
DISCRETE ENERGY ANALYSIS ON FRACTAL SETS

CONOR TALIANCICH

Abstract. Principal Component Analysis (PCA) is one of the most commonly-

used tools for reducing the dimensionality of large data sets. However, as we
will see, PCA is not as effective when applied to data sets which exhibit fractal

phenomena. In this paper, we will introduce an alternate tool to supplement

PCA called discrete energy analysis, and we will show that it is more effective
than PCA at recognizing the true dimensionality of fractal sets.

Contents

1. Introduction 2
2. Principal Component Analysis on Discrete Cantor Sets 2
2.1. Principal Component Analysis 2
2.2. Important Set Constructions 4
2.3. Experimental Results 5
3. Discrete Energy Analysis on Discrete Cantor Sets 5
3.1. Discrete Energy Analysis 5
3.2. Theoretical Results 9
3.3. Experimental Results 12
4. Future Directions 12
5. Acknowledgements 15
References 16

1

2 CONOR TALIANCICH

1. Introduction

Data analysis is more popular than ever. Many companies routinely analyze
data sets with around 1000 variables and a million points. Trying to analyze these
data sets directly would be cumbersome and inefficient, so people have come up
with various methods to make it easier. One method is to reduce the “effective”
dimension of the data set and see if there is a lower-dimensional plane on which
many of data points lie together. If we could find such a plane, then analyzing the
data set would be much easier since we could restrict our focus to that plane and
analyzing its properties.

A popular tool in data science to find the effective dimension of data sets is
Principal Component Analysis, which will henceforth be referred to as PCA. PCA
is not perfect, however, and sometimes fails to capture the true dimensionality of
certain data sets. One class of sets PCA struggles with in particular are sets which
exhibit fractal phenomena. This is an issue because fractal phenomena can be
observed in various data sets.

Consider the following example. Suppose there is a store with a time series,
which is a series of data points collected in chronological order, from the past 20
years detailing sales of their products. Now, suppose that it is observed that each
year, the store receives the most sales in January, June, and December. Suppose
further that the sales peaked in the second week of each of these respective months,
and in those weeks, the sales peaked on Monday, Thursday, and Saturday. Finally,
suppose that on those days, the majority the sales happened around the afternoon.
This data set exhibits fractal phenomena and is in fact quite similar to a Cantor
set.

In order to demonstrate how PCA fails to capture the true dimensionality of these
types of sets, we will define discrete Cantor sets, and then we will show through
experimentation in Python that PCA has trouble distinguishing these sets from
scaled integer lattices. Then, we will define discrete energy analysis and introduce
an alternate notion of dimension. Finally, we will use discrete energy analysis to
compute the dimension of general discrete Cantor sets and back up our calculations
with more experimentation in Python.

2. Principal Component Analysis on Discrete Cantor Sets

2.1. Principal Component Analysis. LetX be a data set with variables {v1, . . . , vk},
where k ≥ 2. Roughly speaking, given this data set and a positive integer n such
that n ≤ k, PCA identifies the n variables in the data set that account for the
most variance in the set and projects the data set onto a plane consisting only of
these variables. In this way, PCA identifies the effective dimension of the set by
identifying which variables contain the most information about the data set. Now,
we will describe how PCA works as follows [1]. A Python implementation of PCA
will be included afterwards.

First, for each variable vi, compute the mean vmi and standard deviation zi of
the variable over the set. Then, for each x ∈ X, define x′ such that

x′
i =

xi − vmi
zi

,

and let X ′ be the collection of these new points. This standardizes the scale of the
variables so that we can accurately compare the variances of different variables.

DISCRETE ENERGY ANALYSIS ON FRACTAL SETS 3

Next, compute the covariance matrix C of X ′. Roughly speaking, this matrix
contains information about the correlations between all pairs of variabales in the
data set. After that, compute the eigenvalues {λ1, . . . , λk} of C with their respective
eigenvalues {a1, . . . , ak}, and sort the eigenvalues from highest to lowest. Each
eigenvector points in the direction of one of the variable axes in the data set, and
the values of the respective eigenvalues tell us how much the variable accounts for
the variance in the data set; the larger the eigenvalue, the more variance that the
associated variable accounts for.

Now, take the n variables associated with the n largest eigenvalues, and without
loss of generality, suppose they are v1, . . . , vn where ai is the eigenvector pointing
in the direction of vi. These are the principal components, and they will be the
variables in the lower-dimensional space we project our data set onto. Finally,
compute the product

Xreduced = [a1 a2 · · · an]TX ′T .

Xreduced contains the projection of all the points in the data set onto the plane gen-
erated by the n principal components, so now we can analyze this lower-dimensional
set instead of the original data set.

However, depending on the choice of n, this projection may retain a lot of in-
formation or little information from the original data set. Picking larger n with
produce a set that retains more information from the original data set, but the
trade-off is that picking smaller n makes the resulting set lower-dimensional and
therefore easier to analyze.

Listing 1. Python 3.9.6 Implementation of PCA
import numpy as np

import matp lo t l i b . pyplot as p l t

#Parameters : X − 2d array rep re s en t ing a data s e t

n − number o f p r i n c i p a l components to be s e l e c t e d from X

#Output : graph o f the p ro j e c t i on o f X onto plane generated by i t s
f i r s t n p r i n c i p a l components

def PCA(X, n) :

#Subtrac t mean of each v a r i a b l e from a l l po in t s in the data s e t
X mean = X − np .mean(X , ax i s = 0)

#Compute covar iance matrix o f s tandard i zed data s e t

cov mat = np . cov (X mean , rowvar = False)

#Compute e i g enva l u e s and e i g enve c t o r s o f covar iance matrix

e i g en va l u e s , e i g e n v e c t o r s = np . l i n a l g . e igh (cov mat)

#Sort e i g enva l u e s in descending order a long with t h e i r corresponding e i g enve c t o r s
s o r t ed index = np . a r g s o r t (e i g en va l u e s) [: : − 1]

s o r t ed e i g enva l u e = e i g en va l u e s [s o r t ed index]
s o r t e d e i g e nv e c t o r s = e i g e n v e c t o r s [: , s o r t ed index]

#Take f i r s t n e i g enve c t o r s
e i g env e c t o r s ub s e t = s o r t e d e i g e nv e c t o r s [: , 0 : n]

#Projec t s tandard i zed data onto plane generated by f i r s t n p r i n c i p a l components

X reduced = np . dot (e i g env e c t o r s ub s e t . t ranspose () , X mean . t ranspose ()) . t ranspose ()

#Plot the r e s u l t
p l t . s c a t t e r (X reduced [: , 0] , X reduced [: , 1])

4 CONOR TALIANCICH

p l t . show ()

2.2. Important Set Constructions. One of the types of sets experimented on
in this paper are lattices in the unit cube [0, 1]d. For our purposes, when we say a
“lattice with nd points,” we will be referring to the set {0, 1

n , . . . ,
n−1
n , 1}d, which

is an evenly spaced grid of points in the unit cube.
The fractal sets we will focus on are “discrete Cantor sets” and direct products

of these sets, which we will refer to as discrete Cantor set products. We call these
sets discrete Cantor sets because their construction is nearly identical to that of
Cantor sets, with the only difference being which points are added to the sets.

The construction of these sets proceeds as follows. Start with the interval [0, 1]
and positive integers m,n ∈ Z+ s.t. m < n. Divide [0, 1] into n subintervals of
equal length, and choose m of those intervals. Let C1

m,n be the set of endpoints of
the intervals chosen. At the k-th step, split each of the remaining intervals into n
equal subintervals, choose m of those intervals, and let Ck

m,n be the set of endpoints
of the intervals chosen. At each step, we pick the same m subintervals from the
remaining intervals. Since the m subintervals we choose to keep are arbitrary, the
set Ck

m,n is not unique and merely denotes one set satisfying these conditions.

An an example, consider the sets Ck
2,4 where we keep the first and third intervals

at every step. After the first step, we have C1
2,4 = {0, 1/4, 1/2, 3/4}. Then, after the

next step, we would have C2
2,4 = {0, 1/16, 1/8/, 3/16, 1/2, 9/16, 5/8, 11/16}, and so

on. It is apparent that |Ck
2,4| = 2k+1, and in general, |Ck

m,n| = 2mk.
Attached below are the implementations of these set constructions in Python.

Listing 2. Python 3.9.6 Implementation of Set Constructions
import numpy as np

#Function to crea t e l a t t i c e in [0 ,1]ˆ2
#Parameters : n − p o s i t i v e i n t e g e r

#Output : a l a t t i c e in [0 ,1] ˆ2 with nˆ2 e qua l l y spaced po in t s

def Lat t i c eS e t (n) :
X=np . l i n s p a c e (0 , 1 , n)

Y=np . l i n s p a c e (0 , 1 , n)
return np . t ranspose ([np . t i l e (X, len (Y)) , np . repeat (Y, len (X))])

#Function to crea t e C {2 ,3}ˆn
#Parameters : n − p o s i t i v e i n t e g e r

#Output : the s e t C {2 ,3}ˆn
def cantor (n) :

return [0 .] + cant (0 . , 1 . , n) + [1 .]

#Helper func t i on fo r cantor t ha t t ake s a s u b i n t e r v a l [x , y] and
#s p l i t s i t i n to 2 s u b i n t e r v a l s

#Parameters : x − l e f t endpoint o f i n t e r v a l

y − r i g h t endpoint o f i n t e r v a l
n − number o f s t e p s remaining in s e t cons t ruc t i on
#Output : the s e t ob ta ined a f t e r r epea t ing n s t ep s o f the C {2 ,3} cons t ruc t i on
on [x , y]

def cant (x , y , n) :

i f n == 0 :
return [] #Stop cons t ruc t i on a f t e r the n−th s t ep

#Add endpoints o f 2 new s u b i n t e r v a l s

DISCRETE ENERGY ANALYSIS ON FRACTAL SETS 5

new pts = [2 . ∗ x /3 . + y /3 . , x /3 . + 2 .∗ y / 3 .]

#Apply cons t ruc t i on to the s u b i n t e r v a l s

return cant (x , new pts [0] , n−1) + new pts + cant (new pts [1] , y , n−1)

#Functions to crea t e C {2 ,4}ˆn
#Parameters : n − p o s i t i v e i n t e g e r
#Output : the s e t C {2 ,4}ˆn
def c an t o r a l t (n) :

can = [0 , 1]
#Runs n s t ep s o f the C {2 ,4} cons t ruc t i on

for i in range (n) :

temp = can . copy ()
can = []

#I t e r a t e s over a l l s u b i n t e r v a l s in the s e t and s p l i t s them in to 2 s u b i n t e r v a l s
for j in range (2∗∗ i) :

can += can t o r a l t h e l p e r ([temp [2∗ j] , temp [2∗ j +1]] , i +1)

return can

#Helper func t i on fo r c an t o r a l t t ha t t ake s an i n t e r v a l [x , y] and

#s p l i t s i t i n to 2 s u b i n t e r v a l s
#Parameters : sma l l s e t − i n t e r v a l to be s p l i t i n to 2 s u b i n t e r v a l s

i − p o s i t i v e i n t e g e r

#Output : the 2 s u b i n t e r v a l s r e s u l t i n g from sma l l s e t
def c a n t o r a l t h e l p e r (sma l l s e t , i) :

return [sma l l s e t [0] , sma l l s e t [0]+1/(4∗∗ i) , sma l l s e t [0]+2/(4∗∗ i) , sma l l s e t [0]+3/(4∗∗ i)]

2.3. Experimental Results. As discussed above, PCA is supposed to recognize
the “true” dimension of a data set. For many sets, PCA can do this effectively.
One such example is a lattice in [0, 1]d for some d ≥ 1. As we can see from Figure
1, PCA is able to correctly recognize that the lattice is 2-dimensional. However,
when we run PCA on the direct product of two or three discrete Cantor sets as is
done in Figure 2, Figure 3, and Figure 4, we see that PCA recognizes these sets as
scaled down 2-dimensional lattices.

This tells us that PCA has trouble distinguishing these sets from lattices; in
other words, PCA “sees” these discrete Cantor set products as 2-dimensional. This
is a problem for PCA because the discrete Cantor set products are much more
sparse than a 2-dimensional lattice, so treating them as 2-dimensional sets does
not capture their true dimensionality. As we will see in the next section, discrete
energy analysis outdoes PCA in this regard.

3. Discrete Energy Analysis on Discrete Cantor Sets

3.1. Discrete Energy Analysis. Let {An}n≥1 ⊆ [0, 1]d (with d ≥ 1) be a family
of finite sets such that |An| = γ(n) is an increasing function and An ⊆ An+1 for all
n ≥ 1. For s ∈ [0, d], we define the discrete s-energy of An to be

Is(An) = γ(n)−2
∑
a̸=a′

||a− a′||−s.

We say {An}n≥1 is s-adaptable if there exists a constant C such that Is(An) ≤ C
for all n. If {Is(An)}n≥1 is convergent, then {Is(An)}n≥1 is s-adaptable. The
converse may not necessarily be true, however. This fact about s-adaptability is
important to keep in mind since it will be used in Section 3.2. Finally, we define

6 CONOR TALIANCICH

Figure 1. PCA with 2 components on 2-dimensional lattice with
102 points.

Figure 2. PCA with 2 components on C3
2,3 × C3

2,3.

DISCRETE ENERGY ANALYSIS ON FRACTAL SETS 7

Figure 3. PCA with 2 components on C3
2,4 × C3

2,4.

Figure 4. PCA with 2 components on C3
2,4 × C3

2,3 × C3
2,3.

8 CONOR TALIANCICH

the critical value scritical for s to be

scritical = sup{s ∈ [0, d] : {An}n≥1 is s-adaptable}.
The critical value for s is especially important because it gives us a notion of

dimension for {An}n≥1, which is the discrete version of Hausdorff dimension of
{An}n≥1 [2]. In fact, this is the notion of dimension we will use below for discrete
Cantor set products in lieu of PCA. This method will be henceforth referred to as
discrete energy analysis. Attached below is a Python implementation of the discrete
energy function in one dimension and multiple dimensions.

Listing 3. Python 3.9.6 Implementation of Discrete Energy Function
import numpy as np

import matp lo t l i b . pyplot as p l t

#Define the d i s t ance func t i on

#Parameters : two arrays o f l eng t h n repre s en t ing vec t o r s in Rˆn
#Output : the norm of the d i f f e r e n c e between the vec t o r s in Rˆn

def d i s t (a , b) :

norm = 0
for i in range (len (a)) :

norm += (a [i]−b [i])∗∗2
return norm∗∗ . 5

#Define the d i s c r e t e energy func t i on

#Parameters : a d i s c r e t e s e t P with dimension d , an in t e g e r s in [0 , d] ,
and N = |P |
#Output : the d i s c r e t e s−energy o f P
def DiscreteEnergy (P, s ,N) :

c=0

for i in range (N) :
for j in range (N) :

#Sums over a l l po in t s p , p ’ in P such tha t p != p ’

i f i<j :
c=c+(d i s t (P[i] ,P [j]))∗∗(− s)

return c/N∗∗2

#a l t e r n a t i v e f o r e f f i c i e n c y improvements

def DiscreteEnergyAlt (P, s ,N) :

c=0
for i in range (N−1):

P[i +1:] i s the l i s t o f po in t s a f t e r P[i]
Then , from each po in t in t h i s l i s t , we su b t r a c t P[i]

d i f f = P[i +1:] − P[i]
Then we compute the norm of each one o f those po in t s .
Each po in t i s a row of our array P, so we pass
the argument ax i s = 1 to i nd i c a t e t ha t .

norms = np . l i n a l g . norm(d i f f , a x i s=1)
Then we take −s ’ th power o f those numbers and sum them

c += np .sum(np . power (norms , −s))
return c/N∗∗2

#One dimensional d i s c r e t e energy func t i on

#Parameters : a d i s c r e t e s e t P with dimension 1 , an in t e g e r s in [0 , 1] ,
and N = |P |
#Output : the d i s c r e t e s−energy o f P

def DiscreteEnergyOneDim (P, s ,N) :
c=0

DISCRETE ENERGY ANALYSIS ON FRACTAL SETS 9

for i in range (N) :

for j in range (N) :

i f i<j :
#Sums over a l l po in t s p , p ’ in P such tha t p != p ’

c=c+(abs (P[i]−P[j]))∗∗(− s)

return c/N∗∗2

e s s e n t i a l l y i d e n t i c a l to DiscreteEnergyAl t

excep t the input P i s a 1−d array .
(ca s t i n g P to a t r i v i a l 2−d array and using

DiscreteEnergyAl t r e s u l t s in s l i g h t l y worse

runtime , hence the new d e f i n i t i o n)
def DiscreteEnergyOneDimAlt (P, s ,N) :

P = np . array (P) # making sure we are us ing numpy array
c=0

for i in range (N−1):

d i f f = P[i +1:] − P[i]
c += np .sum(np . abs (d i f f)∗∗(− s))

return c/N∗∗2

3.2. Theoretical Results. Now that we have a new notion of dimension for dis-
crete sets, we can reanalyze the dimension of the sets from Section 2.3. The first
thing we will do is compute the dimension of discrete Cantor set products as follows.

Theorem 3.1. Let d ∈ Z+. Let Ck
m1,n1

, . . . , Ck
md,nd

be discrete Cantor sets. Set

Ak =
∏d

i=1 C
k
mi,ni

. Then

scritical =
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)
.

Proof. We will proceed by approximating the sum |Ak|−2
∑

a̸=a′ ||a − a′||−s by

using sets centered at each a′ ∈ Ak such that for each point a in a given set,
|ai − a′i| ≈ n−ji

i for all i, where j1, . . . , jd all range from 1 to k. In this case,
|ai − a′i| ≈ ni

−ji means that ni
−ji−1 < |ai − a′i| ≤ ni

−ji . We do not need to

consider side lengths with dimensions n−ji
i for ji > k because by construction, the

i-th discrete Cantor set Ck
mi,ni

does not have any distinct points whose distance is

less than n−k
i . Approximating the sum this way gives us

|Ak|−2
∑
a̸=a′

||a− a′||−s ≈ |Ak|−2
k∑

j1,...,jd=1

∑
a̸=a′

|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

||a− a′||−s.(3.1)

Next, note that for any a ̸= a′,

||a− a′||−s ≈ (|a1 − a′1|+ · · ·+ |ad − a′d|)−s ≤ max
1≤i≤n

{|ai − a′i|}−s.(3.2)

10 CONOR TALIANCICH

Putting (4.1) and (4.2) together, we get

|Ak|−2
k∑

j1,...,jd=1

∑
a̸=a′

|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

||a− a′||−s ≈ |Ak|−2
k∑

j1,...,jd=1

∑
a ̸=a′

|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

max
1≤i≤n

{|ai − a′i|}−s

(3.3)

= |Ak|−2
k∑

j1,...,jd=1

∑
a ̸=a′

|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

max
1≤i≤n

{n−ji
i }−s.(3.4)

Temporarily fix a′ ∈ Ak. For any i, the number of elements ai ∈ Ck
mi,ni

such that

|ai − a′i| ≈ n−ji
i is approximately

|Ck
mi,ni

|

m
ji
i

. Therefore, it follows that the number of

a ∈ Ak such that |ai − a′i| ≈ n−ji
i for all i is

|Ck
m1,n1

|
mj1

1

· · ·
|Ck

md,nd
|

mjd
d

=
|Ak|

mj1
1 · · ·mjd

d

.

Finally, since there are |Ak| possible choices for a′, we can see that

|Ak|−2
k∑

j1,...,jd=1

∑
a̸=a′

+|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

max
1≤i≤n

{n−ji
i }−s = |Ak|−2

k∑
j1,...,jd=1

max
1≤i≤n

{n−ji
i }−s

∑
a̸=a′

+|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

1

(3.5)

≈ |Ak|−2|Ak||Ak|
k∑

j1,...,jd=1

m−j1
1 · · ·m−jd

d max
1≤i≤n

{n−ji
i }−s(3.6)

=

k∑
j1,...,jd=1

m−j1
1 · · ·m−jd

d max
1≤i≤n

{n−ji
i }−s(3.7)

Now, consider the case where max1≤i≤n{n−ji
i } = n−j1

1 . This would mean that for
all i,

n−j1
1 ≥ n−ji

i =⇒ nj1
1 ≤ nji

i =⇒ j1
ln(n1)

ln(ni)
≤ ji.(3.8)

Note that the inequalities in (4.5) also hold for n−ji
i when it is maximal. Therefore,

we can further split the inner sum in (4.4) by considering the different cases in

DISCRETE ENERGY ANALYSIS ON FRACTAL SETS 11

which each n−ji
i is maximal to get

k∑
j1,...,jd=1

m−j1
1 · · ·m−jd

d max
1≤i≤n

{n−ji
i }−s =

∑
j1

ln(n1)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
1 + · · ·

+
∑

jd
ln(nd)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
d .

We restrict our focus to the first term of the above sum in order to determine for
which s the sum converges. For 2 ≤ i ≤ n, the term n−ji

i in the sum is a geometric

series starting at j1
ln(n1)
ln(ni)

, so we can approximate each of these terms by m
j1

ln(n1)

ln(ni)

i .

This gives us that∑
j1

ln(n1)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
1 ≈

n∑
j1=1

m−j1
1 · · ·m

−j1
ln(n1)

ln(nd)

d nj1s
1 =

n∑
j1=1

(
m−1

1 · · ·m
− ln(n1)

ln(nd)

d ns
1

)j1

.

Now we have a geometric series, so we know that for this series to converge as
n → ∞, we must have that

m−1
1 · · ·m

− ln(n1)

ln(nd)

d ns
1 < 1 ⇐⇒ −

(
ln(m1) + ln(m2)

ln(n1)

ln(n2)
+ · · ·+ ln(md)

ln(n1)

ln(nd)

)
+ s ln(n1) < 0

⇐⇒ s <
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)
.

We can use an identical argument to show that all of the other sums∑
jl

ln(n1)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d njls
l

also converge exactly when

s <
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)
.

Furthermore, since

Is(Ak) = |Ak|−2
∑
a ̸=a′

||a−a′||−s ≈
∑

j1
ln(n1)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
1 +· · ·+

∑
jd

ln(nd)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
d ,

this implies that {Is(Ak)}k≥1 converges exactly when

s <
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)
.

Hence, {Ak}k≥1 is s-adaptable for exactly these values of s, so by definition, we
may conclude that

scritical =
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)

as desired. □

With this result, if we revisit the discrete Cantor set products from before, then

we get that the dimension of {Ck
2,3×Ck

2,3}k≥1 is ln(2)
ln(3) +

ln(2)
ln(3) = 2 ln(2)

ln(3) , the dimension

of {Ck
2,4×Ck

2,4}k≥1 is
ln(2)
ln(4)+

ln(2)
ln(4) = 1 and the dimension of {Ck

2,4×Ck
2,3×Ck

2,3}k≥1 is

12 CONOR TALIANCICH

Figure 5. Discrete s-energy of Ck
2,4 for 1 ≤ k ≤ 15 with s = 1

2 .

ln(2)
ln(4) +

ln(2)
ln(3) +

ln(2)
ln(3) =

1
2 +2 ln(2)

ln(3) , which makes sense given how sparse these sets are.

This demonstrates that our alternate notion of dimension is better at capturing the
dimensionality of discrete Cantor set products than PCA.

3.3. Experimental Results. Now that we have this method computing the di-
mension of discrete Cantor set products, we can compute the discrete s-energy of
the sets in these families to better observe their behavior. For instance, if we com-
pute the discrete s-energy of the discrete Cantor set products from Section 2.3,
where for each set, s is the dimension of that set computed by Theorem 3.1, we
can see in Figure 5, Figure 6, and Figure 7 that the discrete s-energy of the sets in
each case increases slowly. This is what we would expect given that for each family
of sets, s is the critical value, and for any s′ < s, the discrete s′-energy of the sets
are all bounded by a single constant.

Meanwhile, if we compute the discrete 2-energy of a family of lattices in [0, 1]2,
then we can see from Figure 8 that the discrete 2-energy of the lattices increases
slowly as well, possibly suggesting that the family of lattices is 2-adaptable. This
would make sense intuitively because we would expect the family of lattices to be
2-dimensional, suggesting that this new notion of dimension may align with our
general notion of dimension.

4. Future Directions

The next logical step from this point is to experiment more with discrete energy
analysis on other fractal sets. While we have shown that discrete energy analysis
works better than PCA on discrete Cantor set products, it remains to be seen how

DISCRETE ENERGY ANALYSIS ON FRACTAL SETS 13

Figure 6. Discrete s-energy of Ck
2,3 for 1 ≤ k ≤ 15 with s = ln(2)

ln(3) .

Figure 7. Discrete s-energy of Ck
2,4 × Ck

2,3 for 1 ≤ k ≤ 7 with

s = ln(2)
ln(3) +

1
2 .

14 CONOR TALIANCICH

Figure 8. Discrete 2-energy of 2-dimensional lattice with k2

points for 1 ≤ k ≤ 15.

well discrete energy analysis fares when applied to other fractal sets. We may expect
discrete energy analysis to work well based on the analysis and experimentation
done in this paper, but anything is possible.

It would also be interesting to further explore how the notion of dimension put
forward in discrete energy analysis interacts with other notions of dimension. We
touched on this briefly in Section 3.3 when looking at the discrete 2-energy of 2-
dimensional lattices, but there are many more examples worth trying. For any
readers interested in further experimentation, all code used in this paper can be
found at https://github.com/ConorT5/ThesisCode2022.

Another thing to consider is why PCA fails when applied to sets exhibiting
fractal phenomena. We can see that it does fail when applied to fractal sets of this
nature, but we did not explore for what reasons it fails. Figuring out the theory
behind why PCA fails would not only give us more insight into the dimensionality
properties of the sets on which it does fail, but also will tell us for which sets we
should use tools other than PCA to analyze them.

Finally, we reiterate that discrete energy analysis is not being proposed as an
alternative to PCA. Despite its shortcomings demonstrated here, PCA is still a
valuable tool in data science and as such is widely used. Rather, we propose that
discrete energy analysis be used to supplement PCA when PCA falls short.

https://github.com/ConorT5/ThesisCode2022

DISCRETE ENERGY ANALYSIS ON FRACTAL SETS 15

5. Acknowledgements

I would like to thank my advisor Alex Iosevich for his help with this project, for
giving me so many opportunities during my time at the University of Rochester,
and especially for being supportive this past year when things were rough. I would
like to thank Naomi Jochnowitz, Jonathan Pakianathan, Dan Geba, and Doug
Haessig for being amazing professors and fostering my love for the subject. I would
like to thank my friends and peers in the University of Rochester Mathematics
Department with whom I have spent countless hours laboring over this subject.
You made this experience much more fun than I could’ve ever imagined. Finally,
I would like to thank my friends and family outside of the math department. You
all were very supportive of me and kept me grounded during my studies.

16 CONOR TALIANCICH

References

[1] Marc P. Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for Machine Learning.
Cambridge University Press, 2020.

[2] A. Iosevich, M. Rudnev, and I. Uriarte-Tuero. Theory of dimension for large discrete sets and

applications. Mathematical Modelling of Natural Phenomena, 9(5):148–169, 2014.

	1. Introduction
	2. Principal Component Analysis on Discrete Cantor Sets
	2.1. Principal Component Analysis
	2.2. Important Set Constructions
	2.3. Experimental Results

	3. Discrete Energy Analysis on Discrete Cantor Sets
	3.1. Discrete Energy Analysis
	3.2. Theoretical Results
	3.3. Experimental Results

	4. Future Directions
	5. Acknowledgements
	References

