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2 Abstract

The concept of ’complexity’ the amount of information you need to completely specify an object, is of
considerable interest in a world where computational resources are at an ever-increasing premium. Several
competing ideas have emerged in the last century to formalize this notion. Among them is Kolmogorov
complexity or algorithmic entropy, the length of the shortest program describing an object. This can be
used to describe the degree of ‘randomness’ exhibited by a single realization of said object.

Pseudorandom graphs, which have similar connective and spectral properties to random graphs of the
same edge density, can be used to reduce the number of bits of randomness used in algorithms. One example
of a family of pseudorandom graphs are Paley graphs, the Cayley graph on the integers modulo n under
addition generated by quadratic residues modulo n. Cayley graphs have algebraic properties that make them
relatively easy to construct, but can give rise to pseudorandom behavior such as that demonstrated by Paley
graphs. This is especially remarkable given that Cayley graphs on the cyclic group such as Paley graphs are
circulent, and thus exceedingly symmetric.

Although not computable, the Kolmogorov complexity of an object can be bounded above using lossless
compression algorithms. Thus, proving the Kolmogorov complexity of an object has Kolmogorov complexity
lower than that expected of a random string of the same length could be an indicator as to whether a
pseudorandom object is helpful for reducing the randomness of an algorithm. We prove that additive Cayley
graphs on the integers have sub-random Kolmogorov complexity using the Lempel-Ziv 1976 algorithm. We
then briefly discuss the efficacy of Cayley graphs in reducing the randomness used by Echo State Recurrent
Neural Networks, which typically rely on a random or random-like graph architecture to effectively forecast
chaotic time series data.

3 Introduction

One of the most contentious philosophical kerfuffles of the last century is that over the idea of ’randomness’;
what does it mean for an object to be truly random? Is such a thing even possible? Likewise, what does it
mean for something to be ’complex’?

These questions are not entirely navel-gazey philosophical dalliance. Characterizing the complexity of
objects such as networks is of great interest for a myriad of applications, from simulating gene expression
and interaction, to detecting epileptic seizures in electroencephalogram data [1].

In 1948, Claude Shannon catalysed the information theory revolution by introducing ”information en-
tropy” as a measure of the number of bits needed to specify an element from a discrete probability dis-
tribution. This allowed for people to talk about the information capacity and complexity of probability
distributions in a mathematically rigorous way. About a decade later, Kolmogorov (concurrently with but
independently of Chaitin and Solomonoff) defined of ’algorithmic entropy’, using Turing’s theory of computa-
tion to adapt the concept of entropy to individual realizations of data instead of larger statistical ensembles.

Alternatively called ’Kolmogorov Complexity’ or ’Chaitin-Kolmogorov-Solomonoff complexity’, the algo-
rithmic entropy of an object can be intuitively thought of as the minimum length of a computer program
needed to completely specify that object. For instance, a sequence of n bits generated from a Bernoulli
distribution with probability parameter p = 1

2 would have O(n) algorithmic entropy in that it would take n
bits to uniquely specify the sequence. Meanwhile, a sequence of n bits all equal to one would (on a machine
that already knows the value of ’n’) would have O(1) algorithmic entropy as the program ’repeat the value
’1’ n times’, which does not scale with n. (Note: if the machine was not already provided with the parameter
n then we would need to encode the value of n, taking O(log(n)) bits and thus significantly increasing the
complexity of our program). This is quite consistent with the p = 1

2 Bernoulli distribution underlying our
first sequence having maximal Shannon entropy compared to all other parameter p Bernoulli distributions,
while constant sequences have zero entropy.

Algorithmic entropy has both pronounced strengths and weaknesses as a measure of an object’s infor-
mation content. On one hand, a result termed the Invariance Theorem establishes that - unlike alternate
measures of entropy- algorithmic entropy is invariant under object representation up to constant overhead[2].
On the other, algorithmic entropy is cumbersome to work with in that it is not explicitly computable [9].
However, algorithmic complexity is upper semicomputable, and we can use lossless compression algorithms
on data to derive upper bounds for their algorithmic entropy.
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4 Preliminaries

In this section we summarize the notation and basic graph theory that we will use to define algorithmic
entropy and pseudorandomness. We also introduce Cayley graphs, one of the main focuses of this paper.

4.1 Big O and little o notation

Let f, g be function f : R+ → R+. Then if there exists xo ∈ R+,M ∈ R+ such that f(x) ≤Mg(x) ∀xo ≤ x
then we write f(x) = O(g(x)).

If ∀ϵ > 0 there exists xo > 0 such that f(x) ≤ ϵg(x) ∀x ≥ xo then we write f(X) = o(g(x)). Note this

is equivalent to limn→∞
f(x)
g(x) = 0

4.2 Graph Notation

Let G = (V,E) denote a graph on vertex set V with E ⊂ V × V .
We will restrict our attention to simple graphs, ie. graphs with no more than one edge between vertices,

and graphs without self-loops. Then, all graphs satisfying |V | = n G will have an n × n adjacency matrix
representation AG below, with [AG]ii = 0 ∀i ∈ [n]:

[AG]ij =

{
1 if (vi, vj) ∈ E

0 if not

Let d : V → [|V |] denote the degree function of graph G = (V,E) defined d(vi) = |{(vi, vj) ∈ E : vj ∈ V }
∀vi ∈ V . Then, G = (V,E) with |V | = n has degree list representation DG = {d(v1), ..., d(vn)}. When
d(vi) = d∀i ∈ [|V |] we call a graph G d-regular.

We assume G is an undirected graph and thus AG symmetric unless explicitly specified otherwise.
Then, by spectral theorem AG has an orthogonal eigenvector basis {v1, ..., vn} corresponding to eigenvalues
{λ1, λ2, ..., λn}, listed in descending order.

Remark 4.1 (Trivial Eigenvalue) Let AG be the adjacency matrix of d regular undirected graph, and
u = (1, ..., 1) denote the n× 1 all 1s vector.

Observe [AGu]i =
∑n

j=1 Aij ∗ 1 = d ∗ 1 = ∀i ∈ [n], so AGu = du. So, u is an eigenvector of AG,
and because all entries of AG are in {0, 1} it is clear the corresponding eigenvalue d is the largest possible
eigenvalue.

Then, because v1 = u and λ1 = d for all d regular undirected graphs, we term λ1 the trivial eigenvalue.

4.3 Graph Properties

Here we define properties of graphs and families of graphs, sequences of graphs {Gn = (Vn, En)} that unless
otherwise specified will have |Vn| = n ∀n ∈ Z+, that will be referenced throughout this paper:

Definition 4.1 ((n, d, λ) graph) A graph G = (V,E) is called (n, d, λ) if it has degree d with |V | = n
and has and the greatest absolute value of its nontrivial eigenvalues is λ, i.e., λ = maxi∈{2,...,n}{|λi|} =
max(λ2, |λn|). We refer to λ as the spectral gap pf G.

Definition 4.2 (Dense Family of Graphs) We call a family of simple undirected graphs {Gn = (Vn, En)}
dense if there exists a constant ρ ∈ (0, 1) such that ∀n ∈ Z+ we have that |En| = (ρ+ o(1))

(
n
2

)
. We say that

{Gn} has constant order edge density ρ.

Definition 4.3 (Sparse Family of Graphs) We call a family of simple undirected graphs {Gn = (Vn, En)}
sparse if we have limn→+∞

|En|
(n
2)

= 0.
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4.4 Cayley Graphs

Cayley graphs are families of graphs constructed from algebraic groups. This imbues Cayley Graphs with
algebraic structure that, as we shall see, makes them a rich and easy to work with source of pseudorandom
graphs.

Definition 4.4 (Cayley Graphs) Let S be a generating set of a group on set H with group operation
∗ : H × H → H. Then the Cayley graph C(H,S) a graph with vertex set V = H and edge set E =
{(u, v)|v = s ∗ u, s ∈ S}.

A useful and well-known property of Cayley graphs on the additive subgroups of the finite fields (Zn,+, ·)
is the equivalence of the eigenspectrum of the adjacency matrix AC of a Cayley graph C(Zn, S) and the
Fourier spectrum of the indicator function, as well as the eigenvectors of A and the characters in the Fourier
basis of Zp. This property will be of great use in proving the pseudorandomness of Paley graphs.

Lemma 4.1 Let C(Zp
n, S) be a Cayley graph on the group (Zp,+) for prime p ∈ Z with generating set

S ⊂ Zp
n and adjacency matrix A, and let χS : Zn → {0, 1} be the indicator function of S . Let {λ1, λ2, ..., λn}

be the eigenspectrum of the adjacency matrix of G (with multiplicity, not necessarily in order of size), and

let v1, v2, ..., vn be the associated eigenvectors. Let {{ω(x)k}k∈{0,...,p−1}} (where ω(x) = ei
2πx
p ) be the Fourier

basis of Zp and {χ̂S(k) : k ∈ {0, ..., p− 1}} are the associated Fourier characters. Then, λk = χ̂S(k) and the
associated eigenvector vk = ωk : Zp → R ∀k ∈ Zp

PROOF OF 4.1:
We want to show that for any k ∈ Zp we have λk+1ω

k = Aωk Observe that

[Aωk]l =

p−1∑
j=0

Aljω(j)k =

p−1∑
j=0

χS(l − j)(ω(j)k)

χS has Fourier expansion χS(j) = 1
|Zp|

∑p−1
m=0 χ̂S(m)(ω(j))m = 1

p

∑p−1
m=0 χ̂S(m)(ω(j))m. Thus,

p−1∑
j=0

χS(l − j)(ω(j))k =

p−1∑
j=0

1

p
(

p−1∑
m=0

χ̂S(m)(ω(l − j))m)(ω(j))k =

p−1∑
j=0

1

p
(

p−1∑
m=0

χ̂S(m)((ω(l − j))m(ω(j))k))

=
1

p

p−1∑
j=0

(

p−1∑
m=0

χ̂S(m)((e
i2π(l−j)m

p )(e
i2π(j)k

p )) =
1

p

p−1∑
j=0

(

p−1∑
m=0

χ̂S(m)(e
i2π(l+j(k−m))

p )

=
1

p

p−1∑
m=0

e
i2πlm

p (χ̂S(m)

p−1∑
j=0

e
i2π(j(k−m))

p )

By orthogonality of the Fourier basis
∑p−1

j=0 e
i2π(j(k−m))

p = 0 when (k −m) ̸= 0, so

=
1

p

p−1∑
m=0

e
i2πlm

p (χ̂S(m)

p−1∑
j=0

e
i2π(j(k−m))

p ) =
1

p
e

i2πlk
p (χ̂S(k))

p−1∑
j=0

1 = χ̂S(k)e
i2πlk

p = χ̂S(k)(ω(l))k = χ̂S(k)[ωk]l

Thus, [Aωk]l = χ̂S(k)[ωk]l ∀k ∈ Zp. QED
One widely used example of a Cayley graph on the additive subgroup of the finite field (Zn,+, ·) is the

cycle graph.

Definition 4.5 (Cycle graph) A n vertex cycle graph is the Cayley graph on the additive group (Zn,+)
with generating set {±1}. The cycle graph on (Z13,+) is depicted in figure 1.
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Figure 1: The Cycle graph C((Z13,+), U = {±1})

Using Lemma 4.1 we can calculate the eigenspectrum of a Cayley graph on (Zn,+) as λk = e
i2πk
n +

e−
i2πk
n = 2cos( 2πk

n ) ∀k ∈ [n]. We note the trivial eigenvalue λ1 = 2cos( 2π0
n ) = 2(1) = |{±1}|, consistent

with cycle graphs having two generators and thus being 2-regular.

Remark 4.2 (Cycle Graphs) We claim Cycle graphs are the sparsest possible connected Cayley graphs
on (Zp,+) up to isomorphism when p prime, with d = 2.

It is trivial to observe that cycle graphs are indeed connected ∀n ∈ Z+ as {±1} generates (Z+,+).
We note that the bipartite ladder graph is the Cayley graph on (Z2n,+) for n ∈ Z+ with generating set

{± 2n
2 } = {±n} = {2n − n, n} = {n} is the sparsest possible undirected Cayley graph, as d = 1. But the

bipartite ladder graph is not connected for n > 1 as {n} has order 2 in (Z2n,+) as n+ n = 2n ≡ 0 and so n
does not by itself generate (Z2n,+). Thus the resulting Cayley graph is not connected.

Then, we show that cycle graphs are the sparsest possible undirected Cayley graph on (Zp,+) up to
isomorphism by showing all undirected d = 2 Cayley graphs on Zp are isomorphic to the cycle graph when p
prime.

For a Cayley graph on (Zp,+) to be undirected and degree 2 we must have the generating set take form
{±a} for some a ∈ Zp, as undirected Cayley graphs must have generating sets closed under inverses to ensure
edges are symmetric.

Cayley graphs on (Zp,+) with p prime and generating set {±a} for a ∈ Zp − {0} are identical to a cycle
graph up to isomorphism. This is because when p is prime, a ̸= ka in (Zp,+) for any k ∈ Zp − {0, 1}, so
{±a} generates (Zp,+) ∀a ∈ Zp − {0}.

Then, if C is the cycle graph of on (Zp,+) and G is the Cayley graph of on (Zp,+) with p prime and
generating set {±a}, we observe that C is isomorphic to G under the vertex relabelling l : (Zp,+)→ (Zp,+)
defined l(i) = ai.

Thus we can say that on graphs of prime vertex size, cycle graphs are the sparsest connected Cayley
graphs up to isomorphism.
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5 Background

5.1 Algorithmic Entropy

The algorithmic entropy of an object, the length of the shortest program describing the object, is formally
defined thusly;

Definition 5.1 (Algorithmic Entropy) Let s be a string of finite length defined on a finite alphabet, T
be a universal Turing machine, and P be any program for which T returns s upon halting. The algorithmic
entropy of s is defined

KT (s) = min{|P | : T (P ) = s}

The Invariance Theorem is a well known result establishing that the Kolmogorov complexity of a string
does not depend on the representation chosen, so we can fix any arbitrary Universal Turing Machine T for
our purposes.

5.1.1 Lempel Ziv Complexity

Kolmogorov complexity is not computable, but is upper-semicomputable [7]. One may obtain upper bounds
for the Kolmogorov complexity by applying tools such as a lossless compression algorithm to the string under
consideration and calculating the size of the resulting compression [9]. One such algorithm we will make
use of is the LZ76 algorithm to calculate the Lempel Ziv complexity of a string. Intuitively we can think of
Lempel-Ziv complexity as measuring the number of unique non- repeating substrings in a string, formally
described in the definition below [10]:

Definition 5.2 Let s = {si}i∈[n] with si ∈ {0, 1} ∀i ∈ [n] be a binary string of length n ∈ Z+. Let sj
k

denote the substring {si}ki=j of s starting at index j and ending at index k, for some 1 ≤ j ≤ k ≤ n
Use the LZ76 algorithm to recursively partitioning s into some number p ≤ n of disjoint substrings, called

’blocks’ {Bj}j∈[p], each representing the shortest substring that is not contained anywhere in the substring
preceding it. The LZ76 Algorithm is formally described in Algorithm 1.

We then define the Lempel-Ziv complexity LZ(s) of s as the number LZ(s) := p = |{Bj}j∈[p]| [10].

5.1.2 LZ76 Compression Algorithm Example Calculation

To illustrate the LZ76 algorithm, Algorithm 1, we perform an example computation on, say, the indicator
function χU : Z13 → {0, 1} of the set of nonzero quadratic residues of (Z13,+), U = {u2mod13 : u ∈ Z13.
This example is chosen strategically; U is the generating set of the Paley graph G on (Z13,+), one of the
archetypal examples of a dense pseudorandom graph. Accordingly, χU is the first row of the adjacency
matrix of G, as this row corresponds to the indicator function of elements g of Z13 such that 0 +g ∈ U . This
kind of computation will turn out to be pivotal for our later proof that Cayley graphs general have at most
loglinear Kolmogorov Complexity.

(Z13,+) contains six nonzero quadratic residues, U = {12mod13 = 1, 22mod13 = 4, 32mod13 = 9,
42mod13 = 3, 52mod13 = 12, 62mod13 = 10}. Note that 13 is prime and 13 ≡ 1mod4, so U is closed
under additive inverses as −1 ≡ 12mod13 ∈ U and the set of nonzero quadratic residues form an equivalence
relation on the multiplicative group (Z13 − {0}, ·).

Writing χU as an n dimensional vector indexed by Z13 we see that[
Indices : 0 1 2 3 4 5 6 7 8 9 10 11 12

χU : 0 1 0 1 1 0 0 0 0 1 1 0 1

]
Then the first block B1 = x1

1 is the length 1 string containing the fist bit
χU =

[
0| 1 0 1 1 0 0 0 0 1 1 0 1

]
B2 is the shortest substring of s = χU , starting at the index right after the previous block B1 ended (so

starting at 2), that does not occur as a substring of s11. This turns out to be B2 = s22 = {1}. Thus,
χU =

[
0| 1| 0 1 1 0 0 0 0 1 1 0 1

]
Likewise B3 is the shortest substring of s = χU , starting at the index right after the previous block B2

ended (so starting at 3), that does not occur as a substring of the substring of s from 1 to the ending index
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Algorithm 1 LZ76 Compression

Require: binary string of length n ∈ Z+, s = {si}i∈[n] with si ∈ {0, 1} ∀i ∈ [n]
Define the starting block of our encoding B1 ← x1

1.
Suppose after k steps we have encoded the first nk bits of s as B1, B2, ..., Bk = x1

1, x
n2
2 , ..., xnk

nk−1+1

...
Set the following parameters:

uniqueSubstring ← FALSE
nk+1 ← nk + 1

...
Let ’FindSubstring(pattern, string)’ be a method implementing convolution-based string pattern matching
that returns TRUE when pattern is a substring of string, FALSE otherwise.

while not(uniqueSubstring) do
if FindSubstring(xnk+1

nk+1, x
nk

1) returns FALSE then
Bk+1 ← xnk+1

nk+1

uniqueSubstring ← TRUE
else
nk+1 ← nk+1 + 1
end if

end while
Repeat until nk ≥ n
—
return {Bj}j∈k

of the previous block s21. This turns out to be B3 = s43 = {011}. Thus,
χU =

[
0| 1| 0 1 1| 0 0 0 0 1 1 0 1

]
Proceeding like this up until the end of s yields the following partition into blocks:

χU =
[
0| 1| 0 1 1| 0 0| 0 0 1| 1 0 1

]
{B1 = {0}, B2 = {1}, B3 = {011}, B4 = {00}, B5 = {001}, B6 = {101}.
We conclude that χU has a Lempel -Ziv complexity of six.

5.2 Pseudorandomness and Randomness

5.2.1 Pseudorandom Graphs

’Pseudorandomness’ can refer to a myriad of graph theoretic properties that random graphs provably have
with high probability. One of the first groups to describe pseudo- or quasi-random graphs were Chung, Gra-
ham, and Wilson, who originally enumerated a list of properties random graphs have with high probability
and proved they are equivalent for dense graphs in 1989 [11]. We will focus on two of pseudorandom-
ness properties: discrepancy pseudorandomness, which concerns the connectivity of a graph, and spectral
pseudorandomness, which concerns the eigenspectrum of the graph.

We will first develop the notion of pseudorandomness for families of graphs with dense connections from
Chung, Graham, and Wilson’s work, and then dense discrepancy and spectral pseudorandomness properties
are equivalent for d regular graphs (although it is worth noting Chung et’ al.’s proof works for any simple
undirected graph)[11][8].

We will then adapt the discrepancy and spectral pseudorandomness conditions to sparse graphs using
later work by Conlon, Fox, and Zhao in 2014, and then summarize their proof that sparse discrepancy and
spectral pseudorandomness properties are equivalent for sparse Cayley graphs [12][8].

Definition 5.3 (Dense Discrepancy Pseudorandomness) Let {Gn = (Vn, En)} be a family of dense
graphs with constant order edge density ρ. Then {Gn} satisfies the discrepancy pseudorandomness property
if for vertex subsets S, T ⊂ Vn we have that |e(S, T )− ρ|S||T || = o(n2)
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The discrepancy pseudorandomness condition is motivated by the behavior of binomial random graphs.
In a a binomial random graph G = (V,E) with probability parameter ρ ∈ (0, 1) we have that ρ|S||T | is the
expected number of edges between disjoint subsets S and T of the vertex set V . So intuitively, a graph with
edge density ρ having a relatively small discrepancy |e(S, T ) − ρ|S||T || for all subsets S, T of V , including
disjoint subsets, behaves similarly to a binomial random graph with probability ρ.

Definition 5.4 (Dense Spectral Pseudorandomness) Let {Gn = (Vn, En)} be a family of dense graphs.
Then {Gn} satisfies the spectral pseudorandomness property if the eigenvalues of the adjacency matrix of Gn,
listed {λi}i∈[n] in descending order, satisfy λ1 = ρn + o(n) and λ = maxi∈{2,...,n}{|λi|} = max(λ2, |λn|) =
o(n)

Theorem 5.1 (Equivalence of Discrepancy and Spectral Pseudorandomness for Dense Graphs)
Let {Gn = (Vn, En)} be a family of dense d-regular graphs with constant order edge density ρ. Then {Gn}
satisfies the discrepancy pseudorandomness condition if and only if it satisfies the spectral pseudorandomness
condition. First proved in [11]

To prove this theorem, we first need to prove the Expander-Mixing Lemma, an important result relating
the discrepancy of a d regular graph and spectral gap (i.e., the maximal absolute value λ of the nontrivial
eigenvalues of the adjacency matrix) [4]. The essence of the lemma is that if spectral gap of a graph is small,
then the graph will have small discrepancy and so be quite well connected relative to the density of its edges,
similar to what you would expect from a binomial random graph of the same edge density.

Lemma 5.2 (Expander Mixing Lemma) For any (n, d, λ graph G = (V,E), if S ⊂ V and T ⊂ V such
that S ∩ T = ∅ and e(S, T ) denotes the set of edges with one vertex in S and one in T , then

|e(S, T )− d

n
|S||T || ≤ λ

√
|S||T |

PROOF OF 5.2: Let (n, d, λ graph G = (V,E) have adjacency matrix A. Let us write V = [n] by
enumerating the n vertices of V . G is a simple, undirected graph so A is a symmetric matrix, thus by
spectral theorem A has an orthonormal eigenvector basis {vi}i∈[n] associated to it’s eigenvalues {λi}i∈[n]

(written in decreasing order with multiplicity). As observed in remark 4.1, G degree d implies that λ1 = d
and the associated eigenvector vi = 1√

n
(1, ..., 1), the normalized all ones nx1 vector.

Let S, T ⊂ V = [n] and let χS : [n]→ {0, 1} and χT : [n]→ {0, 1} be the indicator functions of S and T
respectively. Note that we can write χS as a length n vector in {0, 1}n where chiSi = 1 ⇐⇒ i ∈ S ⊂ [n]
(likewise for chiT ).

Now, we compute e(S.T ) from A and the indicator functions of S and T . We have that AχT i =∑
j∈[n] AijχT j , so χS

⊤AχT =
∑

i∈[n]

∑
j∈[n] AijχSiχT j . Observer that ∀i, j ∈ [n] we have that AijχSiχT j =

1 ⇐⇒ (i, j) ∈ E, i ∈ S, and j ∈ T , and AijχSiχT j = 0 otherwise. Then,

χS
⊤AχT =

∑
i∈[n]

∑
j∈[n]

AijχSiχT j = e(S, T )

.
Our orthonormal eigenbasis {vi}i∈[n] of A spans Rn, so we can write χS and χT in terms of {vi}i∈[n]:

χS =
∑

i∈[n] aivi and χT =
∑

i∈[n] bivi where ai := χ⊤
S vi and bi := χ⊤

T vi.

Thus, AχT = A(
∑

i∈[n] bivi) =
∑

i∈[n] bi(Avi) =
∑

i∈[n] bi(λivi) = d(b1)(v1) +
∑

i∈{2,...,n} bi(λivi).

By the orthonormality of {vi}i∈[n] we have that v⊤i vj = 1∀i = j and v⊤i vj = 0∀i ̸= j. Therefore,

e(S, T ) = χS
⊤AχT =

∑
i∈[n]

∑
j∈[n]

λjaibj(v
⊤
i vj) =

∑
i∈[n]

λiaibi =
∑
i∈[n]

λi(χ
⊤
S vi)(χ

⊤
T vi)

Observing that λ1(χ⊤
S v1)(χ⊤

T v1) = d(
∑

i ∈ [n] 1√
(n)
∗ χS(i))(

∑
j∈[n]

1√
(n)
∗ χT (j)) = d

n |S||T |. Therfore

we have that e(S, T ) = d
n |S||T |+

∑
i∈{2,...,n}λi(χ⊤

S vi)(χ⊤
T vi)

and by Cauchy Schwarz we obtain,

|e(S, T )− d

n
|S||T || = |

∑
i∈{2,...,n}

λi(χ
⊤
S vi)(χ

⊤
T vi)| ≤ λ

∑
i∈[n]

(χ⊤
S vi)

2

 1
2
∑
i∈[n]

(χ⊤
T vi)

2

 1
2
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Let B be a matrix with column vectors equal to the vectors in the orthonormal eigenbasis {vi}i∈[n].

Then we have that χ⊤
SBi = χS

⊤vi ∀i ∈ [n]. Thus, we have that
∑

i∈[n](χ
⊤
S vi)

2 =
∑

i∈[n] χ
⊤
SB

2

i =

(χ⊤
SB)(χ⊤

SB)
⊤

= χ⊤
SBB⊤χS . But B is an orthonormal matrix so BB⊤ = I, thus

∑
i∈[n](χ

⊤
S vi)

2 =

χ⊤
SχS =

∑
i∈[n](χSi)

2. Further, by definition of the characteristic function
∑

i∈[n](χSi)
2 =

∑
i∈S⊂[n] 12 =∑

i∈S⊂[n] 12 = |S|. By identical argument,
∑

i∈[n](χ
⊤
T vi)

2 =
∑

i∈[n](χT i)
2 = |T |. Then we obtain

|e(S, T )− d

n
|S||T || ≤ λ

∑
i∈[n]

(χ⊤
S vi)

2

 1
2
∑
i∈[n]

(χ⊤
T vi)

2

 1
2

= λ
√
|S||T |

QED
With the expander mixing lemma in hand, we can now prove the dense pseudorandom equivalence

theorem for d regular graphs.
PROOF OF 5.1:
First observe that in a family {Gn}n∈Z+

of d- regular graphs have edge density ρ = d
n . This is because

|En| = dn
2 (d edges multiplied by n vertices, dividing by 2 so the undirected edges aren’t double-counted) and

so |En| = nd
2 = (

(
n
2

)
)( d

n + d
n(n−1) ). limn→∞

d
n(n−1) = 0 so d

n(n−1) = o(1) and we have |En| =
(
n
2

)
( d
n + o(1)).

Thus, λ1 = d = dn
n = ρn+ 0 so to show a d-regular family of graphs satisfies spectral pseudorandomness

it is sufficient to prove that the spectral gap of{Gn}n∈Z+
grows sub-linearly, i.e., λ = o(n).

Dense spectral pseudorandomness =⇒ dense discrepancy pseudorandomness: Suppose λ = o(n). Then
by the Expander- Mixing Lemma we have that ∀S, T ⊂ Vn we have |e(S, T )− d

n |S||T || = |e(S, T )−ρ|S||T || ≤
λ
√
|S||T | ≤ λ

√
n ∗ n = λn = o(n2).

QED
Dense discrepancy pseudorandomness =⇒ dense spectral pseudorandomness: Proof omitted, not rele-

vant to any work we have done so far.
Next, we define sparse pseudorandomness.

Definition 5.5 (Sparse ϵ- Discrepancy Pseudorandomness) Let {Gn = (Vn, En)} be a family of sparse
d-regular graphs (i,e., d = o(n2)) with edge density ρ and let ϵ > 0. Then {Gn} has the ϵ- discrepancy pseu-
dorandomness property if for vertex subsets S, T ⊂ Vn we have that |e(S, T )− ρ|S||T || ≤ ϵdn

Definition 5.6 (Sparse ϵ- Spectral Pseudorandomness) Let {Gn = (Vn, En)} be a family of sparse
d-regular graphs (i,e., d = o(n2)) with edge density ρ and let ϵ > 0. Then {Gn} has the ϵ- spectral pseudo-
randomness property if the eigenvalues of the adjacency matrix of Gn, listed {λi}i∈[n] in descending order,
satisfy λ1 = ρn + o(n) and λ = maxi∈{2,...,n}{|λi|} = max(λ2, |λn|) ≤ ϵd

Theorem 5.3 Let {Cn} be a family of Cayley graphs on the group (Γn, ⋆) of size |Γn| = n and with group
operation ⋆ : Γn ×Γn → Γn, with generating set U ⊂ Γn of size |U | = d that is closed under inverses. Then,

Cn is undirected and d regular. Let {Cn} be sparse, i.e., {Cn} has edge density limn→∞
|En|
(n
2)

= limn→∞
d
n = 0.

Then, {Cn} has the ϵ - - spectral pseudorandomness property =⇒ {Cn} has the ϵ- discrepancy pseudo
randomness property. First Proved in [12].

(NOTE: Conlon et. al. prove the converse in [12] but we omit the proof as it is not needed for any of
our later results)

PROOF OF 5.3:
ϵ- spectral pseudorandomness =⇒ ϵ- discrepancy pseudorandomness: Similar to the previous proof, this

result follows almost immediately from the Expander Mixing Lemma.
Suppose λ ≤ ϵd. Then by the Expander- Mixing Lemma we have that ∀S, T ⊂ Vn we have |e(S, T ) −

d
n |S||T || = |e(S, T )− ρ|S||T || ≤ λ

√
|S||T | ≤ λ

√
n ∗ n = λn ≤ ϵdn.

QED

9



5.2.2 Random Graphs

For the purposes of this research we will adopt the definition of a truly random graph G, employed in other
literature on graph algorithmic entropy, as one that is not compressible, in the sense that there is no lossless
encoding of the graph with fewer bits than its adjacency matrix representation (which has

(
n
2

)
bits when the

graph G is undirected and n(n− 1) bits when G is directed).

Definition 5.7 (Random Graphs) A graph G is random if K(G) = O(n2)

This definition is meaningful in the sense that it has been proven that the probability of uniformly
randomly choosing a binary string s of length l out of the set of all such binary stings {0, 1}l such that s has
strictly less than O(l) algorithmic entropy, i.e., K(s) = o(l), converges to 0 in probability as l→∞ [9]. We
formally state and prove this in the following lemma:

Lemma 5.4 For any l ∈ Z+ and any constant c ∈ [l] we have that there are 2l − 2l−c binary strings of
length l s ∈ {0, 1}l such that K(s) ≥ l − c [9].

It follows that the probability of uniformly randomly choosing s from {0, 1}l such that K(s) < l − c is at
most 1

2c ∀c ∈ [l].

PROOF OF 5.4:
Consider the set of binary strings of length l, {0, 1}l. Then for any constant c ∈ [l], there are exactly

|{0, 1}l−c| = 2l−c binary strings of length l − c, so there are only 2l−c ways to compress a string of length l
by c bits. Then there must be at least 2l− 2l−c binary strings of length l that do not compress by any more
than c bits, i.e, |{s ∈ {0, 1}l : K(s) ≥ l − c}| ≥ 2l − 2l−c.

Then if we chose s form {0, 1}l with uniform probability, ∀c ∈ [n] we have that K(s) ≥ l − c with

probability at least 2l−c(2c−1)
2l

= 2c−1
2c , and K(s) < l − c with probability at most 1

2c . QED

We can represent undirected graphs as binary strings length
(
n
2

)
), most of which have algorithmic entropy(

O(n
2)=O(n2)

)
by Lemma 5.4. Thus graphs of subrandom Kolmogorov complexity are vanishingly rare for large

n.
Our goal will be to demonstrate that the pseudorandom graphs under consideration nevertheless have

strictly less than quadratic Algorithmic entropy, making them candidates for lower-complexity replacements
for random graphs.

6 Results

6.1 Cayley Graphs

As we established in the preliminary section, Cayley graphs have highly desirable algebraic structure that
imparts a variety of useful properties, such as an adjacency matrix with an eigenspectrum consisting of the
graph’s discrete Fourier components (Theorem with Theorem 4.1). In this section we use this property to
prove a variety of both dense and sparse Cayley graphs display spectral pseudorandomness characteristics
(and thus discrepancy pseudorandomness) [8].

Intuitively, we would expect Cayley graphs to have sub-random algorithmic complexity, as they are
determined entirely by the group (H, ∗) and the generating set U ⊂ H they are defined on, which should
not take at most a linear in n number of bits to encode (possibly with algorithmic overhead to keep track
of labels). We present a proof that this is indeed the case for Paley graphs on the additive group (Zn,+)
for any n ∈ Z+. This gives us a rich repository of easy to construct and work with graphs with both proven
pseudorandom properties and sub-random algorithmic entropy.

6.1.1 Paley Graphs

Consider the Cayley graph C((Zp,+), U) for p prime with generating set U = {u ∈ Zp−{0} : u ≡ a2mod(p) for
some a ∈ Z. Then, (u, v) ∈ E ⇐⇒ v = s+u where s is a nonzero quadratic residue in Zp. We will restrict p
such that p ≡ 1mod4, so that u square in Zp ⇐⇒ −u square in Zp and thus, v = s+u =⇒ u = −s+v and

10



Figure 2: The Paley graph C((Z13,+), U = {a2 : a ∈ Z13})

s quadratic residue ⇐⇒ −s quadratic residue give us that (u, v) ∈ E ⇐⇒ (v, u) ∈ E (ie. G undirected).
Fig. 2 depicts the Paley graph C((Z13,+), S)

Let C(Zp, U) be a Paley graph with U be the set of nonzero quadratic residues as above. Being a nonzero
quadratic residue is provably an equivalence relation on Zp−{0} with equivalence classes U and Zp−{0}−U ,

so |U | = |Zp−{0}|
2 = p−1

2 . Thus, there are p−1
2 distinct squares in Zp − {0}, so C(Zp, U) is p−1

2 - regular.
Despite their clear symmetry, we claim Paley graphs are both pseudorandom and have an adjacency

matrix with high Shannon energy. The high Shannon entropy follows from the p−1
2 ≈

p
2 , observing that the

Shannon entropy of adjacency matrix is maximized in |V |
2 -regular graphs. The pseudorandomness of Paley

graphs is a well-known result that is outlined in the theorem below.

Theorem 6.1 Let C(Zp, U) be a Paley graph on the group (Zp,+) for prime p ≡ 1mod(4) . Let {λ1 ≥
λ2 ≥ ...,≥ λn} be the eigenspectrum of the adjacency matrix AG of G. Then, max(λ2, |λn|) = O(

√
p). Thus,

C(Zp, U) is pseudorandom 8.

PROOF OF 6.1:
Per Lemma 4.1 we know that the Fourier characters {ωk} are the eigenvectors corresponding to eigen-

values λk+1 = χ̂S(k) ∀k ∈ Zp, where χS : Zp → {0, 1} is the indicator function of S = {u ∈ Zp − {0} :
u ≡ a2mod(p). We can compute the Fourier components of χS using the Fourier transform χ̂S(k) =∑p−1

j=0 χS(j)ω(j)−k =
∑p−1

j=0 χS(j)e
−i2πkj

p . Thus,

λk+1 = χ̂S(k) =

p−1∑
j=0

χS(j)e
i2πkj

p =
∑
j∈S

1 ∗ e
i2πkj

p

Observe that for any l ∈ {1, ..., p−1
2 } we have (p − l)2mod(p) = (p2 − 2pl + l2)mod(p) ≡ l2mod(p), so

the sequence {l2mod(p)}p−1
l=0 = {0}, {l2mod(p)}

p−1
2

l=1 , {(p − l)2mod(p)}1
l= p−1

2

iterates through {0} and then S

twice. Thus,
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∑
j∈S

e
i2πkj

p =

∑p−1
l=1 e

i2πkl2

p

2
=

(
∑p−1

l=0 e
i2πkl2

p )− 1

2

.

Using Gauss sums we see that p ≡ 1mod(4) =⇒
∑p−1

l=0 e
i2πkl2

p =
√

(p) ∀k ∈ Zp − {0}. Thus,

λk+1 = χ̂S(k) =

√
p− 1

2
∀k ∈ Zp − {0}

Thus λ = O(
√
p)

QED

Example: Bounding the Algorithmic Entropy of Paley Graphs

Theorem 6.2 (Algorithmic Entropy of Undirected Paley Graphs) Let {Pn = C(Zp, Un)) be the fam-
ily of Paley graphs on additive groups (Zp,+) with p prime and p ≡ 1mod4, with Un := {u2modp : u ∈ Zp}.
Then Paley graphs have linear Lempel-Ziv complexity, LZ(C(Zp, Un)) = O(n). This gives us loglinear algo-
rithmic entropy, which is sub-random.

PROOF OF 6.2
Let A be the adjacency matrix of Pn = C(Zp, Un) with entries aij = 1 ⇐⇒ i− j ∈ S.
Observe that Paley graphs (and more generally Cayley graphs on the additive subgroup of a finite field

(Z,+, ·}) are circulent. That is, (i, j) ∈ E ⇐⇒ i = j+s for s ∈ S ⇐⇒ i+1 = (j+1)+s ⇐⇒ (i+1, j+1) ∈
E, so aij = a(i+1)(j+1) ∀i, j ∈ Zp. Then, ∀i ∈ {0, ..., p − 1} the ith row vector Ai = (ai0, ..., ai(p−1)) of A
satisfies

(ai0, ai1..., ai,(p−2), ai(p−1)) = (a(i+1)1a(i+2)1, ..., a(i+1)(p−1), a(i+1)0)

.
Therefore, Ai+1 is a circular permutation/ one bit shift of Ai ∀i ∈ {0, ...p−2}. Thus, any row Ai of A for

i ∈ {1, ..., p− 1} is reproducible from the first row of the adjacency matrix A0 = (a00, ...a0p−1) via i circular
shifts. Specifically, if we flatten the adjacency matrix A into a 1×

(
n
2

)
vector vA by concatenating

A0[1:p−1], A1[2:p−1], ...Ai[i+1,p−1], ..., Ap−2[p−1]

. The partitioning of the upper triangular part of the adjacency matrix of Pn into blocks/codewords is
illustrated in figure 3.

Then, applying the LZ76 algorithm to resultant vA with a dictionary and look ahead buffer of length
p− 1 each yields at most O(p) code words, as Ai[i+1,p−1] is a substring of Ai−1[i,p−1] for all i ∈ [p− 1]. Ai−1

has length p− i and so is contained entirely in its dictionary window by construction. Thus, each row vector
Ai encoded after A0 only adds a pointer to a substring of A0 to the encoding (illustrated using the red and
orange lines in fig. 3).

A0 can be encoded in exactly p bits, plus an additional constant number of bits for each row after. Then,
LZ(C(Zp, S)) = O(p)

Then, adding logarithmic overhead for storing the labels of the codewords themselves, this gives us
O(nlogn) algorithmic entropy- less than the O(n2) algorithmic entropy of the adjacency matrices of random
graphs.

QED
Now we use the argument in Theorem 6.2 to prove that any undirected Cayley graph on the additive

subgroup of the finite field {Zn,+, ·} for any n ∈ Z+ has sub-random Kolmogorov complexity.

Theorem 6.3 (Algorithmic Entropy of Undirected Cayley Graphs) Let {Cn} be a family of undi-
rected Cayley graphs on the cyclic group (Zn,+) with generating sets Un ⊂ Zn. Then the adjacency matrices
of {Cn} have O(n) Lempel- Ziv complexity. This gives us loglinear algorithmic entropy, which is sub-random.
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Figure 3: The LZ76 partitioning of the upper triangular adjacency matrix of the Paley graph C((Z13,+), U =
{a2 : a ∈ Z13}), with blocks highlighted in different colors and two example pointers to previous rows
illustrated in red and orange lines.

PROOF OF 6.3:
Let A denote the adjacency matrix of Cn, and observe that Cn defined on the cyclic group (Z,+) =⇒ Cn

circulent. For observe that each row of the adjacency matrix Ai corresponds to the vertex i − 1 ∈ Zn, and
so we have Aij = 1 ⇐⇒ j − i ∈ Un. Thus, Ai is the indicator function χSi

of the set Si := {s ∈
Zn : (i − 1) + s ∈ U}. In particular, A1 corresponds to 0, the identity element, and so A1 = χU as
U = Si := {s ∈ Zn : 0 + s = s ∈ U}. Using LZ76 we can encode A1 in at most n codewords, often less.

Because we’re working with undirected graphs we see that the adjacency matrix of Cn is symmetric and
we only need encode the upper triangular part, {A1, A2[2:n], ...Ai[i:n], ...An−1[(n− 1) : n], Ann}

We see that ∀i ∈ [n− 1] consecutive row vectors Ai and Ai+1 are single bit circular permutations of each
other, as Ai+1 = χ{s∈[n]:i+s∈U} = χ{s∈[n]:(i−1)+(s+1)∈U}. All addition is taken modulo n so this gives us
Aij = χSi

(j − 1) = χSi+1
(j) = A(i+1)(j+1) modulo n as desired.

Then, ∀i ∈ [n−1], we have that A(i+1)[(i+1):n] = Ai[i:n−1], i.e, A(i+1)[(i+1):n] is a direct substring of Ai[i:n],
so applying the LZ76 algorithm encodes every row after the first row as its own codeword/block, resulting
in only a linear number of codewords and thus linear Lempel Ziv complexity.

Then, adding logarithmic overhead for storing the labels of the codewords themselves, this gives us
O(nlogn) algorithmic entropy- less than the O(n2) algorithmic entropy of the adjacency matrices of random
graphs.

QED

Empirical Lempel Ziv Complexity Validation Our theoretical calculation for the algorithmic entropy
of undirected Cayley graphs on additive groups is validated by empirical computation of the Lempel-Ziv
compression on both Paley graphs and cycle graphs using the Lempel-Siv Markov chain algorithm (LZMA).
LZMA is an optimized version of the LZ77 algorithm, based on the LZ76 algorithm, that achieves ”higher
compression rate, faster decompression, and lower memory requirements” 13.

Recall from remark 4.2 that cycle are the sparsest possible undirected, connected Cayley graphs on
(Zp,+) for p prime up to isomorphism. Then comparing Paley graphs, which are dense, to cycle graphs
captures the breadth of undirected Cayley graph connectivity.

Validation was performed using code produced in python for the TRIPODS 2023 Summer Research
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Program using the numpy, lzma, and networkX packages, cited in the bibliography at [14]. Figures 4 and
5 depict the compression size vs original number of graph nodes curve for cycle graphs and Paley graphs
respectively. For the sake of comparison, both graphs were evaluated for prime nodes congruent 1mod4.

Figure 4: The LZMA compression size versus number of nodes in a cycle graph

Both curves are convex, consistent with our loglinear bound we proved for algorithmic entropy in Theorem
6.3. Note however the relatively flat (and indeed, sub-linear) curve of the cycle graph compression compared
to the Paley graph compression.

6.2 Applications to Echo State Networks

In this section we discuss the possible applications of Cayley graphs as replacements for random reservoirs
in Echo State networks, a variety of recurrent neural network.

Neural networks learn patterns in input data is that they embed the input in a high dimensional space,
seek out local minima in the difference between the embedded data and the desired output data, and then
adjust the parameters of the embedding accordingly. Feedforward neural networks, the most straightforward
architecture of neural network, embed data by composing a linear transformation of the input data into a
higher dimensional space with nonlinear convex ’activation functions’ such as the sigmoid function and then
adjusting the weights of the linear embedding via some manner of ’backpropagation’ algorithm - propagating
error backwards through the network to adjust neural network parameters in a way that minimizes the error
[15].

Recurrent neural networks have emerged as a popular alternative network architecture that allows for
the output of the neural network to feed back into the network as a new input. Thus, the network is not
just a nonlinear function embedding the input into a higher dimensional space; it is a dynamical system,
an iterated map depending just as much on its past values as it does its original inputs. This makes them
ideal for forecasting time series data, such as dynamical systems or natural language. However, training the
feedback or ’recurrent’ weights of the network is much harder due to the the presence of time dependence,
necessitating error be propagated through time in order to adjust the network weights [16]. This is quite
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Figure 5: The LZMA compression size versus number of nodes in a Paley graph

computationally expensive. Echo state networks (ESNs) are a variety of recurrent neural network that
circumvent the difficulties posed by propagation by fixing the recurrent weights. Thus, the only weights that
require training are the linear weights reading computing the output of the network by linearly combining
reservoir states. This can be done with normal backpropagation [17].

Most ESNs use a reservoir with random connectivity, such as a sparsely connected Erdős–Rényi graph,
in keeping with the widely held belief that randomness is one of the most effective ways to ensure the
reservoir was sufficiently ”rich” in neural correlations that a [16]. However, recent literature has started
experimenting with other cycle architectures, with one exciting recent preprint by Li et.al. demonstrating
that reservoirs comprised of a cycle graph (or in the authors’ words, ”full cycle permutation”) and are
”universal approximators of any unrestricted linear reservoir system” [19]. This raises the question of whether
undirected Cayley graphs on finite fields have sufficient expressive power be suitable replacements for random
reservoirs in ESNs, which is what we are currently investigating. This section elaborates on the technical
details of constructing and evaluating the capacity of ESNs, and reports some of our preliminary findings
with regard to Cayley graphs.

6.2.1 Echo State Networks

Architecture and training An echo state network (ESN) linearly maps an input time series with weight
matrix Win into a fixed ’reservoir’, a graph making the body of the neural network with weighted adjacency
matrix W . All vertices or ’neurons’ of the reservoir have an associated state X = {xi(t) ∈ R}i∈[n] at each
time step t ∈ Z, the evolution of which over time depends on both u(t) and its past values x(t−1). Thus, the
reservoir X is a dynamical system, and cycles in the weighted adjacency matrix of X comprise the recurrent
connections of the neural network.

Thus, consider an ESN with k input units, n reservoir neurons, and l output units.
Let {u(t)}t∈Z = {ui(t)}i∈[k],t∈Z is the input time series of k dimensional input values, x(t)t∈Z = xi(t)i∈[n],t∈Z

be the time series of n dimensional reservoir neuron states, and y(t)t∈Z = yi(t)i∈[l],t∈Z be the time series

15



Figure 6: A diagram of the architecture of an echo state network depicting edges between reservoir nodes in
orange and cyan representing positive and negative weights. Reprinted from “Tailoring Echo State Networks
for Optimal Learning” by P. Aceituno, G. Yan, and Y. Liu, 2020, iScience, Volume(23), page number 2.

of l dimensional outputs. Finally, let f : R → R be a convex nonlinear activation function (to apply f
elementwise to a matrix M we simply write f(M) by convention).

Then the states of the reservoir are updated as follows on time step t [16]:

{
x(t) = f(Wx(t− 1) + Winu(t))

y(t) = Wout(x(t))

(Note that Win mapping {ui(t)}i∈[k] into the reservoir at time step t is k × n matrix, W mapping
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{xi(t−1)}i∈[n] to {xi(t)}i∈[n] at time step t is an n×n matrix, and Wout mapping {xi(t)}i∈[n] to {yi(t)}i∈[l]

is a n× l matrix.)

Properties As mentioned, the recurrent part of the network is a reservoir comprising fixed weights W
with fixed input weights Win; only the linear output weights Wout are trained, using classic gradient descent
and backpropogation algorithms [17].

The choice of reservoir graph is of vital importance for the performance of the network. The one strict
condition on the reservoir weighted adjacency matrix W is that the eigenvalue of greatest modulus λ1 of
the weighted adjacency matrix W satisfy |λ1| ≤ 1 [16]. This can be obtained by normalizing the network
weights by |λ1|. In particular, if we want W to reflect the network topology of an undirected d-regular graph
with adjacency matrix A then W = 1

dA as λ1 = d.
For some intuition as to why such normalization is necessary, consider f equal to the identity function and

Win equal to the zero vector (so no inputs are driving the dynamics of the reservoir. Then if you diagonalize
the matrix (which you can do for a weighted undirected graph, by symmetry of the adjacency matrix by the
spectral theorem), you obtain that x(t) = Wx(t−1) = BΛB−1 where Λ is the diagonal matrix of eigenvalues
(Λii = λi ∀i ∈ [n], zero elsewhere) and B is the associated invertible change of basis matrix. Then,

x(t) = Wnx(t− n) = (BΛB−1)nx(t− n) = BΛnB−1

.
Observe Λn

ii = λn
i ∀i ∈ [n], zero elsewhere. Thus if there is a diagonal entry in Λ with |λi| > 1

we have that x(t − n) gets amplified exponentially quickly as n increases, so small perturbations in state
quickly overtake the network dynamics, i.e. the reservoir dynamical system behaves chaotically. This kind
of sensitivity to initial conditions is undesirable in an echo state network. Normalizing by the eigenvalue of
largest modulus thus ensures our reservoir represents a stable dynamical system.

6.2.2 Memory Capacity

One of the key properties of interest in studying reservoir networks is memory capacity, representing the
network’s ability to approximate a target function using a linear estimator with weights Wout on the set of
reservoir states [18]. Dambre et.al. describe how to compute memory capacity thusly:

Suppose we have an ESN X = {{xi(t)}i∈[n] : t ∈ Z} parameterized by Win, W , Wout. Let {u(t)}t∈[−T,T ]

be an independent and identically distributed input data vector of length 2T , so that all dynamical behavior
is due to correlations between nodes in the reservoir and not within the input data. Run the ESN from time
−T to 0 to eliminate transient behavior from the initialization of the reservoir nodes. We then consider the
evolution of our ESN from time t = 1 to t = T .

Let u−h(t) = {u(t−h+1), ...u(t−1), u(t)} denote u time lagged by h units from t and let Uh = {u−h(t) :
t ∈ Z} denote the set of such time lagged vectors. Consider an arbitrary target function z : Uh → R with

z(t) = z(u−h(t), which we seek to approximate using the linear estimator ẑ(t) = Wout(x(t)).
Define the mean squared error between z and ẑ for time series of length T thusly:

MSET (ẑ, z) =
1

T

T∑
t=1

(ẑ(t)− z(t))2

Then, letting < z2 >T = 1
T

∑
t∈[T ](z(t))2 be the average squared value of z over the time frame [T ], define

the capacity for time series length T , to be

CT (X, ẑ, z) =
< z2 >T −MSET (ẑ, z)

< z2 >T

Dambre et.al. prove that CT (X, ẑ, z) ∈ [0, 1] with C closer to one indicating that the ESN X is better at
approximating z and closer to 0 indicating X is worse at approximating z. Recent work by Aceituno et. al.
suggest that the memory capacity of echo state networks is highly correlated with the average moduli of the
eigenspectrum of the adjacency matrix of the reservoir. This stands to reason given that echo state networks
represent functions as linear combinations of their reservoir states, so the more linearly independent reservoir
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vertices are the greater variety of functions it can represent. Aceituno et. al. prove increased correlations
between neurons in a reservoir decreases the average modulus of the associated weighted adjacency matrix
[17].

Thus, one of the first steps to verifying whether Cayley graphs have sufficiently ”rich” structure to to
approximate a wide array of functions is to examine the behavior of the average modulus of its eigenvalues.

Memory Capacity of Cayley Graphs on Finite Fields We use the Fourier characterization of the
eigenspectrum of Cayley graphs (see Lemma 4.1) to prove an upper bound on the average eigenvalue modulus
of {Cn} for each n.

Theorem 6.4 Let {Cn} be a family of undirected Cayley graphs on the cyclic group (Zn,+) with generating
set Un ⊂ Zn and eigenvalues {λk}i∈Zn}.

Let < |λn| >= 1
n

∑
k∈Zn

|λk|. Then we have that < |λ| >≤ |Un|
1
2

PROOF OF 6.4:
Recall by Lemma 4.1 that ∀k ∈ Zn we have that λk = χ̂Un

(k) where χ̂Un
(k) =

∑
x∈{0,...,n−1} χUn

(x)e
i2πkx

n

is the kth Fourier character of the indicator function χUn
of the generating set Un

The, by the Plancherel identity observe that∑
k∈Zn

|χ̂Un
(k)|2 = |Zn|

∑
x∈Zn

|χUn
(k)|2 = n

∑
x∈Zn

|χUn
(k)| = n|Un|

Then by the Cauchy-Schwarz inequality observe

n|Un| =
∑
k∈Zn

|χ̂Un
(k)|2 =

∑
k∈Zn

|λk|2 =
∑
k∈Zn

|λk|2
∑
k∈Zn

| 1√
n
|2 ≥

∑
k∈Zn

|λk|√
n

2

Thus, dividing by n and taking the square root of both sides we see

< |λn| >=
∑
k∈Zn

|λk|
n
≤ (|Un|)

1
2

QED

Corollary 6.4.1 Let Wn = Cn

|Un| be the normalized adjacency matrix of the Cayley graph Cn =
(
(Zn,+), Un

)
with maximal eigenvalue modulus 1. Let Wn have eigenspectrum {σk}k∈Zn

and average eigenvalue modulus∑
k∈Zn

|sigmak|
n .

Then, if |Un| is an increasing function of n, we have that the limit of the average eigenvalue modulus as
n approaches infinity is limn→∞ < |λn| >= 0.

PROOF:
Recall by the |Un|-regularity of Cn we have that λ0 = maxk∈Zn

λkmaxk∈Zn
|λk| = |U(n)|, so W indeed

correctly normalized. Futher, observe that if {
Let {λk}k∈Z be the eigenspectrum of Cn and observe that∀k ∈ Z we have that σk = λk

|Un| .

Then by Theorem 6.4 we have that
∑

k∈Zn

|λk|
n ≤ |Un|

1
2 , so∑

k∈Zn

|σk|
n

=
1

|Un|
∑
k∈Zn

|λk|
n
≤ |Un|

−1
2

The result follows.
QED

Observing this we see that normalized Paley graphs are immediately ruled out as viable reservoir candidates
on the basis of having vanishing average eigenvalue modulus, as is any dense family of Cayley graphs.
Meanwhile, the most viable reservoir candidate among undirected families of Cayley graph is the family of
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cycle graphs, previously established to be the undirected Cayley graph withe the smallest possible generating
set. This is consistent with the favorable results obtained by Aceituno et. al. and Li et. al. for cycle graphs.

However, cycle graphs have eigenvalue set to {e i2πk
n + e

−i2πk
n }k∈Zn = {2cos( 2πk

n )}k∈Zn . Then observe

that as n → +∞ we have limn→∞ 2cos( 2π(2)
n )} = 2cos(0) = 2 = |λ0|, so the second largest eigenvalue

magnitude approaches the greatest eigenvalue modulus. Thus, cycle graphs are not remotely pseudorandom
in a spectral sense, as they do not have sparse ϵ− pseudorandomness for any epsilon < 1 after sufficiently
large n.

Further, having small second greatest eigenvalue modulus in general isn’t conducive to having large
average eigenvalue modulus. This suggests that, counter-intuitively, the more pseudorandom a graph is, the
less suitable a replacement for a random reservoir it is in an echo state network. In the context of Aceituno
et. al., the conclusion that spectral pseudorandomness negatively affects the memory capacity of an echo
state network is unavoidable

However, recall that although spectral pseudorandomness implies discrepancy pseudorandomness for all
graphs, Conlon et. al. only proved the converse for Cayley graphs [12]. In fact, it is provably isn’t true
that sparse discrepancy pseudorandomness implies sparse spectral pseudorandomness in general [8]. This is
intriguing because, as established above, sparse random graphs, the current standard choice of ESN reservoir,
satisfy discrepancy pseudorandomness with high probability.

Therefore, if we broaden our search for pseudorandom reservoir candidates beyond Cayley graphs, we
might be able to find suitable pseudorandom reservoir candidates with good memory capacity. A particular
promising direction is to look into expander graphs, a variety of sparse graphs with very good ’edge expansion’
(ie, discrepancy pseudorandomness) that can be deterministically constructed (and thus, perhaps, proven to
have sub-random algorithmic entropy). Such graphs have already seen wide use in reducing the number of
bits of randomness spent in random-walk algorithms, which further suggests their promise as substitutes for
random reservoirs [5].

7 Current Work

Our ongoing work comprises two directions: first, we are working on generalizing Cayley graphs results to
expander graphs from constructed from Cayley graphs using the Zig-Zag graph product. Such as such graphs
have pseudorandom spectral properties, and are (unlike many of the Cayley graphs we looked at, such as
Paley graphs) quite sparse. This makes them good reservoir candidates in Echo State Networks, and also
facilitates the networks having low algorithmic entropy.

The second is to apply our pseudorandom reservoir candidates to echo state networks, which traditionally
use binomial graph reservoirs to achieve a nonlinear embedding of an input time series in a higher dimensional
space in order to forecast the time series [17]. We hope to use pseudorandom graphs to ”save on bits of
randomness” expended in the construction of reservoirs for echo state networks. As part of this endeavour,
we are studying the memory capacity of echo state networks build using our pseudorandom graphs. We then
plan to perform empirical tests on the ability of simple echo state networks with pseudorandom reservoirs
to forecast the Mackey-Glass time series, single variable chaotic time series. Our end goal is to identify a
pseudorandom graph with low algorithmic entropy that outperforms a binomial random graph of the same
edge density in the chaotic time series forecasting task. Preliminary results indicate that undirected Cayley
graphs on the cyclic group (Zn,+) with nonconstant generating sets have vanishing memory capacity as
n→∞, ruling out Paley graphs and pseudorandom Cayley graphs on (Zn,+) writ large as viable reservoir
candidates. However, past research has shown that cycle graphs, the undirected Cayley graph on (Zn,+) with
the smallest possible generating set, make remarkably good reservoirs despite their lack of pseudorandom
structure. The way expander graphs combine pseudorandomness with sparseness suggests they might make
excellent reservoir candidates. We plan to investigate these next, in order to more thoroughly examining the
relationship between the pseudorandomness and memory capacity of a graph.
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