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Abstract

The Euler-Arnold equation describes the geodesics on a Lie group on which a Riemmanian

metric is induced, through left group translation, by a given inner product defined on the corre-

sponding Lie algebra. In particular, Arnold used this equation to show that ideal fluids can be

understood as geodesics on the infinite-dimensional Lie bi-algebra of incompressible vector fields.

In this paper, the same approach is applied to the computation of the geodesic curves on the

Lorentz Lie group of relativistic transformations. The corresponding Lorentz Lie algebra is indeed

a simple example of finite-dimensional Lie bi-algebra, so that this example becomes a “toy model”

of the case of ideal fluids described above.

In order to obtain a positive metric on the Lorentz group which is expected to give an integrable

system, we define a positive, non-invariant inner product on the Lorentz Lie bi-algebra. Then,

we derive the geodesic equations of motion in a convenient system of coordinates which takes

advantage of the Lie bi-algebra structure.
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1 Literature Review

“Nothing takes place in the world whose meaning is not that of some maximum or minimum.”

- Leonhard Euler

1.1 Lie Groups and Lie Algebras

Lie groups, named after Sophus Lie, are the mathematical objects which describe continuous symme-

tries; that is, continuous transformations which preserve a prescribed property of a system. A typical

example is three-dimensional rotational symmetry as the class of continuous isometries of a sphere in

three dimensions.

More formally, a Lie group G consists of a group that is also a differentiable manifold [1]. By

the group structure, the Lie group contains an identity element e, and every element g in the Lie

group has a multiplicative inverse g−1 which composes with it to give the identity: gg−1 = I = g−1g.

These conditions ensure that the identity map is a symmetry transformation, and that every symmetry

transformation can be reversed to bring the object back to its original configuration. As a manifold,

the Lie group is locally diffeomorphic to Euclidean space Rn, which in particular implies continuity of

G in the sense that elements of G can get ”arbitrarily closer” to each other (as opposed to elements

of a discrete space). Finally, it must be enforced that the operations of composition µ (also called

multiplication) and inversion i be smooth (i.e. infinitely differantiable) in order for them to respect

the diffeomorphic character of the Lie manifold:

µ : G → G × G, µ(x, y) = xy

and

i : G → G, I(x) = x−1

are smooth maps.

The previous paragraph presents the complete set of conditions characterizing Lie groups, which

have proven to be extensively useful to the study continuous symmetries and their applications; not

only in mathematics but also different areas of theoretical physics, where continuous symmetries lead

to conserved quantities of motion by Noether’s Theorem. To illustrate this idea, we formally present

the SO(3) group of three-dimensional rotations about the origin as our first example of a Lie group:

Example 1. SO(3) = {Q ∈ GL(3, R) | QQT = I and det Q = 1}.

The condition QQT = I means that Q is orthogonal and hence preserves distances, while detQ = 1

excludes the rotations, which have detQ = −1. Note that detQ ̸= 0 ensures that all elements in SO(3)

will have an inverse in the group. The check that matrix multiplication and matrix inversion in SO(3)

are smooth operations is straightforward and omitted here.

In the same context of rotations just considered, Sophus Lie realized that a general tranformation is

generated by an infinitesimal one by virtue of the continuity of the group. That is, any finite rotation

R(θ) ∈ SO(3) around a given axis can be divided in N portions by considering N successive applications

of R(θ/N) (that is, (R(θ/N))N ). Letting N → ∞, R(θ/N) becomes an infinitesimal rotation that can

be written as R(dθ) = I +A+O(dθ2), where A is of order dθ. This statement is generally true for all

Lie groups. With this infinitesimal expansion, the orthogonality condition RRT = I becomes
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I = (I +A)(I +A)T = I +AT +A+O(dθ2) (1)

which gives the antisymmetric condition AT = −A on A. Then, A can be expanded in terms of a

basis J1, J2, J3 of three-dimensional antisymmetric matrices as:

A = θ1J1 + θ2J2 + θ3J3

where

J1 =

0 0 0

0 0 1

0 −1 0

 , J2 =

 0 0 1

0 0 0

−1 0 0

 , and J3 =

 0 1 0

−1 0 0

0 0 0

 , (2)

Back to Eq. 1, the relation between A and R(θ) is the following:

R(θ) = (R(θ/N))N = (I +A)N =

(
I +

θ1J1 + θ2J2 + θ3J3
N

)N

and taking the limit gives the exponential formula for R(θ) in terms of the generators Ji (which

explains their name):

R(θ) = exp

(
θ1J1 + θ2J2 + θ3J3

N

)
It is straightforward to check that θiJi corresponds to a rotation by θi around the i′th axis, so

that the coefficients θi specify all the information about the rotation that we initially represented by

θ. From this, it is clear that the non-commutability of SO(3) is encoded in the commutation relation

of the Ji generators. These facts are true for any Lie group, and lead to the concept of the Lie algebra

associated with a Lie group, which we define next.

For the purposes of this paper, the Lie algebra g associated to a Lie group G is the tangent space

of G at the identity. More formally, a Lie algebra is defined as the vector space of the generators of

G, together with a Lie bracket operation: an alternating bilinear map g × g → g, (U, V ) → [U, V ],

called the Lie bracket or commutator map, which represents anti-commutation and satisfies the Jacobi

identity:

[U, [V,W ]] + [V, [W,U ]] + [W, [U, V ]] = 0. (3)

The properties of g that will be useful to us are contained in the commutation relations dictated

by the Lie bracket. For matrix groups such as those considered in this paper, the commutator of two

arbitrary matrices U, V assumes the simple form [U, V ] = UV −V U . In general, since the image of the

Lie bracket is also in g, it follows that we can expand [Ui, Uj ] =
∑

k ϵijkUk for any pair Ui, Uj ∈ g; the

coefficients ϵijk are called the structure constants, and contain the information that we are interested

in. Therefore, for a first example of a Lie algebra, let us return to the case of rotations and compute

the commutation relations of the generators Ji.
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Example 2. so(3): Lie algebra of SO(3)

[J1, J2] =

0 0 0

0 0 1

0 −1 0


 0 0 1

0 0 0

−1 0 0

−

 0 0 1

0 0 0

−1 0 0


0 0 0

0 0 1

0 −1 0

 =

 0 1 0

−1 0 0

0 0 0

 = J3

and similarly [J2, J3] =

0 0 0

0 0 1

0 −1 0

 = J1 and [J3, J1] =

 0 0 1

0 0 0

−1 0 0

 = J2. (4)

The remaining cases follow by anticommutation of the Lie bracket. Thus, we see that the structure

constants for so(3) are simply the components of the antisymmetric Levi-Civita tensor ϵijk in three

dimensions, so that the Lie bracket in this case corresponds to a vector cross-product. This algebra,

for instance, is the basis for the theory of angular momentum in quantum mechanics.

1.2 The Lorentz Lie Group and Algebra

It is the aim of this paper to find and solve the equations for geodesics on the Lorentz Lie group.

Consequently, this section presents the Lorentz Lie group and its associated Lie algebra.

To begin with, the Lorentz group O(1, 3) is the group formed by Lorentz transformations, which

relate physical frames of reference that move with respect to each other at a given constant velocity.

These transformations, named after the physicist Hendrik Lorentz, encapsulate the symmetry of the

four-dimensional Minkowski spacetime, which serves as stage for the theory of special relativity. In

other words, the Lorentz transformations are precisely those that preserve the Minkowski distance

c2(t2 − t1)
2 + (x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 between any two events E1 = (t1, x1, y1, z1), E2 =

(t2, x2, y2, z2), in spacetime. It is clear that the spatial rotations in SO(3) satisfy this condition when

embedded in four dimensions (acting as the identity on the time component, so that the Ji are extended

with first rows and columns filled with zeros). There is another type of Lorentz transformations, known

as Lorentz boosts, which are generated by the following matrices:

K1 =


0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

 , K2 =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 , andK3 =


0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0

 .

Of course, any composition of spatial rotations and Lorentz boosts also represents some element

of the Lorentz Lie algebra, this is, some operator that generates an element of O(1, 3) through expo-

nentiation. In fact, the six Ji and Ki are a basis for the Lorentz algebra o(1, 3), and these are usually

taken as canonical generators.

Nonetheless, it is often more convenient to work with the representation of the Lorentz group in

terms of two-by-two matrices, obtained by identifying Minkowski four-vectors of the form (t, x, y, z)

with the matrices

(
t+ z x− iy

x+ iy t− z

)
, so that the determinant of the matrix gives the Minkowski norm

of the corresponding vector. In this representation, the six Lorentz generators take up the following

form:

J1 =
1

2

(
0 1

1 0

)
, J2 =

1

2

(
0 −i

i 0

)
, J3 =

1

2

(
1 0

0 −1

)
,
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K1 =
1

2

(
0 i

i 0

)
, K2 =

1

2

(
0 1

−1 0

)
, andK3 =

1

2

(
i 0

0 −i

)
.

However, for the purpose of computation in this work, we choose the alternative basis {Xi} given by

the following six elements:

X1 =

(
0 −2

0 0

)
, X2 =

(
0 2i

0 0

)
, X3 =

(
−1 0

0 1

)
,

X4 =
1

2

(
0 −i

−i 0

)
, X5 =

1

2

(
0 −1

1 0

)
, andX6 =

1

2

(
−i 0

0 i

)
. (5)

Note first that X4, X5, X6 are just the J1, J2, J3 multiplied by −i, so that they are proportional

to the three Pauli matrices; while the X1, X2, X3 are an altogether different a choice of basis from

the infinitesimal boosts Ki. Here we often emphasize this distinction between the first three and the

second three basis elements by referring to the former as the upper-triangular basis elements, and the

latter as the diagonal basis elements. In this way, the new basis makes the bi-algebra structure of

o(1, 3) explicit (see [2]). In short, a Lie bi-algebra is a Lie algebra enhanced by a co-bracket operation,

which also satisfies antilinearity, the co-Jacobi identity similar to 3, and a compatibility condition with

the Lie bracket. We will only need to take advantage of the compatibility condition of the bi-algebra

structure, in order to simplify our computations; this condition will be introduced and used later on,

in Section 2.2.

1.3 Lie Geometry and the Euler-Arnold Equation

In this section, we consider the geometry of Lie groups on which a notion of distance is defined

through a Riemannian metric g, which assigns an inner product ⟨u, v⟩g(x) to every pair of tangent

vectors u, v ∈ TxG, the tangent space of G (as a manifold) at x, for all points x ∈ G. In particular, the

metric defines a non-negative length |v|g(x)| =
√
⟨v, v⟩g(x) ∈ R+ for every tangent vector v. Besides, in

order to be a well-defined metric, this inner product is required to be symmetric, positive-definite, and

smooth as a function of x. With respect to the interaction between the metric and the group structure

of G, we say that the metric g is left-invariant if it is invariant under left translation or multiplication:

⟨u, v⟩g(x) = ⟨(dLy)xv, (dLy)xw⟩g(yx)

for all x, y ∈ G and all u, v ∈ TxG. Here, dLy is the differential of the map that left-multiplies by

y.

We now introduce the concept of geodesic curve. With respect to a pair of endpoints a, b ∈ G, and

given a prescribed metric, a geodesic from a to b is any smooth curve γ : [a, b] → G which minimizes

the length

|γ| :=
∫ b

a

|γ′(t)|g(γ(t))dt.

In order to remove the degeneracy in this definition induced by reparameterizations of γ, it is more

convenient to consider the equivalent condition of energy minimization instead of the length [3], with
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the energy similarly given by the integral of the square of the speed:

E(γ) :=
1

2

∫ b

a

|γ′(t)|2g(γ(t))dt. (6)

This condition is equivalent to the previous one under the assumption that the speed |γ′(t)| remains

constant throughout the curve. Therefore, we define a geodesic flow or geodesic curve to a curve that

minimizes the value of E for fixed points a, b. Then, in the context of Lagrangian mechanics, geodesic

flows describe the trajectories of particles that move within G in the absence of external mechanical

forces.

A key observation about the geometry of Lie groups is that the tangent space at any point x

is actually determined by the tangent space at the identity (i.e. the Lie algebra), through the left

translation by x provided by the group structure. This means that we can choose an inner product on

the Lie algebra, and use the product it induces on the tangent bundle TG as left-invariant a Riemannian

metric on G, in a way that will be made precise in Eq. 7 below. Then, it turns out that our initial

choice of inner product on the Lie algebra actually determines the geodesic flows on G through the

induced inner product, such that the geodesics can a priori be computed directly from a differential

equation involving the Lie algebra structure. Such procedure was pioneered by Vladimir Arnold in his

1966 paper [4], where he showed that many important physical equations of motions can be viewed as

geodesic equations on a Lie group equipped with a left-invariant metric of the type just considered.

The general form of the geodesic equation in this context is known as the Euler-Arnold equation, and

two celebrated examples of particular instances are the Euler equations of motion of a rigid body and

the Euler equations of fluid dynamics of an incompressible fluid with no viscosity.

Now, for v ∈ TxG a tangent vector at point x ∈ G, the corresponding element dx−1(v) in the Lie

algebra g is given by the pullback of v by x. Conversely, any element U ∈ g can be transported to a

tangent vector at x through the pushforward dx(v). Therefore, given an inner product ⟨u, v⟩g on g we

can promote it to a metric given by

⟨dLx(u), dLx(v)⟩g(x) = ⟨u, v⟩g (7)

for all x ∈ G. This metric is automatically left-invariant, by virtue of its definition as an extension

by left-translation of the inner product at the identity.

There is another bilinear form that is relevant to the geodesic flows in the Euler-Arnold picture.

This is the partial adjoint B : g× g → g of the Lie bracket (with respect to the chosen inner product):

⟨[U, V ],W ⟩ = ⟨B(W,V ), U⟩ (8)

Indeed, the form B describes the geodesic flow through the Euler-Arnold equation, which we present

next.

Theorem 1 (Euler-Arnold equation). Let γ : R → G be a geodesic flow on G for the left-

invariant metric g defined above, and let V (t) = γ−1(t)γ′(t) ∈ g be its intrinsic velocity vector. Then

V is given by the equation

d

dt
v(t) = B(v(t), v(t)). (9)

6



Theorem 1 represents the central result employed in this paper. We conclude this subsection with

its proof as given by Tao [3] (except that Tao uses the convention corresponding to a right-invariant

metric, which flips all terms involving γ−1 in the theorem and throughout the proof).

Proof of Theorem 1

Consider a variation γ(s, t) of the original curve γ(t) = γ(0, t) and find the first variation of the energy

∂s
1

2

∫ b

a

⟨∂tγ(t), ∂tγ(t)⟩g(γ(s,t))dt.

which can be rewritten by Eq. 8 as:

∂s
1

2

∫ b

a

⟨γ−1γt, γ
−1γt⟩dt =

∫ b

a

⟨∂s(γ−1γt), γ
−1γt⟩dt

where the last equality makes use of the linearity and symmetry of the product to bring the

variational derivative into one of the product factors. Substituting in V (t) we obtain∫ b

a

⟨∂s(γ−1γt), V ⟩dt.

Expanding the variational derivative gives

∂s(γ
−1γt) = −γ−2γsγt + γ−1γts = γ−1γts− γ−1γsγ

−1γt

and similarly

∂t(γ
−1γs) = γ−1γst− γ−1γtγ

−1γs

Since the partial derivatives commute (γst = γts), we have found

∂s(γ
−1γt) = ∂t(γ

−1γs) + [γ−1γs, V ]

We substitute this back into the energy variation, and after integration by parts we get∫ b

a

⟨γ−1γs, B(V, V )⟩ − ⟨γ−1γs, ∂tV ⟩dt.

We want the first variation to vanish for an arbitrary choice of γs, which by the expression just

found occurs exactly when the Euler-Arnold equation ∂tV (t) = B(V (t), V (t)) holds.

1.4 Matrix Inner Products

The previous section made apparent that the choice of inner product on a Lie algebra shapes the

Arnold geodesic flows on the corresponding Lie group. In this case, we are interested on a matrix Lie

group. Thus, we use this section to introduce two common matrix inner products, including the one

chosen in this paper to define our metric, before beginning the actual geodesic calculations in the next

section.

To begin with, there is a bi-invariant but non-positive matrix inner product [2], given by

(U, V ) = [Tr(UV )]. (10)
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This is a complex-valued invariant product, and in fact its real and imaginary parts represent two

independent invariant products. This fact will become important when we consider the constants of

motion or conserved quantities related to our geodesic trajectories. The reason for this is that invariant

products generate conserved quantities, as we will prove belows; thus, the two parts of this complex

invariant product will furnish two independent constants of motion.

Besides, the imaginary part of this product associates the following scalars to each pair of elements

in our Lie bi-algebra basis {Xi} from 5:

(Xi, Xj) = 0 = (Xi, Xj), (Xi, X
j) = δji

These simple relations are a consequence of the fact that the Lie bi-algebra o(1, 3) can be decom-

posed into two isotropic subalgebras, spanned by respectively by {X1, X2, X3} and {X4, X5, X6} see

(Example 2.1 of [2]).

However, the geodesic flows induced by an invariant product itself are largely uninteresting, because

this property of the product makes the metric too simple (in a sense, the invariance of the metric is

trivial in this case), and ultimately leads to trivial geodesic equations. For this reason, to define our

metric we use the Frobenius matrix inner product, which is non-invariant but positive:

⟨U, V ⟩ = Re[Tr(U†V )]. (11)

As the next section will show, the Frobenius products of our basis elements are highly symmetric,

which leads to conservation laws that ultimately can be used to analytically solve the system formed

by the geodesic equations.

2 Inner-product and Commutation Relations in the Lorentz

Lie Algebra

This section contains the computations of all inner products and commutators of the basis elements

{Xi}. These will be used in the next section in order to solve the Euler-Arnold equation 9, which

involves both products and commutators through the definition of B in 8, in the coordinate system

fixed by this basis.

2.1 Frobenius Inner-product Elements

There is a total of 6 ∗ 6 = 36 inner-product elements for our six-element basis. Those products

involving only X4, X5, X6, the diagonal basis elements, are most easily found by remembering their

proportionality relation with the Pauli matrices, Xi+3 = − i
2σi, where σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
,

and σ3 =

(
1 0

0 −1

)
. Then we can use their hermiticity and trace properties, σ†

i = σi and Tr[σiσj ] =

δijI, to find:

⟨X3+i, X3+j⟩ = Re
[
Tr
(
X†

3+iX3+j

)]
= Re

[
−
(
i

2

)2

Tr
(
σ†
iσj

)]
=

1

4
Re [Tr (δijI)] =

1

2
δij

where i, j = 1, 2, 3. This expression thus covers nine of the thirty-six products. The remaining

twenty-seven, by the symmetry of the product, can be found through the following (27−3)/2+3 = 15
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different computations:

⟨X1, X1⟩ = Re

[
Tr

((
0 0

−2 0

)(
0 −2

0 0

))]
= Re

[
02 + (−2)2

]
= 4,

similarly

⟨X1, X2⟩ = Re

[
Tr

((
0 0

−2 0

)(
0 2i

0 0

))]
= Re[−4i] = 0,

⟨X1, X3⟩ = Re

[
Tr

((
0 0

−2 0

)(
−1 0

0 1

))]
= Re[0] = 0,

⟨X2, X2⟩ = Re

[
Tr

((
0 0

−2i 0

)(
0 2i

0 0

))]
= Re[4] = 4,

⟨X2, X3⟩ = Re

[
Tr

((
0 0

−2 0

)(
−1 0

0 1

))]
= Re[0] = 0,

⟨X3, X3⟩ = Re

[
Tr

((
−1 0

0 1

)(
−1 0

0 1

))]
= Re[2] = 2,

⟨X1, X4⟩ = Re

[
Tr

((
0 0

−2 0

)(
0 1

2
1
2 0

))]
= Re

[
i

2
(−2) + 0

]
= 0,

⟨X1, X5⟩ = Re

[
Tr

((
0 0

−2 0

)(
0 − 1

2
1
2 0

))]
= Re[−1] = −1,

⟨X1, X6⟩ = Re

[
Tr

((
0 0

−2 0

)(
− i

2 0

0 i
2

))]
= Re[0 + 0] = 0,

⟨X2, X4⟩ = Re

[
Tr

((
0 0

−2i 0

)(
0 1

2
1
2 0

))]
= Re

[
i

2
(−2i) + 0

]
= 1,

⟨X2, X5⟩ = Re

[
Tr

((
0 0

−2i 0

)(
0 − 1

2
1
2 0

))]
= Re[−i] = 0,
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⟨X2, X6⟩ = Re

[
Tr

((
0 0

−2i 0

)(
− i

2 0

0 i
2

))]
= Re[0 + 0] = 0,

⟨X3, X4⟩ = Re

[
Tr

((
−1 0

0 1

)(
0 1

2
1
2 0

))]
= Re[0 + 0] = 0,

⟨X3, X5⟩ = Re

[
Tr

((
−1 0

0 1

)(
0 − 1

2
1
2 0

))]
= Re[0 + 0] = 0,

and lastly

⟨X3, X6⟩ = Re

[
Tr

((
−1 0

0 1

)(
− i

2 0

0 i
2

))]
= Re

[
− i

2
(−1) +

i

2
(1)

]
= 0.

Finally, we collect all of the computed product elements, in our basis, into a 6-by-6 matrix given

by ρij = ⟨Xi, Xj⟩:

ρ =



4 0 0 0 1 0

0 4 0 −1 0 0

0 0 2 0 0 0

0 −1 0 1
2 0 0

1 0 0 0 1
2 0

0 0 0 0 0 1
2


, (12)

which is seen to be symmetric and checked to be positive by finding its eigenvalues in the usual way (in

particular, they are: 4.265564437074637, 0.23443556292536255, 4.265564437074637, 0.23443556292536255,

2, and 0.5).

2.2 Commutation Relations

This subsection provides the commutator relations in our basis. For a start, we use again the pro-

portionality of our diagonal basis elements with the σi, since the Pauli matrices have well-known

commutation relations. Therefore, we directly find (by bilinearity of the Lie bracket):

[Xi+3, Xj+3] =

[
− i

2
σi,−

i

2
σj

]
=

(
− i

2

)2

[σi, σj ] = −1

4
(2i)ϵijkσk = ϵijk

(
− i

2
σk

)
= ϵijk (Xk+3) .

Then, we compute directly the commutators involving only the upper-triangular basis matrices:

[X1, X2] =

(
0 −2

0 0

)(
0 2i

0 0

)
−

(
0 2i

0 0

)(
0 −2

0 0

)
= 0

[X1, X3] =

(
0 −2

0 0

)(
−1 0

0 1

)
−

(
−1 0

0 1

)(
0 −2

0 0

)
=

(
0 2i

0 0

)
−

(
0 −2i

0 0

)
= 2

(
0 2i

0 0

)
= 2X2
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and letting 2i → −2 in this computation we find similarly

[X2, X3] =

(
0 −2

0 0

)
−

(
0 +2

0 0

)
= 2

(
0 −2

0 0

)
= 2X1

In a Lie bi-algebra, the commutators within both subalgebras actually determine the mixed com-

mutators (in this case, commutators of a upper-triangular basis element with a diagonal one), through

the compatibility condition. Letting a, b, c range over the indices 1, 2, 3 for the upper-triangular basis

and x, y, z over 4, 5, 6 for the diagonal basis, the structure constants Γc
ab and Γz

xy within each subalgebra

are given by

[Xa, Xb] =
∑
c

Γc
abXc, [Xx, Xy] =

∑
z

Γz
xyXz.

In this notation, the mixed commutators follow from the compatibility condition

[Xa, Xx] =
∑

b=1,2,3

Γa
x−3,bXb −

∑
y=4,5,6

Γx
a+3,yXy.

For convenience, we gather here the subalgebra commutators previously computed

[X1, X2] = 0, [X1, X3] = 2X2, [X2, X3] = 2X1

[X4, X5] = X6, [X4, X6] = −X5, [X5, X6] = X4. (13)

Combining these with the compatibility condition just introduced, we compute the mixed commu-

tators explicitly:

[X1, X4] = −2X6, [X2, X4] = −X3, [X3, X4] = X2 + 2X4

[X1, X5] = X3, [X2, X5] = −2X6, [X3, X5] = −X1 + 2X5 (14)

[X1, X6] = −X6, [X2, X6] = X1, [X3, X6] = 0.

Every other commutation relation either follows directly from 13 and 14, or equals zero trivially

by [Xi, Xi] = 0. As usual, we now define the structure constants Γk
ij for the Lorentz Lie algebra

to be the coefficients appearing on the right-hand side of the commutation relations, according to

[Xi, Xi] = Γk
ijXk, where i, j, k range over 1, 2, 3, 4, 5, 6. These structure constants enter the Euler-

Arnold equation for geodesics through the adjoint B of the Lie bracket, when the latter is expressed

in the coordinates corresponding to our {Xi} basis.

3 Coordinate Form of the Euler-Arnold Equation

3.1 Derivation of the Coordinate Form of the Equation

This section presents the computations necessary to express, and ultimately solve, the Euler-Arnold

equation (Eq. 9) for geodesics, in the system of coordinates fixed by our choice of basis {Xi}. For

a start, we note that the Euler-Arnold equation is cast in coordinate form by projecting it into each

basis element applying the Frobenius inner product:

⟨Xi,
dv

dt
⟩ = ⟨Xi, B(v, v)⟩

11



Expand the element v in our basis as v =
∑

j v
jXj . Then, we can rewrite the equation above in terms

of these coordinates, making use of the product elements 12 and Lie structure constants 13 and 14 and

the definition 8 of B:

⟨Xi,
dvj

dt
Xj⟩ = ⟨[Xi, v], v⟩ = ⟨[Xi, v

jXj ], v
lXl⟩ = ⟨vjΓk

ijXk, v
lXl⟩

→ ρij
dvj

dt
= Γk

ijρklv
jvl. (15)

where linearity of both the Lie bracket and the product has been used repeatedly to take the coefficients

vj out. Also, here and moving forward, the Einstein summation convention is used for convenience.

In this coordinate form, there is one such geodesic equation for each of the six components i. In

general, the right hand side of the equation has a complicated quadratic form that makes the equations

analytically unsolvable. In those cases, a numerical or approximate solution is often simple and sheds

light on some aspects of the geodesic flow. In our particular case, however, the different symmetries of

the inner product and Lie bracket (inherited by the tensors Γk
ij and ρij) conspire to simplify greatly

the form of this equations, by making most of the terms on the right hand side either equal zero or

cancel mutually with other terms.

Example 1. Geodesic Equations for the Rigid Body.

In order to illustrate the use of the use of Eq. 15, we apply it in the case of the rigid body to

derive Euler’s equations of motions. In that case, Γk
ij = ϵijk, and the inner-product takes the form

ρ =

I1 0 0

0 I2 0

0 0 I3

 for some constants Ii, in the basis formed by the usual rotations generators Ji.

The geodesic equations are then computed from these according to Eq. 15:

ρ1j
dvj

dt
= I1

dv1

dt
= Γk

1jρklv
jvl = Γ3

12ρ33v
2v3 + Γ2

13ρ22v
3v2 = (I3 − I2)v

2v3

ρ2j
dvj

dt
= I2

dv2

dt
= Γk

2jρklv
jvl = Γ1

23ρ11v
3v1 + Γ3

21ρ33v
1v3 = (I1 − I3)v

1v3

ρ3j
dvj

dt
= I3

dv3

dt
= Γk

3jρklv
jvl = Γ2

31ρ22v
1v2 + Γ1

32ρ11v
2v1 = (I2 − I1)v

1v2

which are Euler’s equations of motions for a rotating rigid body with moments of inertia I1, I2, I3

and angular velocity −→ω = (v1, v2, v3). When I1, I2, and I3 are all different, which corresponds to a

completely anisotropic rigid body, the solutions to these equations are given in terms of the Jacobi

elliptic functions: sn(t), cn(t), dn(t) [5]. The Jacobi elliptic functions are doubly periodic and charac-

terized by the property that the derivative of any one of the three is proportional to the product of

the other two. In this sense, the Jacobi elliptic functions are a triplet generalization of the pair formed

by the trigonometric functions sine and cosine.

Now, if the rigid body exhibits a spatial symmetry consisting of rotations within some plane, there

exists a particular choice of basis that exploits this symmetry to simplify the equations of motions.

For instance, we can choose axis 1 and 2 to lie in the symmetry plane, to render I1 = I2. In this

case, the third equation above simplifies to dv3

dt = 0, leading to the conservation of v3. Then, the

other two equations are effectively linear: the derivative of one of the two first components is linear

in the other, which leads to solutions in terms of sine and cosine functions. In addition, finally, it is

straightforward to note that a full rotational symmetry requires all moments Ii to be equal, which in

turn leads to all components of v(t) being conserved for a geodesic flow. In the next section, we will

12



discover that our choice of inner product on the Lorentz Lie algebra is symmetric enough to render

effectively linear equations (as in the second case above) with trigonometric solutions. We note that

this kind of partially symmetric systems are more treatable than the non-symmetric counterpart, and

more interesting that the trivial ones with complete symmetry.

3.2 Preliminary Analysis of Symmetries and Expected Conserved Quanti-

ties

In this subsection, we introduce the potential quantities that we expect to be conserved by the geodesic

flow, making our system integrable.

In the Poisson-bracket formalism of Hamiltonian mechanics, the Poisson bracket { , } is an antisym-

metric bilinear function analogous to the Lie commutator [ , ]. More concretely, suppose that f, g are

functions of the coordinates vi on a Lie algebra with some basis (that is, f, g are functionals on the

Lie algebra), and that Γij
k are the usual structure constants related to the Lie commutator. Then, the

Poisson bracket is related to the commutator through

{f, g} = vkΓij
k

df

dvi
dg

dvj
. (16)

Now, a quantity of motion is conserved if and only if its Poisson bracket with the Hamiltonian

H are zero, and H itself is determined by the defined inner product ρ according to H = ⟨V, V ⟩ =

⟨viXi, v
jXj⟩ = ρijv

ivj . For a start, the Hamiltonian H has zero bracket with itself (in the same way

any quantity has zero commutator with itself), and is therefore always conserved. In our particular case,

we know the product coefficients ρij are given by the definition of ρ in Eq. 12. This leads to the first

conserved quantity, the HamiltonianH = 4v1v1+2v1v5+4v2v2−2v2v4+2v3v3+ 1
2v

4v4+ 1
2v

5v5+ 1
2v

6v6.

We expect two more conserved quantities that are quadratic in the vi, coming from the real and

imaginary parts of the invariant inner product in 10. These are Im[Ω] = Im[(V, V )] = v1v4 + v2v5 +

v3v6, and Re[Ω] = Re[(V, V )] = −2v1v5 + 2v2v4 + 2v3v3 − 1
2v

4v4 − 1
2v

5v5 − 1
2v

6v6. Of course, we

must include here the proof that invariant products are conserved; in fact, we show that a product is

invariant if and only if it has zero Poisson brackets with all coordinate components (which in particular

implies our claim) as follows:

0 = {Ω, vk} = Ωijv
i{vj , vk}

= Ωijv
ivlΓjk

l =
1

2
vivl[ΩijΓ

jk
l +ΩljΓ

jk
i ]

where we have used 16, and then exploited the symmetry consisting on exchanging the indices i and

l. Since vivl are arbitrary coordinates, the above is equivalent to

ΩijΓ
jk
l +ΩljΓ

jk
i = 0,

this is,

([viXi, v
jXj ], v

kXk) + (vjXj , [v
iXi, v

kXk]) = 0

which is the statement of invariance, concluding the proof. Therefore, we anticipate the existence of

three independent quadratic constants of motion associated with our dynamical system of geodesic

flows. In fact, a straightforward calculation at this stage (which we omit in this text) shows that
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H has zero Poisson brackets with itself and both parts of Ω have zero Poisson brackets with each vi

component, which provides a first check for our computations in Section 2.

The linear conserved quantities are trickier to identify at this stage, but simply foreseeing the

existence of a number of them allow us to predict the integrability of the system. To understand this,

let us use an analogy with the rigid body studied as an example in the previous subsection. In that

case, there are three degrees of freedom {v1, v2, v3} and at least one conserved quantities: the system’s

Hamiltonian H = I1v
1v1 + I22v

2 + I3v
3v3. Depending on the presence or lack of symmetries, we might

have from zero to two additional independent constants of motion such as v3, v1; because once two

components are conserved, the third one is conserved automatically as a combination of H and the other

two, so it is not independent. So the total number of (independent) conserved quantities is between one

and three, and this number determines the simplicity of the dynamical system and its solutions, which

are (respectively): Jacobi elliptic functions, sinusoidal functions, and trivial constants. In comparison,

O(1, 3) has six degrees of freedom, and at least three constants of motion by the discussion above.

In addition, the Lorentz Lie algebra contains a completely-symmetric rigid body as the subalgebra

determined by {X4, X5, X6}. This is expected to give rise to three conserved generators (for a total of

six conserved quantities for six equations), though the particular form of this generators is unknown at

this stage (in particular, they might represent pure rotations or combinations of rotations and boosts).

Another hint for the existence of linear conserved quantities is the discrete symmetry present in the

Lie algebra under the exchanges X1 ↔ −X2, X4 ↔ X5, X3 → X3, X6 → −X6, which can be seen to

conserve all the inner products and commutators in Section 2, and might be a manifestation of an

underlying rotational symmetry within some plane. Even if only two linear conserved quantities were

present (five total conserved quantities for six equations), an analytical solution would be available

in terms of Jacobi elliptic functions, and all three conservation laws would lead to a simpler solution

in terms of exponential or even trigonometric functions (by analogy with the first and second cases

of the rigid body). Indeed, after the explicit calculation in the next subsection, we will find that our

equations include three conservation laws for three independent linear combinations of the vi, which

as expected makes our system integrable and straightforward to solve.

3.3 Geodesic Equations on the Lorentz Group

Here we present the derivation of the geodesic equations (in their coordinate form) for the Lorentz

group with our choice of basis and Frobenius inner product. Compared to the analogous computation

for the rigid body, carried out in Example 1, the right-hand side of our equations will in principle

contain many more terms, as indices in this case range over six values rather than three. However,

many of the terms will be zero because both the structure constants Γ and the entries of ρ vanish

for several index combinations. We take advantage of this fact to simplify the presentation of our

computation, by following the following equation formatting: for each value of index i (which denotes

the equation number), we look at the structure constants of the form Γk
ij , also for one value of j at

a time. Then, given i and j, there are only at most two values of k for which Γk
ij does not vanish.

For each of these values, Γk
ij couples to two terms proportional to one or two ρ entries of the form

ρkl for some l; after listing the non-vanishing values of Γk
ij for different k, we include a right-pointing

arrow that introduces the non-vanishing contribution of the form Γk
ijρklv

jvl to the right hand side of

our geodesic equation number i. Then, we sum all these contributions over j to obtain the complete

right-hand side of the equation. We repeat this process for each i.
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i = 1:

The terms on the right-hand side can be found as follows:

Γk
11 = 0

Γk
12 = 0

Γk
13 = 2δk1 → Γ1

13

(
ρ11v

3v1 + ρ15v
3v5
)
= 2

(
4v3v1 + 1v3v5

)
Γk
14 = −2δk6 → Γ6

14

(
ρ66v

4v6
)
= −2

(
1/2v4v6

)
Γk
15 = δk3 → Γ3

15

(
ρ33v

5v3
)
= 1

(
2v5v3

)
Γk
16 = −δk2 → Γ2

16

(
ρ22v

6v2 + ρ24v
6v4
)
= −1

(
4v6v2 − 1v6v4

)
.

Regarding the left-hand side:

ρ1j
dvj

dt
= ρ11

dv1

dt
+ ρ15

dv5

dt
= 4

dv1

dt
+

dv5

dt
.

And setting them equal to each other:

4
dv1

dt
+

dv5

dt
= 2

(
4v3v1 + 1v3v5

)
− 2

(
1/2v4v6

)
+ 1

(
2v5v3

)
− 1

(
4v6v2 − 1v6v4

)
= 8v3v1 + 4v3v5 − 4v6v2

→ 4
dv1

dt
+

dv5

dt
= 8v3v1 + 4v3v5 − 4v6v2 (G.1)

This is the first of our geodesic equations. Each of the other five cases require a computation similar

to this one, as presented below.

i = 2:

Right-hand side:

Γk
21 = 0

Γk
22 = 0

Γk
23 = 2δk2 → Γ2

23

(
ρ22v

3v2 + ρ24v
3v4
)
= 2

(
4v3v2 − 1v3v4

)
Γk
24 = −δk3 → Γ3

24

(
ρ33v

4v3
)
= −1

(
2v4v3

)
Γk
25 = −2δk6 → Γ6

25

(
ρ66v

5v6
)
= −2

(
1/2v5v6

)
Γk
26 = δk1 → Γ1

26

(
ρ11v

6v1 + ρ15v
6v5
)
= 1

(
4v6v5 + 1v6v5

)
.

Left-hand side:

ρ2j
dvj

dt
= ρ22

dv2

dt
+ ρ24

dv4

dt
= 4

dv2

dt
− dv4

dt
.

And putting them together:

4
dv2

dt
− dv4

dt
= 2

(
4v3v2 − 1v3v4

)
− 1

(
2v4v3

)
− 2

(
1/2v5v6

)
+ 1

(
4v6v5 + 1v6v5

)
= 8v3v2 − 4v3v4 + 4v6v1
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→ 4
dv2

dt
− dv4

dt
= 8v3v2 − 4v3v4 + 4v6v1 (G.2)

i = 3:

Right-hand side:

Γk
31 = −2δk1 → Γ1

31

(
ρ11v

1v1 + ρ15v
1v5
)
= −2

(
4v1v1 + 1v1v5

)
Γk
32 = −2δk2 → Γ2

32

(
ρ22v

2v2 + ρ24v
2v4
)
= −2

(
4v2v2 − 1v2v4

)
Γk
33 = 0

Γk
34 = δk2 + 2δk4 → Γ2

34

(
ρ22v

4v2 + ρ24v
4v4
)
+ Γ4

34

(
ρ42v

4v2 + ρ44v
4v4
)
= 1

(
4v4v2 − 1v4v4

)
+ 2

(
−1v4v2 +

1

2
v4v4

)
Γk
35 = −δk1 + 2δk5 → Γ1

35

(
ρ11v

5v1 + ρ15v
5v5
)
+ Γ5

35

(
ρ51v

5v1 + ρ55v
5v5
)
= −1

(
4v5v1 + 1v5v5

)
+ 2

(
1v5v1 +

1

2
v5v5

)
Γk
36 = 0.

Left-hand side:

ρ3j
dvj

dt
= ρ33

dv3

dt
= 2

dv3

dt
.

Therefore:

2
dv3

dt
= −2

(
4v1v1 + 1v1v5

)
− 2

(
4v2v2 − 1v2v4

)
+ 1

(
4v4v2 − 1v4v4

)
+ 2

(
−1v4v2 +

1

2
v4v4

)
−1
(
4v5v1 + 1v5v5

)
+ 2

(
1v5v1 +

1

2
v5v5

)
And after cancelling out terms:

2
dv3

dt
= −8v1v1 − 4v1v5 − 8v2v2 + 4v2v4 (G.3)

i = 4:

Right-hand side:

Γk
41 = 2δk6 → Γ6

41

(
ρ66v

1v6
)
= 2

(
1

2
v1v6

)
Γk
42 = δk3 → Γ3

42

(
ρ33v

2v3
)
= +1

(
2v4v3

)
Γk
43 = −δk2 − 2δk2 →Γ2

43

(
ρ22v

3v2 + ρ24v
3v4
)
+ Γ4

43

(
ρ42v

3v2 + ρ44v
3v4
)
= −1

(
4v3v2 − 1v3v4

)
− 2

(
−1v3v2 +

1

2
v3v4

)
Γk
44 = 0

Γk
45 = δk6 → Γ6

45

(
ρ66v

5v6
)
= 1

(
1/2v5v6

)
Γk
46 = −δk5 → Γ5

46

(
ρ51v

6v1 + ρ55v
6v5
)
= −1

(
1v6v1 +

1

2
v6v5

)
.

Left-hand side:

ρ4j
dvj

dt
= ρ42

dv2

dt
+ ρ44

dv4

dt
= −dv2

dt
+

1

2

dv4

dt
.
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Then we find:

−dv2

dt
+

1

2

dv4

dt
= 2

(
1

2
v1v6

)
+ 1

(
2v4v3

)
− 1

(
4v3v2 − 1v3v4

)
−2

(
−1v3v2 +

1

2
v3v4

)
+ 1

(
1/2v5v6

)
− 1

(
1v6v1 +

1

2
v6v5

)
And since all the right-hand side terms cancel out:

→ −dv2

dt
+

1

2

dv4

dt
= 0 (G.4)

i = 5:

Right-hand side:

Γk
51 = −δk3 → Γ3

51

(
ρ33v

1v3
)
= −1

(
2v1v3

)
Γk
52 = 2δk6 → Γ6

52

(
ρ66v

2v6
)
= +2

(
1

2
v2v6

)
Γk
53 = δk1 − 2δk5 →Γ1

53

(
ρ11v

3v1 + ρ15v
3v5
)
+ Γ5

53

(
ρ51v

3v1 + ρ55v
3v5
)
= +1

(
4v3v1 + 1v3v5

)
− 2

(
+1v3v1 +

1

2
v3v5

)
Γk
54 = −δk6 → Γ6

54

(
ρ66v

4v6
)
= −1

(
1/2v4v6

)
Γk
55 = 0

Γk
56 = δk4 → Γ4

56

(
ρ42v

6v2 + ρ44v
6v4
)
= +1

(
−1v6v1 +

1

2
v6v4

)
.

Left-hand side:

ρ5j
dvj

dt
= ρ51

dv1

dt
+ ρ55

dv5

dt
=

dv1

dt
+

1

2

dv5

dt
.

Putting them together:

dv1

dt
+

1

2

dv5

dt
= −1

(
2v1v3

)
+ 2

(
1

2
v2v6

)
+ 1

(
4v3v1 + 1v3v5

)
−2

(
+1v3v1 +

1

2
v3v5

)
− 1

(
1/2v4v6

)
+ 1

(
−1v6v1 +

1

2
v6v4

)
And hence (as in the the previous case):

→ dv1

dt
+

1

2

dv5

dt
= 0 (G.5)
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i = 6:

Right-hand side:

Γk
61 = δk2 → Γ2

61

(
ρ22v

1v2 + ρ24v
1v4
)
= +1

(
4v1v2 − 1v1v4

)
Γk
62 = −δk1 → Γ1

62

(
ρ11v

2v1 + ρ15v
2v5
)
= −1

(
4v2v1 + 1v2v5

)
Γk
63 = 0

Γk
64 = δk5 → Γ5

64

(
ρ51v

4v1 + ρ55v
4v5
)
= +1

(
1v4v1 +

1

2
v4v5

)
Γk
65 = −δk4 → Γ4

65

(
ρ42v

5v2 + ρ44v
5v4
)
= −1

(
−1v5v2 +

1

2
v5v4

)
Γk
66 = 0.

Left-hand side:

ρ6j
dvj

dt
= ρ66

dv6

dt
=

1

2

dv6

dt
.

And then:

1

2

dv6

dt
= +1

(
4v1v2 − 1v1v4

)
− 1

(
4v2v1 + 1v2v5

)
+ 1

(
1v4v1 +

1

2
v4v5

)
− 1

(
−1v5v2 +

1

2
v5v4

)

→ 1

2

dv6

dt
= 0 (G.6)

Thus we find the resulting geodesic equations for the Lorentz Lie group.

Geodesic Equations, Eqs. G.1-G.6:

4
dv1

dt
+

dv5

dt
= 8v3v1 + 4v3v5 − 4v6v2

4
dv2

dt
− dv4

dt
= 8v3v2 − 4v3v4 + 4v6v1

2
dv3

dt
= −8v1v1 − 4v1v5 − 8v2v2 + 4v2v4

−dv2

dt
+

1

2

dv4

dt
= 0

dv1

dt
+

1

2

dv5

dt
= 0

1

2

dv6

dt
= 0

Of course, Eqs. G.4-G.6 automatically imply the expected conservation of three independent linear

quantities: K4 = −v2 + 1
2v

4,K5 = v1 + 1
2v

5, and K6 = 1
2v

6. We note that these three conserved

quantities must give rise to a Lie sub-algebra, because the product and sum of two conserved quantities

remains a conserved quantity. Indeed, a direct computation shows that this is the case and that the

resulting subalgebra is isomorphic to the rotation algebra so(3). We also comment that the symmetry

identified in the previous subsection is evidently preserved by these equations, which serves as a check

for our computation of the geodesic equations. More concretely, the symmetry transformation takes

G.1 and G.2 into each other, similarly for G.4 and G.5, and keep both G.3 and G.6 unchanged. In the
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next section, we further check that the quadratic quantities previously identified are conserved by our

system of geodesic equations. After that, in Section 5, we finally solve the geodesic system to provide

an explicit form for the geodesic flows in this system.

4 Conservation of the Quadratic Constants of Motion

In this section, we use the geodesic equations to check that the derivatives of each of our anticipated

quadratic conserved quantities is indeed zero.

Energy H:

dH

dt
=

d

dt

(
4v1v1 + 2v1v5 + 4v2v2 − 2v2v4 + 2v3v3 +

1

2
v4v4 +

1

2
v5v5 +

1

2
v6v6

)
= 8v1

dv1

dt
+ 2

(
v1

dv5

dt
+

dv1

dt
v5
)
+ 8v2

dv2

dt
− 2

(
v2

dv4

dt
+

dv2

dt
v4
)
+ 4v3

dv3

dt
+ v4

dv4

dt
+ v5

dv5

dt
+ v6

dv6

dt

= 2v1
(
4
dv1

dt
+

dv5

dt

)
+ 2v5

(
dv1

dt
+

1

2

dv5

dt

)
+ 2v2

(
4
dv2

dt
− dv4

dt

)
− 2v4

(
dv2

dt
− 1

2

dv4

dt

)
+ v6

d

dt
v6

= 2v1
(
8v3v1 + 4v3v5 − 4v6v2

)
+ 0 + 2v2

(
8v3v2 − 4v3v4 + 4v6v1

)
− 0

+ 2v3
(
−8v1v1 − 4v1v5 − 8v2v2 + 4v2v4

)
+ 0 = 0

where the second-to-last inequality is obtained by plugging in Eqs. G.1-G.6, and the last one simply

by cancellation of the coefficients of all cubic terms.

Invariant Product Ω:

In this case, rather than plugging in the geodesic equations directly, we need to manipulate them to

find the values of the derivatives dvi

dt individually. For a start, G.6 gives

dv6

dt
= 0, (17)

and similarly G.3 directly implies

dv3

dt
= −4v1v1 − 2v1v4 − 4v2v2 − 2v2v4. (18)

Then, dv1

dt is found by substracting 2(G.5) from G.1 (and dividing by two). In a similar way, G.1 -

4(G.5) gives the value of dv5

dt , G.2 + 2(G.4) leads to dv2

dt and G.2 - 4(G.4) to dv4

dt . Thus we get

dv1

dt
= 4v3v1 + 2v3v5 − 2v6v2 (19)

dv2

dt
= 4v3v2 − 2v3v4 + 2v6v1 (20)

dv4

dt
= 8v3v2 − 4v3v4 + 2v6v1 (21)

dv5

dt
= −8v3v1 − 4v3v5 + 4v6v2. (22)
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Now we are ready to consider the derivative of Re[Ω]:

d

dt
Re[Ω] =

d

dt

(
v1v4 + v2v5 + v3v6

)
= v1

dv4

dt
+

dv1

dt
v4 + v2

dv5

dt
+

dv2

dt
v5 + v3

dv6

dt
+

dv3

dt
v6

and plugging in the values of the derivatives computed above, we get

d

dt
Re[Ω] = v1

(
8v3v2 − 4v3v4 + 4v6v1

)
+
(
4v3v1 + 2v3v5 − 2v6v2

)
v4 + v2

(
−8v3v1 − 4v3v5 + 4v6v2

)
+
(
4v3v2 − 2v3v4 + 2v6v1

)
v5 + v3 (0) +

(
−4v1v1 − 2v1v4 − 4v2v2 − 2v2v4

)
v6 = 0

A similar computation goes through for the derivative of Im[Ω]:

d

dt
Im[Ω] =

d

dt

(
−2v1v5 + 2v2v4 + 2v3v3 − 1

2
v4v4 − 1

2
v5v5 − 1

2
v6v6

)
= v1

dv4

dt
+

dv1

dt
v4 + v2

dv5

dt
+

dv2

dt
v5 + v3

dv6

dt
+

dv3

dt
v6

= −2v1
(
−8v3v1 − 4v3v5 + 4v6v2

)
− 2

(
4v3v1 + 2v3v5 − 2v6v2

)
v5 + 2v2

(
8v3v2 − 4v3v4 + 4v6v1

)
+ 2

(
4v3v2 − 2v3v4 + 2v6v1

)
v4 + 4v3

(
−4v1v1 − 2v1v4 − 4v2v2 − 2v2v4

)
− v4

(
8v3v2 − 4v3v4 + 2v6v1

)
+ v5

(
−8v3v1 − 4v3v5 + 4v6v2

)
= 0

5 Solution of the Geodesic Equations

We begin by eliminating the variables v4, v5, v6 from Eqs. G.1-G.3, leaving them in terms of v1, v2, v3

and the constants K4,K5,K6. First, focus on G.1, and substract 2*(G.5) from it to get

2
dv1

dt
= 8v3v1 + 4v3v5 − 4v6v2

= 8v3(v1 +
1

2
v5)− 4(v6)v2.

Then, divide throughout by 2, and substitute the conservation laws G.5 and G.6 of K5 and K6 for the

terms in parenthesis:

dv1

dt
= 4K5v

3 − 4K6v
2.

Similarly, we can use G.4 and G.6 to simplify Eq. G.2

2
dv2

dt
= 8v3v2 − 4v3v4 + 4v6v1 = −8v3(−v2 +

1

2
v4) + 4v6v1

→ dv2

dt
= −4K4v

3 + 4K6v
1.
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And, to simplify Eq. G.3, K4 and K5 can be substituted in as follows

2
dv3

dt
= −8v1v1 − 4v1v5 − 8v2v3 + 4v2v4

= −8v1(v1 − 1

2
v5) + 8v2(−v2 +

1

2
v4)

→ dv3

dt
= −4K5v

1 + 4K4v
2.

The three resulting equations are Eqs. G.1’-G.3’:

dv1

dt
= −4K6v

2 + 4K5v
3.

dv2

dt
= 4K6v

1 − 4K4v
3

dv3

dt
= −4K5v

1 + 4K4v
2.

Note that these equations are effectively linear, thanks the fact that we could bring a constantKi out as

a common factor and coefficient for each of the terms. This is a consequence of the special symmetries

of our product. In the general case, not all quadratic terms of the form vivj can be reduced to linear

terms, and this leads to more complicated solutions such as the Jacobi elliptic functions in the rigid

body.

To solve our three equations above, we define the column vector
−→
V = (v1, v2, v3)T , which allows

us to rewrite them collectively in matrix form:

d

dt

−→
V = M

−→
V

where the antisymmetric matrix of coefficients is given by M =

 0 −4K6 +4K5

+4K6 0 −4K4

−4K5 4K4 0

 .

In general, the solutions for an equation of this form are determined by the exponential expression

etM
−→
C , for an arbitrary vector

−→
C of initial conditions. This exponential can be found through the

Jordan canonical form of M , which in our case is the diagonal matrix D such that D = T−1MT

for some non-singular linear transformation T . In particular, we will exploit the fact that etM =

T−1etDT .

It is a simple problem in linear algebra to find the eigenvalues ofM , which are: λ1 = −4i
√
K2

4 +K2
5 +K2

6 , λ2 =

+4i
√
K2

4 +K2
5 +K2

6 , and λ3 = 0. These allow us to write D as:

D =

−4i
√
K2

4 +K2
5 +K2

6 0 0

0 4i
√
K2

4 +K2
5 +K2

6 0

0 0 0

 ,

which implies

etD =

e−4ti
√

K2
4+K2

5+K2
6 0 0

0 e4ti
√

K2
4+K2

5+K2
6 0

0 0 0

 .

On the other hand, some intricate algebra (or a computational calculation, for example on MatLab)
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renders the corresponding eigenvectors of M :

e1 =


i
(
K2

4K5 +K4K6

√
−K2

4 −K2
5 −K2

6 +K3
5 +K5K

2
6

)
−iK4(K

2
4 +K2

5 +K2
6 )−K5K6

√
K2

4 +K2
5 +K2

6

(K2
4 +K2

5 )
√
K2

4 +K2
5 +K2

6



e2 =


i
(
−K2

4K5 +K4K6

√
−K2

4 −K2
5 −K2

6 −K3
5 −K5K

2
6

)
iK4(K

2
4 +K2

5 +K2
6 )−K5K6

√
K2

4 +K2
5 +K2

6

(K2
4 +K2

5 )
√
K2

4 +K2
5 +K2

6


e3 =

K4

K5

K6

 ,

which are the three columns of the diagonalizing transformation T . In this way, they determine the

solutions through

etM
−→
C = T−1etDT

−→
C . (23)

Our result comes with the surprise of an additional linear constant of motion, some intricate linear

combination of the v4, v5, v6 whose existence is implied by the zero eigenvalue λ3 = 0 of D. In other

words, in the system of coordinates that diagonalizes M into D, the third coordinate is conserved.

Nonetheless, we note that this one is not independent from the six conserved quantities we discussed

previously (we cannot have seven independent constants in a six-dimensional system), so that the total

number of independent conserved quantities remains unchanged by this observation.

The explicit form of the solutions is in general complicated, as a consequence of the complex form

of the ei columns in the diagonalizing transformation matrix. But they can be evaluated numerically

in a direct way, given the initial conditions. Consequently, rather than presenting the final general

solution in vector form, we prefer the neater option of supplementing Eq. 23 with a script of Matlab

code that carries out the matrix products in said equation and outputs the resulting solutions in text

format (see Appendix A). Finally, these solutions for v4, v5, v6 can then be used to find v1, v2, v3 from

Eqs. G.4-G.6, completing out our computation. Qualitatively, the resulting solutions are given by

linear combinations of exponential functions with exponents that are linear in t. The coefficients in

the exponent are imaginary and depend on the initial conditions. Therefore, our solutions trace out

sinusoidal oscillations of the coordinates with time; with the exception of the coordinate v6, which

is of course constant as we previously found. Therefore, these solutions are indeed analogous to the

trigonometric solutions of the partially-symmetric rigid body, as predicted. We conclude this section

by providing in Fig. 5 a plot of an example geodesic trajectory computed (throught the first script in

Appendix A) for the particular choice of initial conditions: k1 = 20, k2 = 10, k3 = 10, k4 = 50, k5 =

10, k6 = −10, in arbitrary units that out of habit we decide to label meters or (m).
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Figure 1: Example geodesic trajectory for timestep of ∆t = 0.002 (s), and initial conditions: k1 =
20 (m), k2 = 10 (m), k3 = 10 (m), k4 = 50 (m), k5 = 10 (m), k6 = −10 (m). Note the different axis
scales: in particular, v6 is by far the smallest in magnitude, followed by v3.
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6 Conclusions

Equation 23 describes the geodesic flows on the Lorentz group of relativistic transformations, consisting

of combinations of rotations and boosts. As such, they can be interpreted as the paths that connect

two relativistic frames of references, each with their own choice of axis orientations and constant

velocity vector, under no additional constrains except minimizing the distance determined by the

metric obtained from our chosen product (11). Unfortunately, the physical interpretation of this

notion of distance is not evident.

From a mathematical point of view, the Lorentz geodesics represent a dynamical system analogous

to the rigid body with in-plane rotational symmetry (that is, with a single component of angular

momentum conserved), except that both the number of degrees of freedom and that of constants of

motion are increased by three when the Lorentz boosts are added to the group of three-dimensional

spatial rotations. To obtain this analogy, who choose the positive metric to be as symmetric as possible.

An alternative perspective is to think of the geodesics on the Lorenz group as a finite-dimensional case

of ideal fluids as geodesics of the infinite-dimensional group of incompressible vector fields.
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Appendix A

In this section I present the MatLab scripts that I used as assistance to my calculations for this project.

First, this MatLab script computes the geodesic solutions (and plots them as presented in Fig. 5):

%THIS SCRIPT COMPUTES MATRIX PRODUCTS TO FIND THE VECTOR FORM OF THE GEODESIC

%SOLUTIONS

%I n i t i a l i z e v a r i a b l e s f o r a r b i t r a r y i n i t i a l c ond i t i on s

syms k4

syms k5

syms k6

syms t

syms k1

syms k2

syms k3

%Transformation matrix

T = [ i ∗( k4ˆ2∗k5+k4∗k6∗ s q r t (−k4ˆ2−k5ˆ2−k6ˆ2)+k5ˆ3+k5∗k6 ˆ2) , . . .

i ∗( k4ˆ2∗k5+k4∗k6∗ s q r t (−k4ˆ2−k5ˆ2−k6ˆ2)+k5ˆ3+k5∗k6 ˆ2) , k4 ; . . .

− i ∗k4 ∗( k4ˆ2+k5ˆ2+k6ˆ2)−k5∗k6 ∗( s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2 ) ) , . . .

i ∗k4 ∗( k4ˆ2+k5ˆ2+k6ˆ2)−k5∗k6 ∗( s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2 ) ) , k5 ; . . .

( k4ˆ2+k5 ˆ2)∗ s q r t ( k4ˆ2+k5ˆ2+k6 ˆ 2 ) , . . .

( k4ˆ2+k5 ˆ2)∗ s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2) , k6 ]

Tt = transpose (T)

%Or i g ina l system o f equat ions

M = [0 , −4∗k6 , +4∗k5 ; +4∗k6 , 0 , −4∗k4 ; −4∗k5 , 4∗k4 , 0 ]

%Find e i g enva lu e s and e i g env e c t o r s

[ eve , eva ] = e i g (M)

%Undo d i a g ona l i z a t i o n o f E = exp (D)

E = [ exp(−4∗ t ∗ i ∗ s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2 ) ) , 0 , 0 ; . . .

0 , exp (4∗ t ∗ i ∗ s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2 ) ) , 0 ; 0 , 0 , 0 ]

Res = Tt∗E∗T

%Apply to ICs

ResWIC = Res ∗ [ k1 , k2 , k3 ] ’

%EXAMPLE PLOT

%Def ine ICs

k4 = 50 ;

k5 = 10 ;

k6 = −10;

k1 = 20 ;

k2 = 10 ;
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k3 = 10 ;

%Re− i n i t i a l i z e v a r i a b l e s

M2 = [ 0 , −4∗k6 , +4∗k5 ; +4∗k6 , 0 , −4∗k4 ; −4∗k5 , 4∗k4 , 0 ] ;

T2 = [ i ∗( k4ˆ2∗k5+k4∗k6∗ s q r t (−k4ˆ2−k5ˆ2−k6ˆ2)+k5ˆ3+k5∗k6 ˆ2) , . . .

i ∗( k4ˆ2∗k5+k4∗k6∗ s q r t (−k4ˆ2−k5ˆ2−k6ˆ2)+k5ˆ3+k5∗k6 ˆ2) , k4 ; . . .

− i ∗k4 ∗( k4ˆ2+k5ˆ2+k6ˆ2)−k5∗k6 ∗( s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2 ) ) , . . .

i ∗k4 ∗( k4ˆ2+k5ˆ2+k6ˆ2)−k5∗k6 ∗( s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2 ) ) , k5 ; . . .

( k4ˆ2+k5 ˆ2)∗ s q r t ( k4ˆ2+k5ˆ2+k6 ˆ 2 ) , . . .

( k4ˆ2+k5 ˆ2)∗ s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2) , k6 ] ;

[ eve2 , eva2 ] = e i g (M2) ;

Tt2 = transpose (T2 ) ;

%Compute and p lo t

npo ints = 50000

f o r t=1: npo ints

E2 = [ exp(−4∗ t ∗ i ∗ s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2 ) ) , 0 , 0 ; . . .

0 , exp (4∗ t ∗ i ∗ s q r t ( k4ˆ2+k5ˆ2+k6 ˆ2 ) ) , 0 ; 0 , 0 , 0 ] ;

Res = Tt2∗E2∗T2 ;
ResWIC2 = Res ∗ [ k1 , k2 , k3 ] ’ ;

p1 ( t ) = ResWIC2 ( 1 ) ;

p2 ( t ) = ResWIC2 ( 2 ) ;

p3 ( t ) = ResWIC2 ( 3 ) ;

end

p4 = 2∗p2+k4 ;
p5 = −2∗p1+k5 ;
p6 = ze ro s ( npoints , 1 ) ;

p6 ( : ) = 2∗k6 ;

f i g u r e (1 )

p l o t ( l i n s p a c e (0 ,100 ,50000) , r e a l ( p1 ) , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 , 0 , 0 ] ) ;

x l ab e l (” t ( s )” , ’ FontSize ’ , 15)

y l ab e l (”vˆ1 (m)” , ’ FontSize ’ , 15)

hold on ;

p l o t ( l i n s p a c e (0 ,100 ,50000) , imag ( p1) , ’−− ’ , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 . 8 , 0 . 2 , 0 . 1 ] ) ;

l egend ( [ ” Real Part ” , ” Imaginary Part ” ] , ’ FontSize ’ , 1 2 ) ;

xl im ( [ 0 , 1 ] )

t i t l e (” Coordinate vˆ1 vs time t ” , ’ FontSize ’ , 15)

hold o f f ;

f i g u r e (2 )

p l o t ( l i n s p a c e (0 ,100 ,50000) , r e a l ( p2 ) , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 , 0 , 0 ] ) ;

x l ab e l (” t ( s )” , ’ FontSize ’ , 15)

y l ab e l (”vˆ2 (m)” , ’ FontSize ’ , 15)
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hold on ;

p l o t ( l i n s p a c e (0 ,100 ,50000) , imag ( p2) , ’−− ’ , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 . 8 , 0 . 2 , 0 . 1 ] ) ;

l egend ( [ ” Real Part ” , ” Imaginary Part ” ] , ’ FontSize ’ , 1 2 ) ;

xl im ( [ 0 , 1 ] )

t i t l e (” Coordinate vˆ2 vs time t ” , ’ FontSize ’ , 15)

hold o f f ;

f i g u r e (3 )

p l o t ( l i n s p a c e (0 ,100 ,50000) , r e a l ( p3 ) , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 , 0 , 0 ] ) ;

x l ab e l (” t ( s )” , ’ FontSize ’ , 15)

y l ab e l (”vˆ3 (m)” , ’ FontSize ’ , 15)

hold on ;

p l o t ( l i n s p a c e (0 ,100 ,50000) , imag ( p3) , ’−− ’ , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 . 8 , 0 . 2 , 0 . 1 ] ) ;

l egend ( [ ” Real Part ” , ” Imaginary Part ” ] , ’ FontSize ’ , 1 2 ) ;

xl im ( [ 0 , 1 ] )

t i t l e (” Coordinate vˆ3 vs time t ” , ’ FontSize ’ , 15)

hold o f f ;

f i g u r e (4 )

p l o t ( l i n s p a c e (0 ,100 ,50000) , r e a l ( p4 ) , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 , 0 , 0 ] ) ;

x l ab e l (” t ( s )” , ’ FontSize ’ , 15)

y l ab e l (”vˆ4 (m)” , ’ FontSize ’ , 15)

hold on ;

p l o t ( l i n s p a c e (0 ,100 ,50000) , imag ( p4) , ’−− ’ , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 . 8 , 0 . 2 , 0 . 1 ] ) ;

l egend ( [ ” Real Part ” , ” Imaginary Part ” ] , ’ FontSize ’ , 1 2 ) ;

xl im ( [ 0 , 1 ] )

t i t l e (” Coordinate vˆ4 vs time t ” , ’ FontSize ’ , 15)

hold o f f ;

f i g u r e (5 )

p l o t ( l i n s p a c e (0 ,100 ,50000) , r e a l ( p5 ) , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 , 0 , 0 ] ) ;

x l ab e l (” t ( s )” , ’ FontSize ’ , 15)

y l ab e l (”vˆ5 (m)” , ’ FontSize ’ , 15)

hold on ;

p l o t ( l i n s p a c e (0 ,100 ,50000) , imag ( p5) , ’−− ’ , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 . 8 , 0 . 2 , 0 . 1 ] ) ;

l egend ( [ ” Real Part ” , ” Imaginary Part ” ] , ’ FontSize ’ , 1 2 ) ;

xl im ( [ 0 , 1 ] )

t i t l e (” Coordinate vˆ5 vs time t ” , ’ FontSize ’ , 15)

hold o f f ;

f i g u r e (6 )

p l o t ( l i n s p a c e (0 ,100 ,50000) , r e a l ( p6 ) , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 , 0 , 0 ] ) ;

x l ab e l (” t ( s )” , ’ FontSize ’ , 15)

y l ab e l (”vˆ6 (m)” , ’ FontSize ’ , 15)
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hold on ;

p l o t ( l i n s p a c e (0 ,100 ,50000) , imag ( p6) , ’−− ’ , ’ LineWidth ’ , 0 . 2 , ’ Color ’ , [ 0 . 8 , 0 . 2 , 0 . 1 ] ) ;

l egend ( [ ” Real Part ” , ” Imaginary Part ” ] , ’ FontSize ’ , 1 2 ) ;

xl im ( [ 0 , 1 ] )

ylim ([−25 , 5 ] )

t i t l e (” Coordinate vˆ6 vs time t ” , ’ FontSize ’ , 15)

hold o f f ;

% −−− END

We also include the MatLab script used to compute the subalgebra of linear constants of motion:

%THIS SCRIPT COMPUTES THE SUBALGEBRA OF CONSERVED QUANTITIES

m4 = [ 0 , −1 i /2 ; −1 i /2 , 0 ] ;

m5 = [ 0 , −1/2; 1/2 , 0 ] ;

m6 = [−1 i /2 , 0 ; 0 , 1 i / 2 ] ;

m1 = [ 0 , −2; 0 , 0 ] ;

m2 = [ 0 , 2 i ; 0 , 0 ] ;

m3 = [−1 , 0 ; 0 , 1 ] ;

%Conserved quan t i t i e s

k4 = −m2+1/2∗m4

k5 = m1+1/2∗m5

k6 = 1/2∗m6; % ∗( s q r t (2/9 ) )

%Commutators with each ba s i s matrix

c41 = k4∗m1−m1∗k4
c42 = k4∗m2−m2∗k4
c43 = k4∗m3−m3∗k4
c44 = k4∗m4−m4∗k4
c45 = k4∗m5−m5∗k4
c46 = k4∗m6−m6∗k4

c51 = k5∗m1−m1∗k5
c52 = k5∗m2−m2∗k5
c53 = k5∗m3−m3∗k5
c54 = k5∗m4−m4∗k5
c55 = k5∗m5−m5∗k5
c56 = k5∗m6−m6∗k5

%Commutators o f conserved quan t i t i e s

comm45 = k4∗k5−k5∗k4
comm46 = k4∗k6−k6∗k4
comm56 = k5∗k6−k6∗k5

% −−− END
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