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1 Abstract

Of increasing interest in the era of big data, in which computational resources are increasingly at a premium, is
the idea of ’complexity’- the amount of information you need to completely determine a set of data. Several
competing ideas have emerged in the last century to formalize this notion. Among them is Kolmogorov
complexity or algorithmic entropy, the length of the shortest program describing an object.

The high complexity of random objects have been leveraged in many algorithms. For instance, a class of
recurrent neural networks called Echo State Networks (ESNs) use a complex ’reservoir’ such as a randomly
connected graph to capture the rich nonlinear dynamics of chaotic systems. However, even sparse random
graphs have high algorithmic entropy and are accordingly resource intensive to utilize.

It is thus of interest to study ’pseudorandom’ graphs, which share important spectral and connectivity
properties with random graphs but are deterministically constructed and thus often have lower algorithmic
entropy. In this paper we examine Paley graphs, a pseudorandom subset of Cayley graphs [4], and establish
graphs satisfy the spectral conditions for pseudorandomness, discuss the resulting connectivity properties.
However, we also present a novel proof that all Cayley graphs have at most loglinear algorithmic entropy,
meaning Paley graphs exemplify pseudorandom graphs that nevertheless demonstrate subrandom algorithmic
entropy.

Our immediate next aim is to prove that our pseudorandom gaphs graphs are capable of serving as
effective reservoirs for an ESN, in terms of both memory capacity and empirically validatation of their
performance on a chaotic time series forecasting task relative to a traditional erdos renyi- graph Echo State
Network.

2 Introduction

One of the most contentious philosophical kerfuffles of the last century is that over the idea of ’randomness’;
what does it mean for an object to be truly random? Is such a thing even possible? Likewise, what does it
mean for something to be ’complex’?

These questions are not entirely the sort of navel-gazey philosophical dalliance perpetuated by students in
the math lounge while they procrastinate their Probability Theory homework. Characterizing the complexity
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of objects such as networks is of great interest for a myriad of applications, from simulating gene expression
and interaction, to detecting epileptic seizures in electroencephalogram data [1].

In 1948, Claude Shannon catalysed the information theory revolution by introducing ”information en-
tropy” as a measure of the number of bits needed to specify an element from a discrete probability dis-
tribution. This allowed for people to talk about the information capacity and complexity of probability
distributions in a mathematically rigorous way. About a decade later, Kolmogorov (concurrently with but
independently of Chaitin and Solomonoff) defined of ’algorithmic entropy’, using Turing’s theory of computa-
tion to adapt the concept of entropy to individual realizations of data instead of larger statistical ensembles.

Alternatively called ’Kolmogorov Complexity’ or ’Chaitin-Kolmogorov-Solomonoff complexity’, the algo-
rithmic entropy of an object can be intuitively thought of as the minimum length of a computer program
needed to completely specify that object. For instance, a sequence of n bits generated from a Bernoulli
distribution with probability parameter p = 1

2 would have O(n) algorithmic entropy in that it would take n
bits to uniquely specify the sequence. Meanwhile, a sequence of n bits all equal to one would (on a machine
that already knows the value of ’n’) would have O(1) algorithmic entropy as the program ’repeat the value
’1’ n times’, which does not scale with n. (Note: if the machine was not already provided with the parameter
n then we would need to encode the value of n, taking O(log(n)) bits and thus significantly increasing the
complexity of our program). This is quite consistent with the p = 1

2 Bernoulli distribution underlying our
first sequence having maximal Shannon entropy compared to all other parameter p Bernoulli distributions,
while constant sequences have zero entropy.

Algorithmic entropy has both pronounced strengths and weaknesses as a measure of an object’s infor-
mation content. On one hand, a result termed the Invariance Theorem establishes that - unlike alternate
measures of entropy- algorithmic entropy is invariant under object representation up to constant overhead[2].
On the other, algorithmic entropy is cumbersome to work with in that it is not explicitly computable [9].
However, algorithmic complexity is upper semicomputable, and we can use lossless compression algorithms
on data to derive upper bounds for their algorithmic entropy.

3 Preliminaries

In this section we summarize the notation and basic graph theory that we will use to define algorithmic
entropy and pseudorandomness. We also introduce Cayley graphs, one of the main focuses of this paper.

3.1 Big O and little o notation

Let f, g be function f : R+ → R+. Then if there exists xo ∈ R+,M ∈ R+ such that f(x) ≤Mg(x) ∀xo ≤ x
then we write f(x) = O(g(x)).

If ∀ϵ > 0 there exists xo > 0 such that f(x) ≤ ϵg(x) ∀x ≥ xo then we write f(X) = o(g(x)). Note this

is equivalent to limn→∞
f(x)
g(x) = 0

3.2 Graph Notation

Let G = (V,E) denote a graph on vertex set V with E ⊂ V × V .
We will restrict our attention to simple graphs, ie. graphs with no more than one edge between vertices,

and graphs without self-loops. Then, all graphs satisfying |V | = n G will have an n × n adjacency matrix
representation AG below, with [AG]ii = 0 ∀i ∈ [n]:

[AG]ij =

{
1 if (vi, vj) ∈ E

0 if not

Let d : V → [|V |] denote the degree function of graph G = (V,E) defined d(vi) = |{(vi, vj) ∈ E : vj ∈ V }
∀vi ∈ V . Then, G = (V,E) with |V | = n has degree list representation DG = {d(v1), ..., d(vn)}. When
d(vi) = d∀i ∈ [|V |] we call a graph G d-regular.
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We assume G is an undirected graph and thus AG symmetric unless explicitly specified otherwise.
Then, by spectral theorem AG has an orthogonal eigenvector basis {v1, ..., vn} corresponding to eigenvalues
{λ1, λ2, ..., λn}, listed in descending order.

Remark 3.1 (Trivial Eigenvalue) Let AG be the adjacency matrix of d regular undirected graph, and
u = (1, ..., 1) denote the n× 1 all 1s vector.

Observe [AGu]i =
∑n

j=1 Aij ∗ 1 = d ∗ 1 = ∀i ∈ [n], so AGu = du. So, u is an eigenvector of AG,
and because all entries of AG are in {0, 1} it is clear the corresponding eigenvalue d is the largest possible
eigenvalue.

Then, because v1 = u and λ1 = d for all d regular undirected graphs, we term λ1 the trivial eigenvalue.

3.3 Graph Properties

Here we define properties of graphs and families of graphs, sequences of graphs {Gn = (Vn, En)} that unless
otherwise specified will have |Vn| = n ∀n ∈ Z+, that will be referenced throughout this paper:

Definition 3.1 ((n, d, λ) graph) A graph G = (V,E) is called (n, d, λ) if it has degree d with |V | = n
and has and the greatest absolute value of its nontrivial eigenvalues is λ, i.e., λ = maxi∈{2,...,n}{|λi|} =
max(λ2, |λn|). We refer to λ as the spectral gap pf G.

Definition 3.2 (Dense Family of Graphs) We call a family of simple undirected graphs {Gn = (Vn, En)}
dense if there exists a constant ρ ∈ (0, 1) such that ∀n ∈ Z+ we have that |En| = (ρ+ o(1))

(
n
2

)
. We say that

{Gn} has constant order edge density ρ.

Definition 3.3 (Sparse Family of Graphs) We call a family of simple undirected graphs {Gn = (Vn, En)}
sparse if we have limn→+∞

|En|
(n
2)

= 0.

3.4 Cayley Graphs

Cayley graphs are families of graphs constructed from algebraic groups. This imbues Cayley Graphs with
algebraic structure that, as we shall see, makes them a rich and easy to work with source of pseudorandom
graphs.

Definition 3.4 (Cayley Graphs) Let S be a generating set of a group on set H with group operation
∗ : H × H → H. Then the Cayley graph C(H,S) a graph with vertex set V = H and edge set E =
{(u, v)|v = s ∗ u, s ∈ S}.

A useful and well-known property of Cayley graphs on additive groups (Zn,+) is the equivalence of
the eigenspectrum of the adjacency matrix AC of a Cayley graph C(Zn, S) and the Fourier spectrum of
the indicator function, as well as the eigenvectors of A and the characters in the Fourier basis of Zp. This
property will be of great use in proving the pseudorandomness of Paley graphs.

Lemma 3.1 Let C(Zp
n, S) be a Cayley graph on the group (Zp,+) for prime p ∈ Z with generating set

S ⊂ Zp
n and adjacency matrix A, and let χS : Zn → {0, 1} be the indicator function of S . Let {λ1 ≥

λ2 ≥ ...,≥ λn} be the eigenspectrum of the adjacency matrix of G (with multiplicity), v1, v2, ..., vn be the

associated eigenvectors. Let {{ω(x)k}k∈{0,...,p−1}} (where ω(x) = ei
2πx
p ) be the Fourier basis of Zp and

{χ̂S(k) : k ∈ {0, ..., p − 1}} are the associated Fourier characters. Then, λk = χ̂S(k) and the associated
eigenvector vk = ωk : Zp → R ∀k ∈ Zp

PROOF OF 3.1:
We want to show that for any k ∈ Zp we have λk+1ω

k = Aωk Observe that

[Aωk]l =

p−1∑
j=0

Aljω(j)k =

p−1∑
j=0

χS(l − j)(ω(j)k)

χS has Fourier expansion χS(j) = 1
|Zp|

∑p−1
m=0 χ̂S(m)(ω(j))m = 1

p

∑p−1
m=0 χ̂S(m)(ω(j))m. Thus,
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p−1∑
j=0

χS(l − j)(ω(j))k =

p−1∑
j=0

1

p
(

p−1∑
m=0

χ̂S(m)(ω(l − j))m)(ω(j))k =

p−1∑
j=0

1

p
(

p−1∑
m=0

χ̂S(m)((ω(l − j))m(ω(j))k))

=
1

p

p−1∑
j=0

(

p−1∑
m=0

χ̂S(m)((e
i2π(l−j)m

p )(e
i2π(j)k

p )) =
1

p

p−1∑
j=0

(

p−1∑
m=0

χ̂S(m)(e
i2π(l+j(k−m))

p )

=
1

p

p−1∑
m=0

e
i2πlm

p (χ̂S(m)

p−1∑
j=0

e
i2π(j(k−m))

p )

By orthogonality of the Fourier basis
∑p−1

j=0 e
i2π(j(k−m))

p = 0 when (k −m) ̸= 0, so

=
1

p

p−1∑
m=0

e
i2πlm

p (χ̂S(m)

p−1∑
j=0

e
i2π(j(k−m))

p ) =
1

p
e

i2πlk
p (χ̂S(k))

p−1∑
j=0

1 = χ̂S(k)e
i2πlk

p = χ̂S(k)(ω(l))k = χ̂S(k)[ωk]l

Thus, [Aωk]l = χ̂S(k)[ωk]l ∀k ∈ Zp. QED
One widely used example of a Cayley graph on the additive group (Zn,+) is the cycle graph.

Definition 3.5 (Cycle graph) A n vertex cycle graph is the Cayley graph on the additive group (Zn,+)
with generating set {±1}. The cycle graph on (Z13,+) is depicted in figure 1.

Figure 1: The Cycle graph C((Z13,+), U = {±1})

Using Lemma 3.1 we can calculate the eigenspectrum of a Cayley graph on (Zn,+) as λk = e
i2πk
n +

e−
i2πk
n = 2cos( 2πk

n ) ∀k ∈ [n]. We note the trivial eigenvalue λ1 = 2cos( 2π0
n ) = 2(1) = |{±1}|, consistent

with cycle graphs having two generators and thus being 2-regular.
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Remark 3.2 (Cycle Graphs) We claim Cycle graphs are the sparsest possible connected Cayley graphs
on (Zp,+) up to isomorphism when p prime, with d = 2.

It is trivial to observe that cycle graphs are indeed connected ∀n ∈ Z+ as {±1} generates (Z+,+).
We note that the bipartite ladder graph is the Cayley graph on (Z2n,+) for n ∈ Z+ with generating set

{± 2n
2 } = {±n} = {2n − n, n} = {n} is the sparsest possible undirected Cayley graph, as d = 1. But the

bipartite ladder graph is not connected for n > 1 as {n} has order 2 in (Z2n,+) as n+ n = 2n ≡ 0 and so n
does not by itself generate (Z2n,+). Thus the resulting Cayley graph is not connected.

Then, we show that cycle graphs are the sparsest possible undirected Cayley graph on (Zp,+) up to
isomorphism by showing all undirected d = 2 Cayley graphs on Zp are isomorphic to the cycle graph when p
prime.

For a Cayley graph on (Zp,+) to be undirected and degree 2 we must have the generating set take form
{±a} for some a ∈ Zp, as undirected Cayley graphs must have generating sets closed under inverses to ensure
edges are symmetric.

Cayley graphs on (Zp,+) with p prime and generating set {±a} for a ∈ Zp − {0} are identical to a cycle
graph up to isomorphism. This is because when p is prime, a ̸= ka in (Zp,+) for any k ∈ Zp − {0, 1}, so
{±a} generates (Zp,+) ∀a ∈ Zp − {0}.

Then, if C is the cycle graph of on (Zp,+) and G is the Cayley graph of on (Zp,+) with p prime and
generating set {±a}, we observe that C is isomorphic to G under the vertex relabelling l : (Zp,+)→ (Zp,+)
defined l(i) = ai.

Thus we can say that on graphs of prime vertex size, cycle graphs are the sparsest connected Cayley
graphs up to isomorphism.

4 Background

4.1 Algorithmic Entropy

The algorithmic entropy of an object, the length of the shortest program describing the object, is formally
defined thusly;

Definition 4.1 (Algorithmic Entropy) Let s be a string of finite length defined on a finite alphabet, T
be a universal Turing machine, and P be any program for which T returns s upon halting. The algorithmic
entropy of s is defined

KT (s) = min{|P | : T (P ) = s}

The Invariance Theorem is a well known result establishing that the Kolmogorov complexity of a string
does not depend on the representation chosen, so we can fix any arbitrary Universal Turing Machine T for
our purposes.

4.1.1 Lempel Ziv Complexity

Kolmogorov complexity is not computable, but is upper-semicomputable [7]. One may obtain upper bounds
for the Kolmogorov complexity by applying tools such as a lossless compression algorithm to the string under
consideration and calculating the size of the resulting compression [9]. One such algorithm we will make
use of is the LZ76 algorithm to calculate the Lempel Ziv complexity of a string. Intuitively we can think of
Lempel-Ziv complexity as measuring the number of unique non- repeating substrings in a string, formally
described in the definition below [10]:

Definition 4.2 Let s = {si}i∈[n] with si ∈ {0, 1} ∀i ∈ [n] be a binary string of length n ∈ Z+. Let sj
k

denote the substring {si}ki=j of s starting at index j and ending at index k, for some 1 ≤ j ≤ k ≤ n
Use the LZ76 algorithm to recursively partitioning s into some number p ≤ n of disjoint substrings, called

’blocks’ {Bj}j∈[p], each representing the shortest substring that is not contained anywhere in the substring
preceding it. The LZ76 Algorithm is formally described in Algorithm 1.

We then define the Lempel-Ziv complexity LZ(s) of s as the number LZ(s) := p = |{Bj}j∈[p]| [10].
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Algorithm 1 LZ76 Compression

Require: binary string of length n ∈ Z+, s = {si}i∈[n] with si ∈ {0, 1} ∀i ∈ [n]
Define the starting block of our encoding B1 ← x1

1.
Suppose after k steps we have encoded the first nk bits of s as B1, B2, ..., Bk = x1

1, x
n2
2 , ..., xnk

nk−1+1

...
Set the following parameters:

uniqueSubstring ← FALSE
nk+1 ← nk + 1

...
Let ’FindSubstring(pattern, string)’ be a method implementing convolution-based string pattern matching
that returns TRUE when pattern is a substring of string, FALSE otherwise.

while not(uniqueSubstring) do
if FindSubstring(xnk+1

nk+1, x
nk

1) returns FALSE then
Bk+1 ← xnk+1

nk+1

uniqueSubstring ← TRUE
else
nk+1 ← nk+1 + 1
end if

end while
Repeat until nk ≥ n
—
return {Bj}j∈k

4.1.2 LZ76 Compression Algorithm Example Calculation

To illustrate the LZ76 algorithm, Algorithm 1, we perform an example computation on, say, the indicator
function χU : Z13 → {0, 1} of the set of nonzero quadratic residues of (Z13,+), U = {u2mod13 : u ∈ Z13.
This example is chosen strategically; U is the generating set of the Paley graph G on (Z13,+), one of the
archetypal examples of a dense pseudorandom graph. Accordingly, χU is the first row of the adjacency
matrix of G, as this row corresponds to the indicator function of elements g of Z13 such that 0 +g ∈ U . This
kind of computation will turn out to be pivotal for our later proof that Cayley graphs general have at most
loglinear Kolmogorov Complexity.

(Z13,+) contains six nonzero quadratic residues, U = {12mod13 = 1, 22mod13 = 4, 32mod13 = 9,
42mod13 = 3, 52mod13 = 12, 62mod13 = 10}. Note that 13 is prime and 13 ≡ 1mod4, so U is closed
under additive inverses as −1 ≡ 12mod13 ∈ U and the set of nonzero quadratic residues form an equivalence
relation on the multiplicative group (Z13 − {0}, ·).

Writing χU as an n dimensional vector indexed by Z13 we see that[
Indices : 0 1 2 3 4 5 6 7 8 9 10 11 12

χU : 0 1 0 1 1 0 0 0 0 1 1 0 1

]
Then the first block B1 = x1

1 is the length 1 string containing the fist bit
χU =

[
0| 1 0 1 1 0 0 0 0 1 1 0 1

]
B2 is the shortest substring of s = χU , starting at the index right after the previous block B1 ended (so

starting at 2), that does not occur as a substring of s11. This turns out to be B2 = s22 = {1}. Thus,
χU =

[
0| 1| 0 1 1 0 0 0 0 1 1 0 1

]
Likewise B3 is the shortest substring of s = χU , starting at the index right after the previous block B2

ended (so starting at 3), that does not occur as a substring of the substring of s from 1 to the ending index
of the previous block s21. This turns out to be B3 = s43 = {01}. Thus,
χU =

[
0| 1| 0 1| 1 0 0 0 0 1 1 0 1

]
Proceeding like this up until the end of s yields the following partition into blocks:

χU =
[
0| 1| 0 1| 1 0| 0 0| 0 1 1| 0 1

]
{B1 = {0}, B2 = {1}, B3 = {01}, B4 = {10}, B5 = {00}, B6 = {011}, B7 = {01}}.
We conclude that χU by itself has a Lempel -Ziv complexity of seven.
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4.2 Pseudorandomness and Randomness

4.2.1 Pseudorandom Graphs

’Pseudorandomness’ can refer to a myriad of graph theoretic properties that random graphs provably have
with high probability. One of the first groups to describe pseudo- or quasi-random graphs were Chung, Gra-
ham, and Wilson, who originally enumerated a list of properties random graphs have with high probability
and proved they are equivalent for dense graphs in 1989 [11]. We will focus on two of pseudorandom-
ness properties: discrepancy pseudorandomness, which concerns the connectivity of a graph, and spectral
pseudorandomness, which concerns the eigenspectrum of the graph.

We will first develop the notion of pseudorandomness for families of graphs with dense connections from
Chung, Graham, and Wilson’s work, and then dense discrepancy and spectral pseudorandomness properties
are equivalent for d regular graphs (although it is worth noting Chung et’ al.’s proof works for any simple
undirected graph)[11][8].

We will then adapt the discrepancy and spectral pseudorandomness conditions to sparse graphs using
later work by Conlon, Fox, and Zhao in 2014, and then summarize their proof that sparse discrepancy and
spectral pseudorandomness properties are equivalent for sparse Cayley graphs [12][8].

Definition 4.3 (Dense Discrepancy Pseudorandomness) Let {Gn = (Vn, En)} be a family of dense
graphs with constant order edge density ρ. Then {Gn} satisfies the discrepancy pseudorandomness property
if for vertex subsets S, T ⊂ Vn we have that |e(S, T )− ρ|S||T || = o(n2)

The discrepancy pseudorandomness condition is motivated by the behavior of binomial random graphs.
In a a binomial random graph G = (V,E) with probability parameter ρ ∈ (0, 1) we have that ρ|S||T | is the
expected number of edges between disjoint subsets S and T of the vertex set V . So intuitively, a graph with
edge density ρ having a relatively small discrepancy |e(S, T ) − ρ|S||T || for all subsets S, T of V , including
disjoint subsets, behaves similarly to a binomial random graph with probability ρ.

Definition 4.4 (Dense Spectral Pseudorandomness) Let {Gn = (Vn, En)} be a family of dense graphs.
Then {Gn} satisfies the spectral pseudorandomness property if the eigenvalues of the adjacency matrix of Gn,
listed {λi}i∈[n] in descending order, satisfy λ1 = ρn + o(n) and λ = maxi∈{2,...,n}{|λi|} = max(λ2, |λn|) =
o(n)

Theorem 4.1 (Equivalence of Discrepancy and Spectral Pseudorandomness for Dense Graphs)
Let {Gn = (Vn, En)} be a family of dense d-regular graphs with constant order edge density ρ. Then {Gn}
satisfies the discrepancy pseudorandomness condition if and only if it satisfies the spectral pseudorandomness
condition. First proved in [11]

To prove this theorem, we first need to prove the Expander-Mixing Lemma, an important result relating
the discrepancy of a d regular graph and spectral gap (i.e., the maximal absolute value λ of the nontrivial
eigenvalues of the adjacency matrix) [4]. The essence of the lemma is that if spectral gap of a graph is small,
then the graph will have small discrepancy and so be quite well connected relative to the density of its edges,
similar to what you would expect from a binomial random graph of the same edge density.

Lemma 4.2 (Expander Mixing Lemma) For any (n, d, λ graph G = (V,E), if S ⊂ V and T ⊂ V such
that S ∩ T = ∅ and e(S, T ) denotes the set of edges with one vertex in S and one in T , then

|e(S, T )− d

n
|S||T || ≤ λ

√
|S||T |

PROOF OF 4.2: Let (n, d, λ graph G = (V,E) have adjacency matrix A. Let us write V = [n] by
enumerating the n vertices of V . G is a simple, undirected graph so A is a symmetric matrix, thus by
spectral theorem A has an orthonormal eigenvector basis {vi}i∈[n] associated to it’s eigenvalues {λi}i∈[n]

(written in decreasing order with multiplicity). As observed in remark 3.1, G degree d implies that λ1 = d
and the associated eigenvector vi = 1√

n
(1, ..., 1), the normalized all ones nx1 vector.

Let S, T ⊂ V = [n] and let χS : [n]→ {0, 1} and χT : [n]→ {0, 1} be the indicator functions of S and T
respectively. Note that we can write χS as a length n vector in {0, 1}n where chiSi = 1 ⇐⇒ i ∈ S ⊂ [n]
(likewise for chiT ).
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Now, we compute e(S.T ) from A and the indicator functions of S and T . We have that AχT i =∑
j∈[n] AijχT j , so χS

⊤AχT =
∑

i∈[n]

∑
j∈[n] AijχSiχT j . Observer that ∀i, j ∈ [n] we have that AijχSiχT j =

1 ⇐⇒ (i, j) ∈ E, i ∈ S, and j ∈ T , and AijχSiχT j = 0 otherwise. Then,

χS
⊤AχT =

∑
i∈[n]

∑
j∈[n]

AijχSiχT j = e(S, T )

.
Our orthonormal eigenbasis {vi}i∈[n] of A spans Rn, so we can write χS and χT in terms of {vi}i∈[n]:

χS =
∑

i∈[n] aivi and χT =
∑

i∈[n] bivi where ai := χ⊤
S vi and bi := χ⊤

T vi.

Thus, AχT = A(
∑

i∈[n] bivi) =
∑

i∈[n] bi(Avi) =
∑

i∈[n] bi(λivi) = d(b1)(v1) +
∑

i∈{2,...,n} bi(λivi).

By the orthonormality of {vi}i∈[n] we have that v⊤i vj = 1∀i = j and v⊤i vj = 0∀i ̸= j. Therefore,

e(S, T ) = χS
⊤AχT =

∑
i∈[n]

∑
j∈[n]

λjaibj(v
⊤
i vj) =

∑
i∈[n]

λiaibi =
∑
i∈[n]

λi(χ
⊤
S vi)(χ

⊤
T vi)

Observing that λ1(χ⊤
S v1)(χ⊤

T v1) = d(
∑

i ∈ [n] 1√
(n)
∗ χS(i))(

∑
j∈[n]

1√
(n)
∗ χT (j)) = d

n |S||T |. Therfore

we have that e(S, T ) = d
n |S||T |+

∑
i∈{2,...,n}λi(χ⊤

S vi)(χ⊤
T vi)

and by Cauchy Schwarz we obtain,

|e(S, T )− d

n
|S||T || = |

∑
i∈{2,...,n}

λi(χ
⊤
S vi)(χ

⊤
T vi)| ≤ λ

∑
i∈[n]

(χ⊤
S vi)

2

 1
2
∑
i∈[n]

(χ⊤
T vi)

2

 1
2

Let B be a matrix with column vectors equal to the vectors in the orthonormal eigenbasis {vi}i∈[n].

Then we have that χ⊤
SBi = χS

⊤vi ∀i ∈ [n]. Thus, we have that
∑

i∈[n](χ
⊤
S vi)

2 =
∑

i∈[n] χ
⊤
SB

2

i =

(χ⊤
SB)(χ⊤

SB)
⊤

= χ⊤
SBB⊤χS . But B is an orthonormal matrix so BB⊤ = I, thus

∑
i∈[n](χ

⊤
S vi)

2 =

χ⊤
SχS =

∑
i∈[n](χSi)

2. Further, by definition of the characteristic function
∑

i∈[n](χSi)
2 =

∑
i∈S⊂[n] 12 =∑

i∈S⊂[n] 12 = |S|. By identical argument,
∑

i∈[n](χ
⊤
T vi)

2 =
∑

i∈[n](χT i)
2 = |T |. Then we obtain

|e(S, T )− d

n
|S||T || ≤ λ

∑
i∈[n]

(χ⊤
S vi)

2

 1
2
∑
i∈[n]

(χ⊤
T vi)

2

 1
2

= λ
√
|S||T |

QED
With the expander mixing lemma in hand, we can now prove the dense pseudorandom equivalence

theorem for d regular graphs.
PROOF OF 4.1:
First observe that in a family {Gn}n∈Z+ of d- regular graphs have edge density ρ = d

n . This is because

|En| = dn
2 (d edges multiplied by n vertices, dividing by 2 so the undirected edges aren’t double-counted) and

so |En| = nd
2 = (

(
n
2

)
)( d

n + d
n(n−1) ). limn→∞

d
n(n−1) = 0 so d

n(n−1) = o(1) and we have |En| =
(
n
2

)
( d
n + o(1)).

Thus, λ1 = d = dn
n = ρn+ 0 so to show a d-regular family of graphs satisfies spectral pseudorandomness

it is sufficient to prove that the spectral gap of{Gn}n∈Z+
grows sub-linearly, i.e., λ = o(n).

Dense spectral pseudorandomness =⇒ dense discrepancy pseudorandomness: Suppose λ = o(n). Then
by the Expander- Mixing Lemma we have that ∀S, T ⊂ Vn we have |e(S, T )− d

n |S||T || = |e(S, T )−ρ|S||T || ≤
λ
√
|S||T | ≤ λ

√
n ∗ n = λn = o(n2).

QED
Dense discrepancy pseudorandomness =⇒ dense spectral pseudorandomness: Proof omitted, not rele-

vant to any work we have done so far.
Next, we define sparse pseudorandomness.

Definition 4.5 (Sparse ϵ- Discrepancy Pseudorandomness) Let {Gn = (Vn, En)} be a family of sparse
d-regular graphs (i,e., d = o(n2)) and let ϵ > 0. Then {Gn} has the ϵ- discrepancy pseudorandomness prop-
erty if for vertex subsets S, T ⊂ Vn we have that |e(S, T )− ρ|S||T || ≤ ϵdn
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Definition 4.6 (Sparse ϵ- Spectral Pseudorandomness) Let {Gn = (Vn, En)} be a family of sparse
d-regular graphs (i,e., d = o(n2)) and let ϵ > 0. Then {Gn} has the ϵ- spectral pseudorandomness property
if the eigenvalues of the adjacency matrix of Gn, listed {λi}i∈[n] in descending order, satisfy λ1 = ρn + o(n)
and λ = maxi∈{2,...,n}{|λi|} = max(λ2, |λn|) ≤ ϵd

Theorem 4.3 Let {Cn} be a family of Cayley graphs on the group (Γn, ⋆) of size |Γn| = n and with group
operation ⋆ : Γn ×Γn → Γn, with generating set U ⊂ Γn of size |U | = d that is closed under inverses. Then,

Cn is undirected and d regular. Let {Cn} be sparse, i.e., {Cn} has edge density limn→∞
|En|
(n
2)

= limn→∞
d
n = 0.

Then, {Cn} has the ϵ - - spectral pseudorandomness property =⇒ {Cn} has the ϵ- discrepancy pseudo
randomness property, and {Cn} has the ϵ - discrepancy pseudorandomness property =⇒ {Cn} has the 8ϵ -
spectral pseudorandomness property. First Proved in [12].

PROOF OF 4.3:
ϵ- spectral pseudorandomness =⇒ ϵ- discrepancy pseudorandomness: Similar to the previous proof, this

result follows almost immediately from the Expander Mixing Lemma.
Suppose λ ≤ ϵd. Then by the Expander- Mixing Lemma we have that ∀S, T ⊂ Vn we have |e(S, T ) −

d
n |S||T || = |e(S, T )− ρ|S||T || ≤ λ

√
|S||T | ≤ λ

√
n ∗ n = λn ≤ ϵdn.

QED
ϵ- discrepancy pseudorandomness =⇒ ϵ- spectral pseudorandomness: Proof omitted, not relecant to

anything we have done so far.

4.2.2 Random Graphs

For the purposes of this research we will adopt the definition of a truly random graph G, employed in other
literature on graph algorithmic entropy, as one that is not compressible, in the sense that there is no lossless
encoding of the graph with fewer bits than its adjacency matrix representation (which has

(
n
2

)
bits when the

graph G is undirected and n(n− 1) bits when G is directed).

Definition 4.7 (Random Graphs) A graph G is random if K(G) = O(n2)

This definition is meaningful in the sense that it has been proven that the probability of uniformly
randomly choosing a binary string s of length l out of the set of all such binary stings {0, 1}l such that s has
strictly less than O(l) algorithmic entropy, i.e., K(s) = o(l), converges to 0 in probability as l→∞ [9]. We
formally state and prove this in the following lemma:

Lemma 4.4 For any l ∈ Z+ and any constant c ∈ [l] we have that there are 2l − 2l−c binary strings of
length l s ∈ {0, 1}l such that K(s) ≥ l − c [9].

It follows that the probability of uniformly randomly choosing s from {0, 1}l such that K(s) < l − c is at
most 1

2c ∀c ∈ [l].

PROOF OF 4.4:
Consider the set of binary strings of length l, {0, 1}l. Then for any constant c ∈ [l], there are exactly

|{0, 1}l−c| = 2l−c binary strings of length l − c, so there are only 2l−c ways to compress a string of length l
by c bits. Then there must be at least 2l− 2l−c binary strings of length l that do not compress by any more
than c bits, i.e, |{s ∈ {0, 1}l : K(s) ≥ l − c}| ≥ 2l − 2l−c.

Then if we chose s form {0, 1}l with uniform probability, ∀c ∈ [n] we have that K(s) ≥ l − c with

probability at least 2l−c(2c−1)
2l

= 2c−1
2c , and K(s) < l − c with probability at most 1

2c . QED

We can represent undirected graphs as binary strings length
(
n
2

)
), most of which have algorithmic entropy(

O(n
2)=O(n2)

)
by Lemma 4.4. Thus graphs of subrandom Kolmogorov complexity are quite rare for large n.

Our goal will be to demonstrate that the pseudorandom graphs under consideration nevertheless have
strictly less than quadratic Algorithmic entropy, making them candidates for lower-complexity replacements
for random graphs.
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5 Results

5.1 Cayley Graphs

As we established in the preliminary section, Cayley graphs have highly desirable algebraic structure that
imparts a variety of useful properties, such as an adjacency matrix with an eigenspectrum consisting of the
graph’s discrete Fourier components (Theorem with Theorem 3.1). In this section we use this property to
prove a variety of both dense and sparse Cayley graphs display spectral pseudorandomness characteristics
(and thus discrepancy pseudorandomness) [8].

Intuitively, we would expect Cayley graphs to have sub-random algorithmic complexity, as they are
determined entirely by the group (H, ∗) and the generating set U ⊂ H they are defined on, which should
not take at most a linear in n number of bits to encode (possibly with algorithmic overhead to keep track
of labels). We present a (to my knowledge) novel proof that this is indeed the case for Paley graphs on the
additive group (Zn,+) for any n ∈ Z+. This gives us a rich repository of easy to construct and work with
graphs with both proven pseudorandom properties and sub-random algorithmic entropy.

5.1.1 Paley Graphs

Consider the Cayley graph C((Zp,+), U) for p prime with generating set U = {u ∈ Zp−{0} : u ≡ a2mod(p) for
some a ∈ Z. Then, (u, v) ∈ E ⇐⇒ v = s+u where s is a nonzero quadratic residue in Zp. We will restrict p
such that p ≡ 1mod4, so that u square in Zp ⇐⇒ −u square in Zp and thus, v = s+u =⇒ u = −s+v and
s quadratic residue ⇐⇒ −s quadratic residue give us that (u, v) ∈ E ⇐⇒ (v, u) ∈ E (ie. G undirected).
Fig. 2 depicts the Paley graph C((Z13,+), S)

Figure 2: The Paley graph C((Z13,+), U = {a2 : a ∈ Z13})

Let C(Zp, U) be a Paley graph with U be the set of nonzero quadratic residues as above. Being a nonzero
quadratic residue is provably an equivalence relation on Zp−{0} with equivalence classes U and Zp−{0}−U ,

so |U | = |Zp−{0}|
2 = p−1

2 . Thus, there are p−1
2 distinct squares in Zp − {0}, so C(Zp, U) is p−1

2 - regular.
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Despite their clear symmetry, we claim Paley graphs are both pseudorandom and have an adjacency
matrix with high Shannon energy. The high Shannon entropy follows from the p−1

2 ≈
p
2 , observing that the

Shannon entropy of adjacency matrix is maximized in |V |
2 -regular graphs. The pseudorandomness of Paley

graphs is a well-known result that is outlined in the theorem below.

Theorem 5.1 Let C(Zp, U) be a Paley graph on the group (Zp,+) for prime p ≡ 1mod(4) . Let {λ1 ≥
λ2 ≥ ...,≥ λn} be the eigenspectrum of the adjacency matrix AG of G. Then, max(λ2, |λn|) = O(

√
p). Thus,

C(Zp, U) is pseudorandom 8.

PROOF OF 5.1:
Per Lemma 3.1 we know that the Fourier characters {ωk} are the eigenvectors corresponding to eigen-

values λk+1 = ˆχS(k) ∀k ∈ Zp, where χS : Zp → {0, 1} is the indicator function of S = {u ∈ Zp − {0} :
u ≡ a2mod(p). We can compute the Fourier components of χS using the Fourier transform χ̂S(k) =∑p−1

j=0 χS(j)ω(j)−k =
∑p−1

j=0 χS(j)e
−i2πkj

p . Thus,

λk+1 = ˆχS(k) =

p−1∑
j=0

χS(j)e
i2πkj

p =
∑
j∈S

1 ∗ e
i2πkj

p

Observe that for any l ∈ {1, ..., p−1
2 } we have (p − l)2mod(p) = (p2 − 2pl + l2)mod(p) ≡ l2mod(p), so

the sequence {l2mod(p)}p−1
l=0 = {0}, {l2mod(p)}

p−1
2

l=1 , {(p − l)2mod(p)}1
l= p−1

2

iterates through {0} and then S

twice. Thus,

∑
j∈S

e
i2πkj

p =

∑p−1
l=1 e

i2πkl2

p

2
=

(
∑p−1

l=0 e
i2πkl2

p )− 1

2

.

Using Gauss sums we see that p ≡ 1mod(4) =⇒
∑p−1

l=0 e
i2πkl2

p =
√

(p) ∀k ∈ Zp − {0}. Thus,

λk+1 = ˆχS(k) =

√
p− 1

2
∀k ∈ Zp − {0}

Thus λ = O(
√
p)

QED

Example: Bounding the Algorithmic Entropy of Paley Graphs

Theorem 5.2 (Algorithmic Entropy of Undirected Paley Graphs) Let {Pn = C(Zp, Un)) be the fam-
ily of Paley graphs on additive groups (Zp,+) with p prime and p ≡ 1mod4, with Un := {u2modp : u ∈ Zp}.
Then Paley graphs have lienar Lempel-Ziv complexity, LZ(C(Zp, Un)) = O(n). This gives us loglinear algo-
rithmic entropy, which is sub-random.

PROOF OF 5.2
Let A be the adjacency matrix of Pn = C(Zp, Un) with entries aij = 1 ⇐⇒ i− j ∈ S.
Observe that (i, j) ∈ E ⇐⇒ i = j + s for s ∈ S ⇐⇒ i + 1 = (j + 1) + s ⇐⇒ (i + 1, j + 1) ∈ E, so

aij = a(i+1)(j+1) ∀i, j ∈ Zp. Then, ∀i ∈ {0, ..., p− 1} the ith row vector Ai = (ai0, ..., ai(p−1)) of A satisfies

(ai0, ai1..., ai,(p−2), ai(p−1)) = (a(i+1)1a(i+2)1, ..., a(i+1)(p−1), a(i+1)0)

.
Therefore, Ai+1 is a one bit circular shift of Ai ∀i ∈ {0, ...p−2}. Thus, any row Ai of A for i ∈ {1, ..., p−1}

is reproducible from the first row of the adjacency matrix A0 = (a00, ...a0p−1) via i circular shifts. Specifically,
if we flatten the adjacency matrix A into a 1×

(
n
2

)
vector vA by concatenating

A0[1:p−1], A1[2:p−1], ...Ai[i+1,p−1], ..., Ap−2[p−1]

11



. The partitioning of the upper triangular part of the adjacency matrix of Pn into blocks/codewords is
illustrated in figure 3.

Then, applying the LZ76 algorithm to resultant vA with a dictionary and look ahead buffer of length
p− 1 each yields at most O(p) code words, as Ai[i+1,p−1] is a substring of Ai−1[i,p−1] for all i ∈ [p− 1]. Ai−1

has length p− i and so is contained entirely in its dictionary window by construction. Thus, each row vector
Ai encoded after A0 only adds a pointer to a substring of A0 to the encoding (illustrated using the red and
orange lines in fig. 3).

A0 can be encoded in exactly p bits, plus an additional constant number of bits for each row after. Then,
LZ(C(Zp, S)) = O(p)

Then, adding logarithmic overhead for storing the labels of the codewords themselves, this gives us
O(nlogn) algorithmic entropy- less than the O(n2) algorithmic entropy of the adjacency matrices of random
graphs.

QED

Figure 3: The LZ76 partitioning of the upper triangular adjacency matrix of the Paley graph C((Z13,+), U =
{a2 : a ∈ Z13}), with blocks highlighted in different colors and two example pointers to previous rows
illustrated in red and orange lines. NOTE: THIS WILL BE REPLACED WITH A NICE MACHINE
GENERATED FIGURE IN TIME

Now we use the argument in Theorem 5.2 to prove that any undirected Cayley graph on Zn for any
n ∈ Z+ has sub-random Kolmogorov complexity.

Theorem 5.3 (Algorithmic Entropy of Undirected Additive Cayley Graphs) Let {Cn} be a fam-
ily of undirected Cayley graphs on the additive group (Zn,+) with generating sets Un ⊂ Zn. Then the
adjacency matrices of {Cn} have O(n) Lempel- Ziv complexity. This gives us loglinear algorithmic entropy,
which is sub-random.

PROOF OF 5.3:
Let A denote the adjacency matrix of Cn. Observe that each row of the adjacency matrix, Ai corresponds

to the vertex i − 1 ∈ Zn, and so has Aij = 1 ⇐⇒ j − i ∈ Un. Thus, Ai is the indicator function χSi
of

the set Si := {s ∈ Zn : (i − 1) + s ∈ U}. In particular, A1 corresponds to 0, the identity element, and so
A1 = χU as U = Si := {s ∈ Zn : 0 + s = s ∈ U}. Using LZ76 we can encode A1 in at most n codewords,
often less.
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Because we’re working with undirected Cayley graphs we see that the adjacency matrix of Cn is symmetric
and we only need encode the upper triangular part, {A1, A2[2:n], ...Ai[i:n], ...An−1[(n− 1) : n], Ann

We see that ∀i ∈ [n− 1] consecutive row vectors Ai and Ai+1 are single bit circular permutations of each
other, as Ai+1 = χ{s∈[n]:i+s∈U} = χ{s∈[n]:(i−1)+(s+1)∈U}. All addition is taken modulo n so this gives us
Aij = χSi

(j − 1) = χSi+1
(j) = A(i+1)(j+1) modulo n as desired.

Then, ∀i ∈ [n−1], we have that A(i+1)[(i+1):n] = Ai[i:n−1], i.e, A(i+1)[(i+1):n] is a direct substring of Ai[i:n],
so applying the LZ76 algorithm encodes every row after the first row as its own codeword/block, resulting
in only a linear number of codewords and thus linear Lempel Ziv complexity.

Then, adding logarithmic overhead for storing the labels of the codewords themselves, this gives us
O(nlogn) algorithmic entropy- less than the O(n2) algorithmic entropy of the adjacency matrices of random
graphs.

QED

Empirical Lempel Ziv Complexity Validation Our theoretical calculation for the algorithmic entropy
of undirected Cayley graphs on additive groups is validated by empirical computation of the Lempel-Ziv
compression on both Paley graphs and cycle graphs using the Lempel-Siv Markov chain algorithm (LZMA).
LZMA is an optimized version of the LZ77 algorithm, based on the LZ76 algorithm, that achieves ”higher
compression rate, faster decompression, and lower memory requirements” 13.

Recall from remark 3.2 that cycle are the sparsest possible undirected, connected Cayley graphs on
(Zp,+) for p prime up to isomorphism. Then comparing Paley graphs, which are dense, to cycle graphs
captures the breadth of undirected Cayley graph connectivity.

Validation was performed using code produced in python for the TRIPODS 2023 Summer Research
Program using the numpy, lzma, and networkX packages, cited in the bibliography at [14]. Figures 4 and
5 depict the compression size vs original number of graph nodes curve for cycle graphs and Paley graphs
respectively. For the sake of comparison, both graphs were evaluated for prime nodes congruent 1mod4.

Figure 4: The LZMA compression size versus number of nodes in a cycle graph
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Figure 5: The LZMA compression size versus number of nodes in a Paley graph

Both curves are convex, consistent with our loglinear bound we proved for algorithmic entropy in Theorem
5.3. Note however the relatively flat (and indeed, sub-linear) curve of the cycle graph compression compared
to the Paley graph compression.

6 Current Work

Our ongoing work comprises two directions: first, we are working on generalizing Cayley graphs results to
expander graphs from constructed from Cayley graphs using the Zig-Zag graph product. Such as such graphs
have pseudorandom spectral properties, and are (unlike many of the Cayley graphs we looked at, such as
Paley graphs) quite sparse. This makes them good reservoir candidates in Echo State Networks, and also
facilitates the networks having low algorithmic entropy.

The second is to apply our pseudorandom reservoir candidates to echo state networks, which traditionally
use binomial graph reservoirs to achieve a nonlinear embedding of an input time series in a higher dimensional
space in order to forecast the time series [15]. We hope to use pseudorandom graphs to ”save on bits of
randomness” expended in the construction of reservoirs for echo state networks. As part of this endeavour,
we are studying the memory capacity of echo state networks build using our pseudorandom graphs. We then
plan to perform empirical tests on the ability of simple echo state networks with pseudorandom reservoirs
to forecast the Mackey-Glass time series, single variable chaotic time series. Our end goal is to identify a
pseudorandom graph with low algorithmic entropy that outperforms a binomial random graph of the same
edge density in the chaotic time series forecasting task.
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[10] Amigó, José M., Janusz Szczepański, Eligiusz Wajnryb, and Maria V. Sanchez-Vives. 2004. “Estimating
the Entropy Rate of Spike Trains via Lempel-Ziv Complexity.” Neural Computation 16 (4): 717–36.
https://doi.org/10.1162/089976604322860677.

[11] Chung, Fan, Ronald L. Graham, and R. Wilson. 1989. “Quasi-random Graphs.” Combinatorica 9 (4):
345–62. https://doi.org/10.1007/bf02125347.

[12] Conlon, David, Jacob Fox, and Yufei Zhao. 2014. “Extremal Results in Sparse Pseu-
dorandom Graphs.” Advances in Mathematics (New York. 1965) 256 (May): 206–90.
https://doi.org/10.1016/j.aim.2013.12.004.

[13] Horita, Augusto Y., Ricardo Bonna, Denis S. Loubach, Ingo Sander, and Ingemar Söderquist. 2019.
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