Integral bases

Trung Nguyen

April 16, 2021

1 Introduction

It was a great breakthrough in algebraic number theory when Minkowski realized that certain geometric ideas are very powerful in dealing with arithmetic problems. He was able to prove that in a number field K of degree n, every ideal class in a number ring can be represented by an ideal with norm less than a constant multiple of $\sqrt{\Delta}$, where Δ is the discriminant of the number ring. His proof relies on two crucial ideas. First, the natural embedding $K \mapsto \mathbb{R}^{n}$ allows us to regard the ring of integer R as a lattice in \mathbb{R}^{n} whose fundamental parallelotope F has volume a constant multiple of $\sqrt{\Delta}$. Second, a lattice in \mathbb{R}^{n} contains a nonzero lattice point in a convex, measurable, centrally symmetric subset of \mathbb{R}^{n}, as long as the volume of the set is larger than 2^{n} times the volume of the fundamental parallelotope of the lattice.

The motivation for this paper is a partial converse to Minkowski's first idea. He showed that given a basis for a number ring, we have a set of volume a constant multiple of $\sqrt{\Delta}$ that contains the image of the basis under the natural embedding $K \mapsto \mathbb{R}^{n}$. We will show that in poly-quadratic field K, there exists a set with volume a constant multiple of Δ that does not contain the image of any integral basis under the natural map $K \mapsto \mathbb{R}^{n}$.

Theorem 1 Consider a poly-quadratic extension $K=\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{n}}\right)$ where all of $m_{1}, m_{2}, \ldots, m_{n}$ are positive and pairwise coprime. Then there exists a convex, measurable, centrally symmetric subset E of \mathbb{R}^{n} with volume a constant multiple of Δ that does not contain the image under the natural embedding $K \mapsto \mathbb{R}^{n}$ of any integral basis for the number ring R of K.

Theorem 2 Consider a poly-quadratic extension $K=\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{n}}\right)$ where not all of $m_{1}, m_{2}, \ldots, m_{n}$ are positive and $m_{1}, m_{2}, \ldots, m_{n}$ are pairwise coprime. Then there exists a convex, measurable, centrally symmetric subset E of \mathbb{R}^{n} with volume a constant multiple of Δ that does not contain the image under the natural embedding $K \mapsto \mathbb{R}^{n}$ of any integral basis for the number ring R of K.

2 Preliminaries

First, we would like to state explicitly the definition of the natural embedding $K \mapsto \mathbb{R}^{n}$.

Definition 1 Let K be a number field with real embeddings $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$, and $\tau_{1}, \bar{\tau}_{1}, \ldots, \tau_{s}, \bar{\tau}_{s}$ as the remaining embeddings of $K \mapsto \mathbb{C}$. Thus, $r+2 s=$ n. A mapping $K \mapsto \mathbb{R}^{n}$ is obtained by sending each α in K to the n-tuple $\left(\sigma_{1}(\alpha), \ldots, \sigma_{r}(\alpha), \operatorname{Re}\left(\tau_{1}(\alpha)\right), \operatorname{Im}\left(\tau_{1}(\alpha)\right), \ldots, \operatorname{Re}\left(\tau_{s}(\alpha)\right), \operatorname{Im}\left(\tau_{s}(\alpha)\right)\right)$

The first step of proving the theorems is to find the Galois group of K. In order to do so, we first need the degree of $K=\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{n}}\right)$. As we would expect, the degree is 2^{n}.

Lemma 1 Let K be a field, a and b are elements of K. Then the field $L=$ $K[\sqrt{a}, \sqrt{b}]$ has degree 4 over K if and only if \sqrt{a}, \sqrt{b} and $\sqrt{a b}$ are not elements of K.

Proof. Assume the field L has degree 4 over K. Notice that $K^{\prime}=K[\sqrt{a}]$ is a subfield of L such that $L=K^{\prime}[\sqrt{b}]$. Thus, $[L: K]=\left[L: K^{\prime}\right]\left[K^{\prime}: K\right] \leq 2.2=4$. This forces $\left[K^{\prime}: K\right]$ to be 2 , or equivalently \sqrt{a} is not in K. The proofs for \sqrt{b} and $\sqrt{a b}$ are similar.

Conversely, suppose \sqrt{a}, \sqrt{b} and $\sqrt{a b}$ are not elements of K. Then certainly $K^{\prime}=K[\sqrt{a}]$ is an extension field of degree 2 over K, so it suffices to show that L is an extension field of degree 2 over $K[\sqrt{a}]$, as then we would have $[L: K]=[L: K[\sqrt{a}]][K[\sqrt{a}]: K]=4$. Indeed, we rewrite L as $K^{\prime}[\sqrt{b}]$. If $\left[L: K^{\prime}\right]$ is not 2 , then we would have that $K^{\prime}[\sqrt{b}]=L=K^{\prime}$. This in turn implies that \sqrt{b} is an element of $K^{\prime}=K[\sqrt{a}]$. Hence we see that there exists some x, y in K such that:

$$
\sqrt{b}=x+y \sqrt{a}
$$

Squaring both sides and rearrange the terms we have:

$$
\begin{equation*}
\left(b-x^{2}-y^{2} a\right) \cdot 1-(2 x y \sqrt{a})=0 \tag{1}
\end{equation*}
$$

Recall that $K[\sqrt{a}]$ is an extension field of degree 2 over K, so 1 and \sqrt{a} are linearly independent over K. This implies that the coefficient of \sqrt{a} in (1), $x y$, must be 0 . If $x=0$, then we have that $\sqrt{b}=y \sqrt{a}$. This implies $\sqrt{a b}=y a$, an element of K, a contradiction. If $y=0$, then we have that $\sqrt{b}=x$, an element of K, a contradiction. Hence we have that $\left[L: K^{\prime}\right]=2$, which is exactly what we want.

With the help of lemma 1, we can now find the degree of our poly-quadratic extension field K.

Proposition 1 Let $a_{1}, a_{2}, \ldots, a_{n}$ be n distinct, square free integers. Let $K=$ $\mathbb{Q}\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \ldots, \sqrt{a_{n}}\right)$. Then K has degree 2^{n} over \mathbb{Q} if and only if $\prod_{k \in I} a_{i}$ is not a perfect square, for all subset I of $\{1,2, \ldots, n\}$

Proof. Suppose that K has degree 2^{n} over \mathbb{Q}, and $\prod_{k \in I} a_{i}$ is a square for some I. Relabel the a_{i} 's if necessary, we can assume that $a_{1} a_{2} \ldots a_{k}=c^{2}$ for some integer c. Taking the square root of both sides we have:

$$
\sqrt{a_{1}}=\frac{c}{\sqrt{a_{2} \ldots a_{k}}}
$$

This implies that $\mathbb{Q}\left(\sqrt{a_{1}}\right) \subset \mathbb{Q}\left(\sqrt{a_{2}}, \sqrt{a_{3}}, \ldots, \sqrt{a_{k}}\right) \subset \mathbb{Q}\left(\sqrt{a_{2}}, \sqrt{a_{3}}, \ldots, \sqrt{a_{n}}\right)$. Thus, $K=\mathbb{Q}\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \ldots, \sqrt{a_{n}}\right)=\mathbb{Q}\left(\sqrt{a_{2}}, \sqrt{a_{3}}, \ldots, \sqrt{a_{n}}\right)$. Then K has degree at most 2^{n-1} over \mathbb{Q}, a contradiction.

Conversely, suppose that $\prod_{k \in I} a_{i}$ is not a perfect square, for all subset I of $\{1,2, \ldots, \mathrm{n}\}$. We will show by induction on n that K has degree 2^{n} over \mathbb{Q}. The base case $n=1$ is trivial, and the case $n=2$ is our lemma 1 .

Now suppose the proposition is true for all $k \leq(n-1)$. The inductive hypothesis gives us that $K_{0}=\mathbb{Q}\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \ldots, \sqrt{a_{n-2}}\right)$ has degree 2^{n-2} over \mathbb{Q}. Notice that $K=K_{0}\left[\sqrt{a_{n-1}}, \sqrt{a_{n}}\right]$, so we would be done if we are able to show that $\left[K: K_{0}\right]=4$. By lemma 1 , this is true if $\sqrt{a_{n-1}}, \sqrt{a_{n}}$, and $\sqrt{a_{n-1} a_{n}}$ are not in K_{0}.

However, again by induction, $\mathbb{Q}\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \ldots, \sqrt{a_{n-1}}\right)$ has degree 2^{n-1} over \mathbb{Q}, so $\sqrt{a_{n-1}}$ cannot be in $K_{0}=\mathbb{Q}\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \ldots, \sqrt{a_{n-2}}\right)$, as we know K_{0} only has degree 2^{n-2} over \mathbb{Q}. With a similar reasoning as above, we can also see that $\sqrt{a_{n}}$ and $\sqrt{a_{n-1} a_{n}}$ are not in K_{0}. Now we can apply lemma 1 to show that $\left[K: K_{0}\right]=4$.

Remark 1 With the help of this proposition, we can see that $K=\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{n}}\right)$ where $m_{1}, m_{2}, \ldots, m_{n}$ are relatively prime, is a number field of degree 2^{n} over \mathbb{Q}.

Remark 2 One interesting corollary of this proposition is that the degree of $K=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{n}}\right)$ where $p_{1}, p_{2}, \ldots, p_{n}$ are primes, is 2^{n}.

Remark 3 The Galois group G of $K=\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{n}}\right)$ where $m_{1}, m_{2}, \ldots, m_{n}$ are relatively prime must have order 2^{n}, and hence $\operatorname{Gal}(K / \mathbb{Q}) \cong \prod_{i=1}^{n} \operatorname{Gal}\left(\mathbb{Q}\left(\sqrt{m_{i}}\right) / \mathbb{Q}\right) \cong$ $(\mathbb{Z} / 2 \mathbb{Z})^{n}$.

Continue to let m_{1}, \ldots, m_{n} be integers such that they are pairwise co-prime.
Let o_{K} be the ring of integers for a number field K. Let K denote the polyquadratic extension $\mathbb{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{n}}\right)$ and K^{i} denote the extension $\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{i-1}}, \sqrt{m_{i+1}}, \ldots, \sqrt{m_{n}}\right)$. Then by proposition 1 , we see that $[K: \mathbb{Q}]=2^{n}=d_{n}$. Let
$O_{K}:=\mathbb{Z} 1+\mathbb{Z} \sqrt{m_{1}}+\cdots+\mathbb{Z} \sqrt{m_{1} m_{2}}+\cdots+\mathbb{Z} \sqrt{m_{i} m_{j}}+\cdots+\mathbb{Z} \sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}}+\cdots+\mathbb{Z} \sqrt{m_{1} m_{2} \cdots m_{n}}$
where $0 \leq i_{1}, i_{2}, \ldots i_{k} \leq n, i \neq j, i_{r} \neq i_{s} . O_{K}$ consists of \mathbb{Z}-linear combinations of square roots of all possible combinations of products of m_{1}, \ldots, m_{n} with each appearing at most once (there are 2^{n} of them). We immediately see that $O_{K} \subseteq$ o_{K}. Also, since m_{i} are pairwise co-prime, the products under the square root are square-free and these specifically correspond to the 2^{n} quadratic subfields of K.

Proposition 2 For any polyquadratic extension $K=\mathbb{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{n}}\right)$ where $m_{1}, m_{2}, \ldots, m_{n}$ are pairwise coprime,

$$
O_{K} \subseteq o_{K} \subseteq O_{K} / d_{n}
$$

where $d_{n}=[K: \mathbb{Q}]=2^{n}$.
Proof. We know that if $K \subseteq L$ are number fields and $\alpha \in o_{L}$ then $\operatorname{Tr}_{L / K}(\alpha) \in$ o_{K}. Let $\alpha \in o_{K_{n}}$. Then,
$\alpha=a_{1}+a_{2} \sqrt{m_{1}}+\cdots+a_{n+2} \sqrt{m_{1} m_{2}}+\cdots+a_{s} \sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}}+\cdots a_{2^{n}} \sqrt{m_{1} m_{2} \cdots m_{n}}$
where $a_{i} \in \mathbb{Q}$ since these form a basis of K over \mathbb{Q}. Now, consider $\beta_{1}=$ $T r_{K / K^{1}}(\alpha)$ where $K^{1}=\mathbb{Q}\left(\sqrt{m_{2}}, \ldots \sqrt{m_{n}}\right)$, as above.

We have that $\operatorname{Tr}_{K / K^{1}}\left(\sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}}\right)= \begin{cases}0 & \text { if } m_{i_{j}}=m_{1} \text { for any } 1 \leq j \leq k, \\ 2 \sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}} & \text { if } m_{i_{j}} \neq m_{1} \text { for any } 1 \leq j \leq k\end{cases}$
Therefore, it follows that

$$
\begin{equation*}
\beta_{1}=2 a_{1}+a_{2} \cdot 0+2 a_{3} \sqrt{m_{2}}+\cdots+a_{n+2} \cdot 0+\cdots+a_{2^{n}} \cdot 0 \tag{2}
\end{equation*}
$$

By induction hypothesis, we have that $\beta_{1} \in o_{K^{1}} \subseteq O_{K^{1}} / d_{n-1}=O_{K^{1}} / 2^{n-1} \subseteq$ $O_{K} / 2^{n-1}$ since $O_{K^{1}} \subseteq O_{K}$. Let a_{s} be the coefficient of a term $\sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}}$ in α which does not contain m_{1}, for example $\sqrt{m_{2} m_{3}}$. Then, $\sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}} \in$ $O_{K^{1}}$ and from equation (2), it follows that $2 a_{s} \in \mathbb{Z} / 2^{n-1}$, or $a_{s} \in \mathbb{Z} / 2^{n}$.

Now, for all such $\sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}}$ where $0 \leq i_{1}, i_{2}, \ldots i_{k} \leq n, i \neq j, i_{r} \neq i_{s}$ except $\sqrt{m_{1} m_{2} \cdots m_{n}}$, there is at least one $m_{t}, 1 \leq t \leq n$ such that $m_{i_{j}} \neq m_{t}$ for any $1 \leq j \leq k$. Thus by varying i over $1 \leq i \leq n$ and considering $\operatorname{Tr}_{K / K^{i}}(\alpha)$, we get that $a_{s} \in \mathbb{Z} / 2^{n}$ for all $1 \leq s \leq 2^{n}-1$, similarly as above. So, we are only left to prove the claim for $a_{2^{n}}$, the coefficient of $\sqrt{m_{1} m_{2} \cdots m_{n}}$.

To prove this, we consider $\gamma=\operatorname{Tr}_{K / L}(\alpha)$, with $L=\mathbb{Q}\left[\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{n-1} m_{n}}\right]$. Let $\left\langle\sigma>=(K / L)\right.$ where σ maps $\sqrt{m_{n-1}} \mapsto-\sqrt{m_{n-1}}, \sqrt{m_{n}} \mapsto-\sqrt{m_{n}}$ and acts as identity on everything else. Then, $\operatorname{Tr}_{K / L}\left(\sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}}\right)=$ $\begin{cases}0 & \text { if } \sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}} \text { contains either } m_{n-1} \text { or } m_{n} \text { but not both, } \\ 2 \sqrt{m_{i_{1}} m_{i_{2}} \cdots m_{i_{k}}} & \text { otherwise } \\ & \text { Thus, }\end{cases}$

$$
\gamma=\operatorname{Tr}_{K / L}(\alpha)=2 a_{1}+a_{2} \sqrt{m_{1}}+\cdots+2 a_{2^{n}} \sqrt{m_{1} m_{2} \cdots m_{n}}
$$

and again by induction hypothesis we see that $2 a_{2^{n}} \in \mathbb{Z} / 2^{n-1}$, since $\gamma \in o_{L} \subseteq$ $O_{L} / 2^{n-1} \subset O_{K} / 2^{n-1}$. This implies that $a_{2^{n}} \in \mathbb{Z} / 2^{n}$ and this completes our proof.

We finally have,

$$
O_{K} \subseteq o_{K} \subseteq O_{K} / d_{n}
$$

where $d_{n}=[K: \mathbb{Q}]=2^{n}$, for any poly-quadratic extension $K=\mathbb{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{n}}\right)$ where m_{i} are relatively prime.

The bound $d_{n}=2^{n}$ is the best possible one in the case when $m_{1}, m_{2}, \ldots, m_{n}$ are congruent to $1(\bmod 4)$. In order to prove this, we will state without proof a lemma:

Lemma 2 Let K and L be number fields with ring of integers R and S, respectively. Let T be the ring of intergers of the compositum KL. Assume that disc R and disc S are relatively prime. Then $T=R S$ and disc $T=$ disc $R^{[L: \mathbb{Q}]} \operatorname{disc} S^{[K: \mathbb{Q}]}$

This is proposition 12 and Exercise 23 in Marcus, Number fields.
Now let $K_{i}=\mathbb{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{i}}\right)$. We know that each K_{i} is Galois over \mathbb{Q} and we have the tower of fields

$$
K_{0}=\mathbb{Q} \subset K_{1} \subset K_{2} \subset \cdots \subset K_{n}
$$

where $\left[K_{i}: \mathbb{Q}\right]=2^{i}$ for all $0 \leq i \leq n$. We observe that $K_{i+1}=K_{i} \mathbb{Q}\left(\sqrt{m_{i+1}}\right)$ for all $0 \leq i<n$ and $K_{i} \bigcap \mathbb{Q}\left(\sqrt{m_{i+1}}\right)=\mathbb{Q}$ since m_{i} are relatively prime.

Let $L_{i}=\mathbb{Q}\left(\sqrt{m_{i}}\right)$. Now, we know that $\Delta_{L_{i}}=m_{i}$ and from this we can find the discriminant of K_{i} for all $1 \leq i \leq n$. Thus, we see that $\Delta_{K_{1}}=m_{1}$ and $\left(\Delta_{K_{1}}, \Delta_{L_{2}}\right)=1$ which gives $\Delta_{K_{2}}=\left(\Delta_{K_{1}}\right)^{2} \cdot\left(\Delta_{L_{2}}\right)^{2}=\left(\Delta_{L_{1}} \cdot \Delta_{L_{2}}\right)^{2}$. Proceeding inductively, it follows that $\left(\Delta_{K_{i-1}}, \Delta_{L_{i}}\right)=1$ and $\Delta_{K_{i}}=\left(\Delta_{K_{i-1}}\right)^{2} \cdot\left(\Delta_{L_{i}}\right)^{2^{i-1}}$ for all $2 \leq i \leq n$. So, we get

$$
\Delta_{K_{i}}=\left(\Delta_{K_{i-1}}\right)^{2} \cdot\left(\Delta_{L_{i}}\right)^{2^{i-1}}=\left(\left(\Delta_{K_{i-2}}\right)^{2} \cdot\left(\Delta_{L_{i-1}}\right)^{2^{i-2}}\right)^{2}\left(\Delta_{L_{i}}\right)^{2^{i-1}}=\cdots=\left(\prod_{k=1}^{i} \Delta_{L_{k}}\right)^{2^{i-1}}=\left(\prod_{k=1}^{i} m_{k}\right)^{2^{i-1}}
$$

Thus, we can see that $\left(\Delta_{K_{i}}, \Delta_{\left.L_{i+1}\right)=1}\right.$.
Since $\left(\Delta_{K_{i-1}}, \Delta_{L_{i}}\right)=1, K_{1}=L_{1}$ and we know the integral basis of each L_{i}, inductively using lemma 2 , we can find an integral basis for K_{i} by multiplying pairwise the integral basis of K_{i-1} and L_{i}. Let B_{i} be the integral basis of K_{i}. Then we see that
$B_{1}=\left\{1, \frac{1+\sqrt{m_{1}}}{2}\right\}, \quad B_{2}=\left\{1, \frac{1+\sqrt{m_{1}}}{2}, \frac{1+\sqrt{m_{2}}}{2},\left(\frac{1+\sqrt{m_{1}}}{2}\right) \cdot\left(\frac{1+\sqrt{m_{2}}}{2}\right)\right\}$
and inductively it follows that

$$
B_{n}=\left\{1, \frac{1+\sqrt{m_{1}}}{2}, \frac{1+\sqrt{m_{2}}}{2}, \ldots,\left(\frac{1+\sqrt{m_{1}}}{2}\right) \cdot\left(\frac{1+\sqrt{m_{2}}}{2}\right), \ldots, \prod_{k=1}^{n}\left(\frac{1+\sqrt{m_{k}}}{2}\right)\right\}
$$

We see that the last element of the integral basis of K_{n} is $\frac{1}{2^{n}} \prod_{k=1}^{n}\left(1+\sqrt{m_{k}}\right)=$ e (say) and $e \in O_{K_{n}} / 2^{n}$. Thus, we see that the bound is sharp for this case.

Lemma 3 Let $\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \cdots, \sqrt{m_{n}}\right)$ be an extension of degree 2^{n} over \mathbb{Q}. Then this extension can be rewritten as $\mathbb{Q}\left(\sqrt{x_{1}}, \sqrt{x_{2}}, \cdots, \sqrt{x_{n}}\right)$ where at least $n-2$ of the x_{i} are $1(\bmod 4)$.

Proof. By the finiteness of the extension, we can assume that $\mathbb{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{n}}\right)$ is written such that the maximal number of $m_{i} \equiv 1(\bmod 4)$. Also, we assume for the purpose of contradiction that there are three $m_{i} \not \equiv 1(\bmod 4)$. We will call them m_{1}, m_{2}, m_{3}.

If two of these, WLOG, m_{1} and m_{2} are $3 \bmod 4$, then

$$
m=\frac{m_{1} m_{2}}{\left(m_{1}, m_{2}\right)^{2}} \equiv 1 \quad(\bmod 4)
$$

since the both the numerator and denominator will be $1 \bmod 4$. Note that we could write the extension as

$$
\mathbb{Q}\left(\sqrt{m}, \sqrt{m_{2}}, \sqrt{m_{3}}, \ldots, \sqrt{m_{n}}\right)
$$

and that this extension would have more roots that are $1 \bmod 4$, contradicting our assumption of maximality.

If two of these, WLOG, m_{1} and m_{2} are $2 \bmod 4$ such that $m_{1} / 2 \equiv m_{2} / 2$ $(\bmod 4)$, then $m \equiv 1(\bmod 4)$ where m is defined as above and the same contradiction would result.

In the last case, WLOG, we can assume that $m_{1} \equiv 3(\bmod 4)$ and $m_{2}, m_{3} \equiv$ $2(\bmod 4)$ such that $m_{2} / 2 \not \equiv m_{3} / 2(\bmod 4)$. Let m be defined as above and note that $m \equiv 3(\bmod 4)$. Additionally,

$$
k=\frac{m_{2} m_{3}}{\left(m_{2}, m_{3}\right)^{2}} \equiv 3 \quad(\bmod 4)
$$

Thus, we can rewrite our extension as

$$
\mathbb{Q}\left(\sqrt{m}, \sqrt{k}, \sqrt{m_{3}}, \ldots, \sqrt{m_{n}}\right)
$$

where $m \equiv k \equiv 3(\bmod 4)$ which puts us back in the first case and results in a contradiction. This completes all possible cases. Therefore, the extension can be written such that at least $n-2$ of the square roots are $1 \bmod 4$.

Corollary 1 Let $L=\mathbb{Q}\left(\sqrt{m_{1}}, \ldots \sqrt{m_{n}}\right)$. Then there exists an element of o with denominator greater than or equal to 2^{n-1}.

Proof. From the lemma 3, we write

$$
L=\mathbb{Q}\left(\sqrt{x_{1}}, \sqrt{x_{2}}\right)\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{n-2}}\right)
$$

where each $m_{i} \equiv 1(\bmod 4), x_{1}, x_{2} \not \equiv 1(\bmod 4)$. Note that $\left(x_{1}, x_{2}\right)$ has an element in the ring of integers with denominator 2. Adjoining the other $n-2$ roots which are all $1 \bmod 4$ one at a time and as we have seen in the discussion after proposition 2, we have that there exists an element in the ring of integers with denominator 2^{n-1} since every adjoined root that is $1 \bmod 4$ has been shown to increase the denominator of some term by 2 .

Remark 4 This corollary shows that the bound $d_{n}=2^{n}$ is very close to be optimal.

In order to find the discriminant, we assume the following proposition that can be deduced from the conductor-discriminant formula of class field theory.

Proposition 3 Let K be a poly-quadratic extension of \mathbb{Q}. Then the discriminant of K equals the product of the discriminants of all quadratic subfields of K.

Using the proposition above, we will prove
Proposition 4 Let $K=\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \cdots, \sqrt{m_{n}}\right)$ with m_{i} distinct and relatively prime, $n \geq 3$. Then $\Delta_{K}=c\left(m_{1} m_{2} \cdots m_{n}\right)^{2^{n-1}}$ where c is a constant depending only on n. Indeed, c equals one of $1,16^{2^{n-2}}, 64^{2^{n-2}}$.

Proof. Since the m_{i} are coprime, there can only at most one m_{i} that is $2(\bmod 4)$. Case 1: there is no m_{i} that is $2(\bmod 4)$.

Suppose among n integers $m_{1}, m_{2}, \ldots, m_{n}$, we have k numbers congruent to $1 \bmod 4$, and $n-k$ numbers congruent to $3 \bmod 4$. According to proposition 3, we know that discriminant of K equals the product of the discriminant of $\mathbb{Q}\left(m_{I}\right)$, where $I \subset\{1,2, \ldots, n\}$. We also know that the discriminant of $\mathbb{Q}(m)$ equals m when m is 0 or $1 \bmod 4$, and it equals $4 m$ when m is 2 or $3 \bmod 4$. Hence, we have that

$$
\Delta_{K}=4^{t} \prod_{I \subset\{1,2, \ldots, n\}} m_{I}
$$

where t is the number of subsets I such that m_{I} is not congruent to $1 \bmod 4$.
Note that m_{I} is congruent to $3 \bmod 4$ if and only if m_{I} contains an odd number of m_{i} that is congruent to $3 \bmod 4$. Thus, the number of such subsets I is equal to the number of subsets of $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ that contains an odd number of m_{i} that is congruent to $3 \bmod 4$. That number is

$$
2^{n-k}\left(\binom{k}{1}+\binom{k}{1}+\ldots\right)=2^{k-1} 2^{n-k}=2^{n-1}
$$

Thus,

$$
\Delta_{K}=4^{2^{n-1}} \prod_{I \subset\{1,2, \ldots, n\}} m_{I}=4^{2^{n-1}}\left(m_{1} m_{2} \cdots m_{n}\right)^{2^{n-1}}
$$

Case 2: there is one m_{i} that is $2(\bmod 4)$,say m_{1}. As above, we still have that

$$
\Delta_{K}=4^{t} \prod_{I \subset\{1,2, \ldots, n\}} m_{I}
$$

where t is the number of subsets I such that m_{I} is not congruent to $1 \bmod 4$. Note that m_{I} is not congruent to $1 \bmod 4$ if and only if m_{I} contains m_{1} or m_{I} contains an odd number of m_{i} that is congruent to $3 \bmod 4$ without containing m_{1}. In the first case, the number of such subsets I is 2^{n-1}, in the second case
the number of such subsets is 2^{n-2}. Thus, in total, we have 3.2^{n-2} such sets I. Hence

$$
\Delta_{K}=4^{3.2^{n-2}} \prod_{I \subset\{1,2, \ldots, n\}} m_{I}=64^{2^{n-2}}\left(m_{1} m_{2} \cdots m_{n}\right)^{2^{n-1}}
$$

Now we are ready to prove the main theorems.

3 Totally real poly-quadratic fields

In this section, we will construct a set having volume a constant multiple of the discriminant and not having the image under the Minkowski embedding defined in section 1 of any integral basis of a poly-quadratic field generated by square roots of relatively prime positive integers.

By proposititon $4, \Delta K=c\left(m_{1} m_{2} \cdots m_{n}\right)^{2^{n-1}}$ where c is a constant depending on n. Also, recall that the image of any integral basis under the Minkowski embedding is a \mathbb{R}-basis for \mathbb{R}^{n}.

We construct the set for a biquadratic extension $(n=2)$, and then extend the same idea to poly-quadratic extensions.

Let $K=\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}\right)$. Consider the \mathbb{Z}-module O_{K} / d_{2} and the lattice L_{O} generated by the Minkowski embedding of O_{K} / d_{2}.

Consider

$$
\begin{aligned}
L_{O} & =\frac{\mathbb{Z}}{d_{2}}(1,1,1,1)+\frac{\mathbb{Z}}{d_{2}}\left(\sqrt{m_{1}},-\sqrt{m_{1}}, \sqrt{m_{1}},-\sqrt{m_{1}}\right)+\frac{\mathbb{Z}}{d_{2}}\left(\sqrt{m_{2}}, \sqrt{m_{2}},-\sqrt{m_{2}},-\sqrt{m_{2}}\right) \\
& +\frac{\mathbb{Z}}{d_{2}}\left(\sqrt{m_{1} m_{2}},-\sqrt{m_{1} m_{2}},-\sqrt{m_{1} m_{2}}, \sqrt{m_{1} m_{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
L_{O}^{i} & =\frac{\mathbb{Z}}{d_{2}}(1,1,1,1)+\frac{\mathbb{Z}}{d_{2}}\left(\sqrt{m_{1}},-\sqrt{m_{1}}, \sqrt{m_{1}},-\sqrt{m_{1}}\right)+\frac{\mathbb{Z}}{d_{2}}\left(\sqrt{m_{2}}, \sqrt{m_{2}},-\sqrt{m_{2}},-\sqrt{m_{2}}\right) \\
& +\frac{i}{d_{2}}\left(\sqrt{m_{1} m_{2}},-\sqrt{m_{1} m_{2}},-\sqrt{m_{1} m_{2}}, \sqrt{m_{1} m_{2}}\right), \quad i \in \mathbb{Z}
\end{aligned}
$$

So, we see that $L_{0}=\bigcup_{i \in \mathbb{Z} L_{O}^{i}}$. For $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, define $f(x)=x_{1}-$ $x_{2}-x_{3}+x_{4}$. If $x \in L_{O}^{i}$ we see that x satisfies the equation

$$
\begin{equation*}
f(x)=x_{1}-x_{2}-x_{3}+x_{4}=\frac{d_{2} \cdot i}{d_{2}} \sqrt{m_{1} m_{2}}=i \sqrt{m_{1} m_{2}} \tag{3}
\end{equation*}
$$

Consider the convex centrally symmetric compact set $C=\left[-\frac{\sqrt{m_{1} m_{2}}}{2 d_{2}}, \frac{\sqrt{m_{1} m_{2}}}{2 d_{2}}\right]^{d_{2}}$ in $\mathbb{R}^{d_{2}}$. We know that $\Delta_{K} \asymp\left(m_{1} m_{2}\right)^{2}$ and we see that $\operatorname{Vol}(C)=\frac{1}{d_{2}^{d_{2}}}\left(m_{1} m_{2}\right)^{2} \asymp$ $\left(m_{1} m_{2}\right)^{2} \asymp \Delta_{K}$.

Now, if there exists $x \in L_{O}^{i} \bigcap C$ for $i \neq 0$, then we have

$$
\sqrt{m_{1} m_{2}} \leq\left|i \sqrt{m_{1} m_{2}}\right|=|f(x)|=\left|x_{1}-x_{2}-x_{3}+x_{4}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\left|x_{4}\right| \leq \frac{\sqrt{m_{1} m_{2}}}{2}
$$

which is a contradiction.
Thus, $L_{O}^{i} \bigcap C=\phi$ for $i \neq 0$ and C can contain points from only L_{O}^{0} and hence,
$L_{O} \bigcap C \subset L_{O}^{0} \subset \frac{\mathbb{R}}{d_{2}}(1,1,1,1)+\frac{\mathbb{R}}{d_{2}}\left(\sqrt{m_{1}},-\sqrt{m_{1}}, \sqrt{m_{1}},-\sqrt{m_{1}}\right)+\frac{\mathbb{R}}{d_{2}}\left(\sqrt{m_{2}}, \sqrt{m_{2}},-\sqrt{m_{2}},-\sqrt{m_{2}}\right)$, which is a $d_{2}-1$ dimensional \mathbb{R} vector space and hence cannot contain $d_{2} \mathbb{R}$ linearly independent elements.

Now, let L be the lattice formed using the Minkowski embedding of the ring of integers o_{K} of K. Since we have $o_{K} \subset O_{K} / d_{2}$ from proposition 2, we see that $L \subset L_{O}$. Hence $L \bigcap C \subset L_{O} \bigcap C \subset L_{O}^{0}$ and from above, $L \bigcap C$ can only contain $\leq\left(d_{2}-1\right)$ linearly independent elements. Thus, C cannot contain any \mathbb{Z}-basis of L.

Now we are ready to prove theorem 1.

Proof (of theorem 1). Let $\alpha_{2^{j}}=\sqrt{m_{j}}$ and $\alpha_{0}=1$.
Now we define α_{i} for all $1 \leq i \leq 2^{n}-1$ inductively from $\alpha_{2^{k}}$. Expand i in the binary system and let $i=\sum_{k=0}^{n-1} \delta(k) 2^{k}$ where $\delta(k)=0$ or 1 . Then $\alpha_{i}=\sqrt{\prod_{1 \leq k \leq n-1, \delta(k)=1} m_{k}}$ and we see that

$$
\left\{\alpha_{i} \mid 0 \leq i \leq 2^{n}-1\right\}=\left\{\sqrt{\prod_{j \in J} m_{j}} \mid J \subset\{0, \ldots, n-1\}\right\}
$$

Let $G=\operatorname{Gal}(K / \mathbb{Q})$. Let σ_{0} denote the identity automorphism in G and $\sigma_{2^{p}}, 0 \leq p \leq n-1$ be elements of G_{n} defined by

$$
\sigma_{2^{p}}\left(\alpha_{p}\right)=-\alpha_{p} \text { and } \sigma_{2^{p}}\left(\alpha_{k}\right)=\alpha_{k} \text { for } k \neq p \text { and } 0 \leq k \leq n-1
$$

Let G_{p} be the subgroup $\left\{\sigma_{0}, \sigma_{2^{p}}\right\}$ of G_{n} and we know that $G_{n}=\prod_{p=0}^{n-1} G_{p}$, as $[K: \mathbb{Q}]=2^{n}$.

Now we define all 2^{n} elements σ_{i} of G as follows: expand i in the binary system and let $i=\sum_{k=0}^{n-1} \delta(k) 2^{k}$ where $\delta(k)=0$ or 1 . If k_{1}, \ldots, k_{t} are the ones for which $\delta(k)=1$, then $\sigma_{i}=\sigma_{2^{k_{1}}} \circ \cdots \circ \sigma_{2^{k_{t}}}$.

Now, for $\beta \in K_{n}$ let the Minkowski embedding be $\left(\sigma_{0}(\beta), \sigma_{1}(\beta), \ldots, \sigma_{2^{n}-1}(\beta)\right)$. Let L_{O} be the lattice corresponding to O_{K} / d_{n} and L be the lattice formed by the Minkowski embedding of the ring of integers. As in the bi-quadratic case, consider

$$
L_{O}=\sum_{i=0}^{2^{n}-1} \frac{\mathbb{Z}}{d_{n}}\left(\sigma_{0}\left(\alpha_{i}\right), \sigma_{1}\left(\alpha_{i}\right), \ldots, \sigma_{2^{n}-1}\left(\alpha_{i}\right)\right)
$$

and for each $j \in \mathbb{Z}$, consider

$$
L_{O}^{j}=\sum_{i=0}^{2^{n}-2} \frac{\mathbb{Z}}{d_{n}}\left(\sigma_{0}\left(\alpha_{i}\right), \sigma_{1}\left(\alpha_{i}\right), \ldots, \sigma_{2^{n}-1}\left(\alpha_{i}\right)\right)+\frac{j}{d_{n}}\left(\sigma_{0}\left(\alpha_{2^{n}-1}\right), \sigma_{1}\left(\alpha_{2^{n}-1}\right), \ldots, \sigma_{2^{n}-1}\left(\alpha_{2^{n}-1}\right)\right)
$$

We know that $\alpha_{2^{n}-1}=\sqrt{m_{2^{0}} \cdots m_{2^{n-1}}} \asymp \Delta_{K}^{\left(1 / 2^{n}\right)}$. Also, $L_{0}=\bigcup_{j \in} L_{O}^{j}$.
Now we define $f(x)$ for $x \in \mathbb{R}^{d_{n}}$. Let $a(i)$ for $0 \leq i \leq 2^{n}-1$ be such that $a(i)= \begin{cases}1 & \text { if the binary expression of } i \text { has even number of ones, } \\ -1 & \text { if the binary expression of } i \text { has odd number of ones }\end{cases}$

Then, define

$$
f(x)=\sum_{i=0}^{2^{n}-1} a(i) x_{i}
$$

We have the following observations-
(i) We see that f is linear, i.e., $f(x+y)=f(x)+f(y)$ for $x, y \in \mathbb{R}^{d_{n}}$ and for $c \in \mathbb{R}, f(c x)=c f(x)$.
(ii) $\sigma_{i}\left(\alpha_{2^{n}-1}\right)=a(i) \alpha_{2^{n}-1}$ for all $0 \leq i \leq 2^{n}-1$. This is because each σ_{i} will flip the sign of $\sqrt{m_{k}}$ if and only if the coefficient of 2^{k} in the binary expansion of i is 1 . This implies the number of times σ_{i} will flip the sign of $\alpha_{2^{n}-1}=\sqrt{m_{1} m_{2} \cdots m_{n}}$ is the same as the number of 1 in the binary expansion of i, and thus $\sigma_{i}\left(\alpha_{2^{n}-1}\right)=a(i) \alpha_{2^{n}-1}$.
This implies that
$f\left(\frac{j}{d_{n}}\left(\sigma_{0}\left(\alpha_{2^{n}-1}\right), \sigma_{1}\left(\alpha_{2^{n}-1}\right), \ldots, \sigma_{2^{n}-1}\left(\alpha_{2^{n}-1}\right)\right)\right)=j \alpha_{2^{n}-1}=j \sqrt{m_{2^{0}} \cdots m_{2^{n-1}}}$ for $j \in \mathbb{Z}$
(iii) For $0 \leq i \leq 2^{n}-2, f\left(\frac{k}{d_{n}}\left(\sigma_{0}\left(\alpha_{i}\right), \sigma_{1}\left(\alpha_{i}\right), \ldots, \sigma_{2^{n}-1}\left(\alpha_{i}\right)\right)\right)=0$.

Notice that each σ_{j} will flip or keep the sign of α_{i}, so it suffices to show that the number of σ_{j} that fixes α_{i} is equal to the number of σ_{j} that flips α_{i}. Recall that σ_{j} will flip the sign of $\sqrt{m_{k}}$ if and only if the coefficient of 2^{k} in the binary expansion of j is 1 . Thus, based on the way α_{i} is defined, σ_{j} will flip the sign of α_{i} if and only if the number of common 1 in the binary expansion of i and j is odd. Thus, the problem of counting σ_{j} that will flip the sign of α_{i} is reduced to the following lemma:

Lemma 4 Given an integer $i, 0 \leq i \leq 2^{n}-2$, the number of integers $j, 0 \leq i \leq 2^{n}-1$ such that the number of common 1 in the binary expansion of i and j is odd is 2^{n-1}.

Proof. Suppose the number of 1 in the binary expansion of i is x. Then the j that would satisfies the lemma would have $1,3,5, \cdots 1$ in common with i 's binary expansion in its binary expansion. Such number of j is

$$
\binom{x}{1} 2^{n-x}+\binom{x}{3} 2^{n-x}+\binom{x}{5} 2^{n-x}+\cdots=2^{n-x}\left(\binom{x}{1}+\binom{x}{3}+\binom{x}{5}+\cdots\right)=2^{n-x} \cdot 2^{x-1}=2^{n-1}
$$

Thus, we see that for $x \in L_{O}^{j}, f(x)=j \alpha_{2^{n}-1}=j \sqrt{m_{1} \cdots m_{n}}$ for $j \in \mathbb{Z}$.

Consider the convex centrally symmetric compact set

$$
C=\left[-\frac{\sqrt{m_{1} \cdots m_{n}}}{2 d_{n}}, \frac{\sqrt{m_{1} \cdots m_{n}}}{2 d_{n}}\right]^{d_{n}}
$$

The volume

$$
\operatorname{Vol}(C)=\frac{\left(m_{1} \cdots m_{n}\right)^{2^{n-1}}}{d_{n}^{d_{n}}} \asymp\left(m_{2^{0}} \cdots m_{2^{n-1}}\right)^{2^{n-1}} \asymp \Delta_{K_{n}}
$$

Now, if there exists $x \in L_{O}^{j} \bigcap C$ for $j \neq 0$, then we have $\sqrt{m_{1} \cdots m_{n}} \leq$ $\left|j \sqrt{m_{1} \cdots m_{n}}\right|=|f(x)|=\left|\sum_{i=0}^{2^{n}-1} a(i) x_{i}\right| \leq \sum_{i=0}^{2^{n}-1}\left|x_{i}\right| \leq \sqrt{m_{1} \cdots m_{n}} / 2$.

This is a contradiction. After this, we can repeat the same argument as in the case $n=2$. We have that $L_{O}^{j} \bigcap C=\phi$ for $j \neq 0$ and C can contain points from only L_{O}^{0} and hence,
$L_{O} \bigcap C \subset L_{O}^{0} \subset \sum_{i=0}^{2^{n}-2} \frac{\mathbb{R}}{d_{n}}\left(\sigma_{0}\left(\alpha_{i}\right), \sigma_{1}\left(\alpha_{i}\right), \ldots, \sigma_{2^{n}-1}\left(\alpha_{i}\right)\right)$ which is a $2^{n}-1$ dimensional \mathbb{R} vector space and hence cannot contain $2^{n} \mathbb{R}$-linearly independent elements.

Now, let L be the lattice formed using the Minkowski embedding of the ring of integers o_{K} of K. Since we have $o_{K} \subset O_{K} / d_{n}$ from proposition 2, we see that $L \subset L_{O}$. Hence $L \bigcap C \subset L_{O} \bigcap C \subset L_{O}^{0}$ and from above, $L \bigcap C$ can only contain $\leq\left(d_{n}-1\right)$ linearly independent elements. Thus, C cannot contain any \mathbb{Z}-basis of L.

4 Totally imaginary poly-quadratic fields

The previous section covers the case of poly-quadratic field $K=\mathbb{Q}\left[\sqrt{m_{1}}, \cdots, \sqrt{m_{n}}\right]$ where all the m_{i} are greater than 0 . Now we consider the case where one or more of the m_{i} are negative.

Lemma 5 If K is a number field which is Galois over \mathbb{Q}, then it is either totally real or totally imaginary.

Proof. The lemma follows from the fact that if K has one real embedding then all the embeddings are real and similarly for the other case.

To see the above fact look at composition $K \xrightarrow{\phi} K \xrightarrow{\rho} \mathbb{R}$ where $\phi \in G a l(K / \mathbb{Q})$ and ρ is a real embedding of K. Now, since ρ is injective, $\rho \circ \phi$ for $\phi \in G a l(K / \mathbb{Q})$ are all distinct, which means they are all the embeddings of K into \mathbb{C}, since we have only $n=[K: \mathbb{Q}]$ embeddings of K. Thus, all the embeddings are real if one of them is real and a similar argument works for the other case.

Since we know that poly-quadratic fields are Galois, from the above lemma, we conclude that poly-quadratic fields are totally real if and only if all the m_{i} are greater than zero. If K is a poly-quadratic field with at least one of the $m_{j}<0$, we have an identity embedding of $K \rightarrow \mathbb{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{n}}\right) \subset \mathbb{C}$ and $\mathbb{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{n}}\right) \not \subset \mathbb{R}$. Hence, K is totally imaginary and $r=0, s=\frac{[K: \mathbb{Q}]}{2}=$ 2^{n-1}.

Now we can finally prove theorem 2.
Proof (of theorem 2). Let $K=\mathbb{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{n}}\right)$ with at least one of the $m_{i}<0$. We choose a family \mathcal{F} of embeddings σ such that $\{\sigma, \bar{\sigma} \mid \sigma \in \mathcal{F}\}$ covers all the embeddings $K \rightarrow \mathbb{C}$. Also, we can assume that

For $I \subseteq\{1,2, \ldots, n\}$, let $m_{I}=\prod_{i \in I} m_{i}$ and we fix the notation that if $I=\phi$, then $m_{I}=1$. Let $G=\operatorname{Gal}(K / \mathbb{Q})$ and \sqrt{x} denote the positive square root of x for $x>0$ and $i \sqrt{|x|}$ for $x<0$. Consider the \mathbb{Z}-module $O_{k} / d_{n}=\sum_{I \subset\{1, \ldots, n\}} \frac{\mathbb{Z}}{d_{n}} \sqrt{m_{I}}$ as in proposition 2. The image of it under the Minkowski embedding is

$$
L_{O}=\sum_{I \subset\{1, \ldots, n\}} \frac{\mathbb{Z}}{d_{n}} e_{m_{I}}
$$

where $e_{m_{I}}$ are as follows:
$e_{m_{I}}= \begin{cases}\left(x_{\sigma}\right), x_{\sigma}=1, x_{\bar{\sigma}}=0 \text { for } \sigma \in \mathcal{F} & \text { if } I=\phi \text { and hence } m_{I}=1 \\ \left(x_{\sigma}\right), x_{\sigma}=\sigma\left(\sqrt{m_{I}}\right)= \pm \sqrt{m_{I}}, x_{\bar{\sigma}}=0 \text { for } \sigma \in \mathcal{F} & \text { if } I \neq \phi, m_{I}>0 \\ \left(x_{\sigma}\right), x_{\sigma}=0, x_{\bar{\sigma}}=-i \sigma\left(m_{I}\right)= \pm \sqrt{\left|m_{I}\right|} \text { for } \sigma \in \mathcal{F} & \text { if } I \neq \phi, m_{I}<0\end{cases}$
Let

$$
L_{O}^{j}=\sum_{I \subsetneq\{1, \ldots, n\}} \frac{\mathbb{Z}}{d_{n}} e_{m_{I}}+\frac{j}{d_{n}} e_{m_{1} \cdots m_{n}}
$$

Now, we know that

$$
\left|\Delta_{K}\right| \asymp_{d_{n}}\left(\left|\prod_{j=1}^{n} m_{j}\right|\right)^{2^{n-1}}=\left(\left|\prod_{j=1}^{n} m_{j}\right|\right)^{\frac{d_{n}}{2}}
$$

Consider the set $B \subset \mathbb{R}^{d_{n}}$

$$
B=\left\{\left(x_{\sigma}\right) \in \mathbb{R}^{d_{n}} \left\lvert\, x_{\sigma}^{2}+x_{\bar{\sigma}}^{2} \leq \frac{\left|\prod_{j=1}^{n} m_{j}\right|}{\left(2 d_{n}\right)^{2}}\right. \text { for } \sigma \in \mathcal{F}\right\}
$$

Then

$$
\operatorname{Vol}(B)=\prod_{\sigma \in \mathcal{F}}\left(\pi \cdot \frac{\left|\prod_{j=1}^{n} m_{j}\right|}{\left(2 d_{n}\right)^{2}}\right)=\frac{\pi^{\frac{d_{n}}{2}}}{\left(2 d_{n}\right)^{d_{n}}} \cdot\left|\prod_{j=1}^{n} m_{j}\right|^{\frac{d_{n}}{2}} \asymp_{d_{n}}\left|\Delta_{K}\right|
$$

Observe that $L_{O}=\bigcup_{j \in} L_{O}^{j}$. Define a function $f: L_{O} \mapsto \mathbb{R}$ such that $f(x)=\sum_{\sigma \in \mathcal{F}} x_{\sigma}^{2}+x_{\bar{\sigma}}^{2}$. We want to show that $f(x) \geq \frac{j^{2}}{2 d_{n}} \cdot\left|\prod_{j=1}^{n} m_{j}\right|$ if $x \in L_{O}^{j}$.

Case 1: If $\prod_{j=1}^{n} m_{j} \geq 0$:
Then $f(x)=\sum_{\sigma \in \mathcal{F}} x_{\sigma}^{2}+x_{\bar{\sigma}}^{2} \geq \sum_{\sigma \in \mathcal{F}} x_{\sigma}^{2}$
Suppose $x=\sum_{I \subsetneq\{1, \ldots, n\}} \frac{a_{I}}{d_{n}} e_{m_{I}}+\frac{j}{d_{n}} e_{m_{1} \cdots m_{n}}$.

Then

$$
\begin{aligned}
& \sum_{\sigma \in \mathcal{F}} x_{\sigma}^{2}=\sum_{\sigma \in \mathcal{F}}\left(\frac{j}{d_{n}} \sigma\left(\sqrt{m_{1} m_{2} \cdots m_{n}}\right)+\sum_{m_{I} \geq 0, I \subseteq \subseteq\{1, \ldots, n\}} \frac{a_{I}}{d_{n}} \sigma\left(\sqrt{m_{I}}\right)\right)^{2} \\
\geq & \frac{d_{n}}{2}\left(\frac{j}{d_{n}}\right)^{2} m_{1} m_{2} \cdots m_{n}+\sum_{\sigma \in \mathcal{F}, m_{I}, m_{J} \geq 0} 2 \frac{j}{d_{n}} \frac{a_{I}}{d_{n}} \sigma\left(\sqrt{m_{I} m_{J}}\right)
\end{aligned}
$$

Note that since $m_{I} m_{J} \geq 0,2 \sigma\left(\sqrt{m_{I} m_{J}}\right)=\sigma\left(\sqrt{m_{I} m_{J}}\right)+\bar{\sigma}\left(\sqrt{m_{I} m_{J}}\right)$. Thus,

$$
\sum_{\sigma \in \mathcal{F}} 2 \frac{j}{d_{n}} \frac{a_{I}}{d_{n}} \sigma\left(\sqrt{m_{I} m_{J}}\right)=\frac{j}{d_{n}} \frac{a_{I}}{d_{n}} \operatorname{Tr}_{K / \mathbb{Q}}\left(\sqrt{m_{I} m_{J}}\right)=0
$$

This gives us

$$
\sum_{\sigma \in \mathcal{F}} x_{\sigma}^{2} \geq \frac{d_{n}}{2}\left(\frac{j}{d_{n}}\right)^{2} m_{1} m_{2} \cdots m_{n}=\frac{j^{2}}{2 d_{n}} \prod_{j=1}^{n} m_{j}
$$

Case 2: If $\prod_{j=1}^{n} m_{j} \leq 0$: This case is entirely similar to case 1 .
Now, if there exists $x=\left(x_{\sigma}\right) \in B \bigcap L_{O}^{j}$ for $j \neq 0$, then

$$
\begin{aligned}
\frac{\left|\prod_{j=1}^{n} m_{j}\right|}{2 d_{n}} & \leq \frac{j^{2}}{2 d_{n}} \cdot\left|\prod_{j=1}^{n} m_{j}\right| \\
& \leq f(x)=\sum_{\sigma \in \mathcal{F}} x_{\sigma}^{2}+x_{\bar{\sigma}}^{2} \quad \quad\left[\text { Since } x=\left(x_{\sigma}\right) \in L_{O}^{j}\right] \\
& \leq \sum_{\sigma \in \mathcal{F}} \frac{\left|\prod_{j=1}^{n} m_{j}\right|}{\left(2 d_{n}\right)^{2}} \quad\left[\text { Since } x=\left(x_{\sigma}\right) \in B\right] \\
& =\frac{\left|\prod_{j=1}^{n} m_{j}\right|}{\left(2 d_{n}\right)^{2}} \cdot \frac{d_{n}}{2}=\frac{\left|\prod_{j=1}^{n} m_{j}\right|}{8 d_{n}}
\end{aligned}
$$

which is a contradiction. So, we get that $B \bigcap L_{O}^{j}=\phi$ for $j \neq 0$. Hence,

$$
L_{O} \bigcap B \subset L_{O}^{0} \subset \sum_{I \subsetneq\{1, \ldots, n\}} \frac{\mathbb{R}}{d_{n}} e_{m_{I}}
$$

Thus, $L_{O} \bigcap B$ is contained in a $2^{n}-1$ dimensional \mathbb{R} vector space and hence cannot contain $2^{n} \mathbb{R}$-linearly independent elements.

Now, let L be the lattice formed using the Minkowski embedding of the ring of integers o_{K} of K. Since we have $o_{K} \subset O_{K} / d_{n}$ from proposition 2, we see that $L \subset L_{O}$. Hence $L \bigcap C \subset L_{O} \bigcap C \subset L_{O}^{0}$ and from above, $L \bigcap B$ can only contain $\leq\left(d_{n}-1\right)$ linearly independent elements. Thus, B cannot contain any \mathbb{Z}-basis of L.

Reference

[1] Daniel A. Marcus. Number fields. Springer International Publishing, 2018.
[2] Jürgen Neukirch. Algebraic Number Theory. Springer-Verlag Berlin Heidelberg, 1999.

