
7 H;’L:l mjil o d, B ‘H?:l mj‘
o (2d,)* 2 8dy

which is a contradiction. So, we get that B[ Ljo = ¢ for j # 0. Hence,

Lo(\BcLyc > C;Eem,

IC{t,..n} "

Thus, Lo () B is contained in a 2" — 1 dimensional R vector space and hence
cannot contain 2" R-linearly independent elements.

Now, let L be the lattice formed using the Minkowski embedding of the ring
of integers ox of K. Since we have o C Og/d,, from proposition 2, we see
that L C Lo. Hence L(NC C Lo(\C C LY and from above, L() B can only
contain < (d,, — 1) linearly independent elements. Thus, B cannot contain any
Z-basis of L.
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