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1 Introduction

Consider the following problem: A “Learning Agent” is confined to an n-
dimensional grid. They can move in unit vector steps in any dimension, but
not diagonally, and they may not leave the grid or move multiple spaces at a
time. [4]

Each space on the grid is assigned to a number by a function P (x1, ..., xn).
The algorithm takes in the following parameters:

t - the step length used to update the estimation of q-table values

ϵ - the probability of algorithm to take a random move during the learning
process

g - the discounting factor for future rewards

N - the number of steps taken during a single epoch

nEpochs - the number of epochs

P - a function that maps the grid to real numbers

The goal of the agent is to walk a path with the maximum P values. For this
reason, we have created an algorithm to “reward” the agent for moving from a
low P value to a higher one, and a “punishment” for moving from high to low.

2 Algorithm

The algorithm starts with q-table consisting exclusively of zeroes. Consider the
grid in figure 2 as an example. Beginning at the start point, the agent has the
choice of moving to any of the 4 adjacent points. Since at this point the Q-table
is made up entirely of zeroes, this first choice is random.

P =


1 1 1 1 1
1 1 1 1 1
1 1 2 1 1
1 1 1 1 1
1 1 1 1 10



Suppose the agent moves from a point with P = 1 to the point with P = 2.
The agent is given a reward of 2− 1 = 1 for moving to a higher P -value. This
reward is accounted for in the Q-table. The Q-table is a 100 × 4 table; each
row corresponds to a point in the grid, and the 4 columns correspond to the
4 directions the agent may travel from this point. Of course, for corners and
edges travel is not possible in all 4 directions, but this is corrected later on by
the “limit moves” function. The Q value corresponding to the point at which
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the agent started, and the direction the agent traveled, is updated according to
the following formula:

(1− t) ·Qinit + t ∗ (reward+ g ·Qmax)

Qinit is the initial Q-value for the point and direction that we are updating,
and Qmax is the maximum Q-value in the row corresponding to the point that
the agent traveled to.

From this equation we can see the effect of the parameters t and g. t de-
termines the proportion that the new Q-value depends on the Q-value of the
end space plus the reward, as opposed to its initial value. For this reason, t is
referred to as the learning rate, as it determines how much the Q-table is to
change after each move. The parameter g is responsible for how much effect the
Q-value of the end space has on the new value as compared to the reward. A
lower value of g means that the Q-value of a space depends less on the Q-value
of surrounding spaces, and for this reason it is called the discounting factor.
As we travel along the board, the effect of a Q-value on a given space would
decrease exponentially due to this factor. For example, if t = 1, a starting space
would have Q-value reward+g ·Qmax, but then if this space is traveled to from
another space (and this were the maximum Q-value for the space), the other
space would have Q = reward2 + g · (reward1 + g ·Qmax), which would be on
the order of g2 ·Qmax for the original value of Qmax.

After this first move, the Q-table is no longer entirely filled with zeroes,
as now the Q-value for the start point that corresponds with moving in the
direction of P = 2 will be increased. The next time the agent is at this point, it
will with probability ϵ move to a random adjacent point, but with probability
1−ϵ it will move in the direction corresponding to the largest Q-value, choosing
randomly in the case of ties. This ϵ value is thus the probability that the agent
will “explore” the map, rather than follow his current belief of what the optimal
path is. With an ϵ value of 1, the agent would travel completely randomly, and
thus obtain a roughly equal amount of information about every location on the
map. However, if we lower the value of ϵ, this would give us more information
on parts of the map that have high rewards, which may be more important to
know.

The agent will move around as such for N steps, updating Q-table accord-
ingly after each one. These N steps mark the completion of a single epoch.
The agent returns to the start point for beginning of each epoch, starting with
the newly updated Q-table. This allows the agent to go back on its previous
decisions based on newly obtained knowledge of the grid.

After running the process for a given number of epochs, we would like to
evaluate the learning of the agent. To do this, we call the Q-path function,
which creates a path from a given start point based entirely on the optimal
directions according to the Q-table. In this sense, it is similar to running the
learning algorithm with ϵ = 0. If at any point all the Q-values for a certain
point on the grid are negative, then the path stops at this point. The learning
process is successful if the agent takes a path that gives the maximum reward
for the specified number of steps.
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3 Theory

One of the distinguishing features of Q-learning is that it is a model-free rein-
forcement learning algorithm, meaning that it does not depend on a “loss” or
“optimization” function like many reinforcement learning algorithms do [1]. In-
stead, Q-learning is a values-based algorithm, which means that it learns using
only on the values that it produces, which are of course the Q-values. To put
this in the context of the grid-world problem, there is no function that is specif-
ically put into the algorithm that the agent is trying to maximize; However, the
result of the algorithm is that the agent tries to find the path to maximize the
P values that it travels over. This same result could be achieved with a model-
based algorithm where the optimization function is the total sum of P values
traveled over, but the use of a function is unnecessary in this case. Another
characteristic of values-based learning algorithms is that they update each time
based on a set equation.

In order to better understand the theory behind our grid-game algorithm,
let us examine the fundamental equations of generic Q-learning.

V π(s) = E[

∞∑
k=0

γkrt+k|st = s, π]

[5]
This is the “V-value” function, which gives the expected return of a state

s given a policy π. In the case of our grid simulation, the state is simply the
space that the agent is currently on. The other variables are as follows:

π - the “policy” being followed—In our case this is the willingness of the
agent to explore or exploit, and is thus dependent on the value of ϵ.

γ - the discount rate applied to future values (exactly the same as our g)

rt - the return value at step t (the same as P (xt))

What this formula does is sum up the discounted expected return values for
each future step, given that the policy π is being followed starting from state s.

Next we have the Quality Value function, or Q-value function, which is the
generic form of the Q-value formula we have been using [5].

Qπ(s, a) = E[

∞∑
k=0

γkrt+k|st = s, at = a, π]

[5]
It is almost identical to the V-value function, except that it adds the param-

eter a—the “action” taken from a given state. This is just the direction that
the agent moves from a given location.

By taking the difference of these 2 functions, we get the advantage function,
which gives us the advantage of taking an action a as compared to the expected
return of a given state s [5].

5



Aπ(s, a) = Qπ(s, a)− V π(s)

[5]
We can also write the equation for Q in terms of the equation for V as

follows:

V π(s) =
∑
a

π(a|s)Qπ(s, a)

π(a|s) is the probability that action a will be chosen when in state s, which
depends on the policy being followed by the agent.

Most importantly, we can break down the equation for Q as such:

Qπ(s, a) = E[rt +

∞∑
k=1

γkrt+k]

= rt + E[γ

∞∑
k=0

γkrt+k+1]

= rt + γQπ
t+1

Now we can see the resemblance to our equation for updating the Q-table
after each step:

Qnew = (1− t)Qinit + t(reward+ gQmax)

Qπ
t+1 is equivalent to Qmax, since the policy of the agent is to go to the

adjacent space with the highest Q-value.

4 Optimization

Now at this point, the natural inclination is to find the optimal values for the
parameters—mainly g, t, and ϵ. As a test, let us run the Q-learning process
with the following parameters:

g = .2, t = 0.8, e = 0.2, N = 2000, nEpochs = 5

The resultant Q-table is shown in figure 1 (rounded to 1 decimal place). We
see that most of the Q-values are close to 0 except for the last few rows; This is
expected, as the very last entry in the grid has P = 10, while the surrounding
entries have P = 1. This will cause the algorithm to produce highly positive Q-
values for moving towards this space, and highly negative Q-values for moving
away from it.

Next we want to check the Q-path calculated by the algorithm. When we
start at the point (0, 0) and set the maximum number of steps to 10, we get the
following path: (0, 0), (1, 0), (2, 0), (2, 1), (2, 2). This is exactly what we would
expect, as from (0, 0) the agent is drawn to the closest point with high reward,
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Figure 1: Q-table after Q-learning process run with g=.2, t=0.8, e=0.2, N=2000,
nEpochs=5

which is (2, 2) with P = 2. The path then stops at this point, as all the
surrounding points have lower P values, so the Q-values here are all negative
(seen in the row filled with −0.8 in figure 1). If we instead start our path closer
to the bottom-right corner of the map—say at point (4, 1), we will get a path
that leads us to (4, 4), the other outstanding P value in the grid.

Instead of running the path algorithm over and over, it would be useful to
have a function that gives us an idea of the resultant path starting from each
point. For this, we have the QTableTopology function. This gives us a grid
mirroring our original, but the values are the P value of the endpoint of the
Q-path starting at that point.

We have seen that paths will tend to end at points with P values higher
than the surrounding points. Thus, our resulting QTableTopology grid (shown
in figure 2), all the values are either 2 or 10, the two extreme P values in the
grid.
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Figure 2: QTableTopology after Q-learning process run with g=.2, t=0.8, e=0.2,
N=2000, nEpochs=5 

2 2 2 2 10
2 2 2 2 10
2 2 2 2 10
2 2 2 10 10
2 10 10 10 10



We can use this topology function in the subsequent sections to help find
the optimal values for the parameters.

4.1 The Discount Factor

The need for the discount factor, g, stems from the fact that in many applica-
tions of this problem, we do not want to consider an infinite number of steps in
the future, but we also do not want to consider only the next immediate step.
To visualise this better, let us consider both of these extreme cases.

First, consider having g = 1, which effectively means that there is no discount
rate. Then the agent will only care about reaching the area of the grid with
maximum possible reward at some point; It will not care about the rewards
picked up along the way. This would be useful if we are just trying to find the
maximum value of P in the grid, but there are better algorithms for doing that.
If we were to calculate a Q-path from this algorithm, it may be the case that
our path is too short to reach this maximum reward, and so our algorithm has
failed to find the optimal path for a given length.

Now consider the opposite extreme, which is that g = 0, or only the immedi-
ate next reward matters to the agent. In our example grid from figure 2, if the
agent started in the top-left corner, it would be completely indifferent between
all the surrounding points, as all of them lead to the same reward.

Lastly, let us consider the application of an intermediate g value. Suppose
we are training the agent for the following game:

On each step taken, there is exactly p probability that the game will end.
Try and maximize the total reward obtained before this happens.

This means the actual value of a reward r k steps in the future is (1− p)kr,
as obtaining this reward is dependent on the (1− p)k probability that the game
does not end before we reach it. This means we should set our discount factor
to 1− p.

In short, the optimization of the discount factor ultimately depends on the
rules of the game, and what we are trying to achieve. If the goal is to simply
maximize total average reward in an infinite number of steps, then we would
take the discount factor of 1, whereas if the goal is to find the optimal next step,
we would take the discount factor of 0. Lastly, if we are in a situation such as
the paragraph above where the game ends with probability p, we would take
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Figure 3: QTableTopology after Q-learning process run with g=.1, t=0.1, e=0.1,
N=2000, nEpochs=5 

2 2 2 10 10
2 2 2 10 10
2 2 2 10 10
10 10 10 10 10
1 10 10 10 10



Figure 4: QTableTopology after Q-learning process run with g=.8, t=0.1, e=0.1,
N=2000, nEpochs=5 

10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10



g = 1− p.
The topology table output is greatly impacted by the discount factor; If we

have a discount factor close to 1, we would expect the topology table to contain
mostly 10’s, as then the algorithm would be mainly interested in finding the
maximum value. Otherwise, points closer to the P = 2 space would have a
topology value of 2, as a lower discount rate means the path is more interested
in the nearest reward, not necessarily the highest. We can see this by comparing
figures 3 and 4, where the only difference is the discount factor.

4.2 The Learning Rate

The next parameter to consider is the learning rate t. If we look at the update
formula again:

(1− t) ·Qinit + t ∗ (reward+ g ·Qmax)

we see that t determines the proportion that the Q value depends on the newly
learned information as opposed to its initial value. Thus, if we had a t value of
0, the Q values would never change at all, and if we had a t value of 1, the Q
values would solely depend on their most recent updates.

In figures 5, 6, and 7 we run the same simulation with t values of .2, .5, and
.8 respectively (using the P grid from 2).

The differences are not immediately obvious, but there are few that pop
out. For one thing, the values in the first column for the first few rows are
considerably higher when t is larger. The first column in the Q-table corresponds
to moving “down” from a certain point on the grid. Thus, if we refer to the
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Figure 5: Q-table after Q-learning process run with g=.8, t=0.2, e=0.2, N=2000,
nEpochs=5
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Figure 6: Q-table after Q-learning process run with g=.8, t=0.5, e=0.2, N=2000,
nEpochs=5
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Figure 7: Q-table after Q-learning process run with g=.8, t=0.8, e=0.2, N=2000,
nEpochs=5
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P grid, we can see this means that the agent is more drawn to the space with
P = 2 when we increase the learning rate.

If we look at the Q values for the points around the P = 10 spot on the
grid, there is not as much of a difference when we change the learning rate.
There is a slight difference from t = .2 to t = .5, but after that the change is
barely noticeable. The explanation for this is that since the P value of 10 is
already so much higher than its surrounding P values, it does not take long for
the algorithm to “learn” that it should move towards this point. Thus, we can
have a lower learning rate and still achieve basically the same result, as long as
we run the learning process enough times.

This discovery motivates the following question: What is the advantage of
choosing a lower learning rate?

If we choose a high learning rate, we could get into a situation where the
Q value for a given space oscillates wildly between 2 values [2]. It has been
widely established that the ideal learning should decay over time; this allows us
to pick up initial values quickly with a high learning rate at the beginning, then
exponentially decrease the learning rate so that we reach an “equillibrium” in
the Q-table [2].

Another factor we would want to consider would be the layout of the P -grid.
So far we have only considered the case of a grid with mostly zero’s and a single
extreme value. To see how the learning rate affects a more evenly distributed
grid, consider the following grid of random values uniformly distributed between
-10 and -10:

P =


10 −10 −10 3 −8
−9 3 −6 −5 −6
5 2 0 7 8
−5 5 1 −9 −8
0 −8 1 −10 −4


4.3 The Exploration Rate

Choosing the ideal exploration rate depends entirely on the context for which
we are using the algorithm. If the goal is for the agent to have the best overall
“understanding” of the grid, then ϵ = 1 is the best choice, as then we will travel
to all the spaces with equal likelihood. However, in most uses of this algorithm,
our goal is just to find the best possible path, and we do not care about having
knowledge of the grid outside of that.

It is clear that choosing ϵ = 0 would not be useful, as then as soon as a
point on the table has low Q values, it will never be visited again. This leads
to the potential of getting a biased view of the grid based on just the first few
Q-updates.

A comparison of ϵ = .2 vs. ϵ = .8 is shown in figures 10 and 11 respectively.
Similar to when we increased the learning rate, the Q values in the top-left
are much higher in figure 11 than figure 10, while the values at the bottom
of the table do not change much. The likely reason for this is that the lower
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Figure 8: Q-table for randomly generated grid after Q-learning process run with
g=.8, t=0.2, e=0.2, N=2000, nEpochs=5
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Figure 9: Q-table for randomly generated grid after Q-learning process run with
g=.8, t=0.8, e=0.2, N=2000, nEpochs=5
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exploration rate does not provide as much opportunity for the algorithm to
discover the space with P = 2, whereas it quickly learns about the space with
P = 10, since its P value is so high. Once the algorithm discovers that the
highest value is towards the bottom-right of the graph, it will not explore other
parts as much, especially with a low exploration rate.

In almost all cases, the algorithm will learn better with a higher exploration
rate, but we would also want to take into account the efficiency of the algorithm
and the number of epochs necessary to achieve the desired result. In situations
where we are only concerned with finding the best possible path, and there is
no motivation to learn other parts of the table, it would be a better use of
resources to lower the exploration rate so that the algorithm could spend more
time learning the optimal path.

Figure 10: Q-table Q-learning process run with g=.8, t=0.2, e=0.2, N=2000,
nEpochs=5
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Figure 11: Q-table Q-learning process run with g=.8, t=0.2, e=0.8, N=2000,
nEpochs=5

5 Shortest Path Algorithm

One of the most important algorithms in computer science is the “shortest path
algorithm.” Given a graph with vertices connected by edges, with weights on
each edge, the objective is to find the path between any two vertices that covers
the lowest sum of edge weights.

We can translate this into our grid algorithm in the following manner [3].
Designate each point on the grid as an edge. Adjacent points correspond to
edges that stem from the same vertex. The P value for each point corresponds
to the edge weight, except we will make it the negative of this value, as we want
to have a negative reward for taking longer paths. If it is not possible to plot
all the given edges in a way that properly marks adjacency, we can fix this by
adding more dimensions and filling in blank spaces with P values of 0, so that
they will not impact the algorithm. Consider the graph in figure 12.
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Figure 12: Sample graph with 4 vertices

Figure 13: Grid corresponding to graph in figure 12

P =

 0 0 −999
−1 −3 −1
−1 0 0



We can convert this to the grid in figure 13. The -1 in the bottom-left
corner represents the edge from vertex B to vertex C. The -1 above this point
represents the edge from vertex A to B, the -3 represents the edge from A to
C, and the last -1 represents the edge from C to D. We can see that in the
grid, it is impossible to get from the top-left corner to the top-right without
passing through another nonzero value. This corresponds to how in the graph,
we cannot get from edge AB to edge CD without passing through one of the
other edges. The adjacency also matches up, as the point corresponding to AB is
adjacent to the points corresponding to both AC and BC. It appears as though
the point corresponding to BC is not adjacent to that of CD, however, since we
can traverse between these points without passing through any nonzero points,
this counts as adjacent for our purposes. Lastly, we need to put an arbitrarily
low value in the top-right corner so that it is not possible to travel from edge
AB to CD without passing through any other edges.

Say we want to find the shortest path from vertex A to vertex D. In order to
properly train the algorithm, we would need to start at a point adjacent to all
edges touching vertex A and give a high reward for reaching any edge touching
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Figure 14: Q-table after Q-learning process run on grid in figure 13 with g=.8,
t=0.8, e=0.8, N=2000, nEpochs=5

vertex D. Thus, we would need to change the -1 on the right to 999, as to give
an arbitrarily high reward for reaching the end point.

Now we test the Q-learning algorithm on this grid. Since we are just trying
to find the optimal total sum over a path, there is no reason for a discount rate,
as future rewards matter just as much as current ones. Thus, we set g = 1.
Using t, ϵ equal to 0.8, and start point in the top-left, we get the Q-table in
figure 14.

At first glance, a few things pop out about the Q-table. There are many
points where the algorithm is indifferent between 2 directions. This makes sense
as there are a few different options we could traverse diagonals and still get the
same path in terms of the graph.

In order to find the most efficient path, we would want to use the “Q-path”
function from earlier. The output of the function is as follows:

(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2)

This corresponds to the following traversal of edges: A, AC, BC, C, C, CD; and
the equivalent traversal of vertices: A, B, C, D. We can verify from figure 12
that this is in fact the shortest path from A to D in terms of total edge weights.

19



References

[1] A Beginner’s Guide to Q-Learning. url: https://towardsdatascience.
com/interactive-q-learning-9d9203fdad70.

[2] Eyal Even-Dar and Yishay Mansour. “Learning Rates for Q-learning”. In:
Journal of Machine Learning Research 5 25.1 (2003).

[3] Finding Shortest Path using Q-Learning Algorithm. url: https://towardsdatascience.
com/finding-shortest-path-using-q-learning-algorithm-1c1f39e89505.

[4] Train Reinforcement Learning Agent in Basic Grid World. url: https:
//www.mathworks.com/help/reinforcement-learning/ug/train-q-

learning-agent-to-solve-basic-grid-world.html.

[5] Value-based Methods in Deep Reinforcement Learning. url: https : / /

towardsdatascience.com/value-based-methods-in-deep-reinforcement-

learning-d40ca1086e1.

20


