ON SPECTRAL PROPERTIES OF SIERPINSKI GASKET

SANGWU LEE

Abstract

In this paper, we shall explore the p-adic convergence of number of closed prime walks on growing fractal graphs. We will briefly review 3adic convergence of closed prime walks on the Sierpinski gasket proven by Munch [1] and generalise the result to n-flakes. Furthermore, we also explore the spectral properties of the Sierpinski gasket. In particular, we present an explicit recursive construction of the adjacency eigenvectors of the Sierpinski gasket.

1. Introduction

Fractals are a fascinating subject in mathematics. Fractal and recursive structures serve as a source of research topics in various fields of mathematics. Selfsimilar strctures such as Cantor sets, Koch snowflakes, and Merger sponge serve as counter examples in topology and analysis. Furthermore, space-filling curves such as Peano curve and Hilbert curve are a special class of fractal curves which not only have interesting properites, but also has practical applications in geolocation systems. In this paper, we shall study a well-known fractal structure called the Sierpinski gasket in context of graph theory.

In 2008, Munch [1] has proven that a special class of walks called closed prime walks on the Sierpinski gasket converges 3 -adically. In the first section of this paper, we shall review Munch's proof and generalise the result to a broader class of fractal graphs called n-flakes. In the second section, we shall explore the eigenvalues and eigenvectors of the adjacency matrix of the Sierpinski gasket. We shall empirically observe that the multiplicities of the eigenvalues follows a clear recursive pattern. Furthermore, we will present an explicit recursive construction of the adjacency eigenvectors which explains the observed pattern.

2. BACKGROUND

Let us first review the basic definitions on simple graph theory and closed prime walks. An undirected graph is a set of vertices and edges (V, E) where $E \subset$ $\{\{u, v\}: u, v \in V\}$. A walk is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{n}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for all i. We say that a walk $v_{0}, v_{1} \ldots, v_{n}$ is closed if it starts and ends at the same vertex. i.e. $v_{0}=v_{n}$. Given two walks $P=v_{0}, v_{1}, \ldots, v_{n}$ and $Q=w_{0}, w_{1}, \ldots, w_{m}$, one can define the concatenation of P and Q as $P Q=$ $v_{0}, v_{1}, \ldots, v_{n-1}, w_{0}, w_{1}, w_{2}, \ldots, w_{m}$, assuming that $v_{n}=w_{0}$. For closed walk P, we define P^{k} as the concatenation of k copies of P. A path is a walk with no repeated vertices.

A graph is connected if there is a walk between any two vertices. In this paper, we will only consider finite, connected, undirected graphs. We will focus on a special
class of walks called closed prime walks on these graphs. Before we define closed prime walks, we need to define a few more terms.

Definition 2.1. Let $G=(V, E)$ be a graph. A walk $v_{0}, v_{1}, \ldots, v_{n}$ has a backtrack if there exists consecutive vertices $v_{i} \neq v_{i+1} \neq v_{i+2}$ such that $v_{i}=v_{i+2}$.

Definition 2.2. Let $G=(V, E)$ be a graph. A walk $v_{0}, v_{1}, \ldots, v_{n}$ has a tail if $\left(v_{0}, v_{1}\right)=\left(v_{n}, v_{n-1}\right)$.

For instance, the following are examples of walks with backtracks and tails.

Figure 1. Example of walks with backtracks and tails.

We say that a walk is prime if it has no backtracks or tails. One can easily define an equivalence relation on the set of closed paths by saying that two closed paths are equivalent if they are cyclic permutations of each other.

Definition 2.3. Let $G=(V, E)$ be a graph. Let $P=\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ be a closed path on G. Then, the equivalence class of P, denoted by $[P]$ is the set of all cyclic permutations of P. That is to say

$$
[P]=\left\{\left(v_{0}, v_{1}, \ldots, v_{n-1}, v_{n}\right),\left(v_{1}, v_{2}, \ldots, v_{n}, v_{0}\right), \ldots\left(v_{n}, v_{0}, \ldots, v_{n-2}, v_{n-1}\right)\right\}
$$

A keen reader might have noticed that counting the number of equivalence classes of closed prime cycles under this definition allows for infinite number. For instance, one can define a closed path C on a K_{3} which goes around the triangle once. Our definition allows for $[C],\left[C^{2}\right],\left[C^{3}\right], \ldots$ to be distinct equivalence classes. Hence, this observation motivates us to redefine the equivalence relation on the set of prime closed walks.

Definition 2.4. Two prime closed walks P and P^{\prime} are equivalent if
(1) P and P^{\prime} are cyclic permutations of each other.
(2) there exists a prime closed walk Q such that P and P^{\prime} are powers of Q.

An example can be worth a thousand words. Let us consider the prime closed walks on K_{3}.

Figure 2. Example of prime closed walks on K_{3}

Given an arbitary starting point on K_{3}, the walk is forced to go around the triangle in either clockwise or anticlockwise direction. Let us denote the clockwise walk as P and anticlockwise walk as P^{-1}. Combining P and P^{-1} will yield a backtrack and any powers of P and P^{-1} will be equivalent to P and P^{-1}. Hence, there are only two equivalence classes of prime closed walks on K_{3}.

In fact, there exists a concrete formula for computing the number of prime closed walks on a graph as a generating function. This formulation is called the Ihara zeta function. The formula was first given by Bass [3].

Theorem 2.5. Let $G=(V, E)$ be a graph. Let A be the adjacency matrix of G. Ihara zeta function of G is defined as the following formal power series in variable u.

$$
\zeta_{G}(u)=\prod_{[P]} \frac{1}{1-u^{L([P])}}
$$

where $[P]$ is the set of all equivalence classes of prime closed walks on G and $L([P])$ is the length of the shortest closed walk in $[P]$. Then, the coefficients of $\zeta_{G}(u)$ are given by Bass's formula

$$
\zeta_{G}(u)=\frac{1}{\left(1-u^{2}\right)^{|E|-|V|} \operatorname{det}\left(I-u A+Q u^{2}\right)}
$$

where I is the identity matrix, Q is the diagonal matrix with $Q_{i i}=\operatorname{deg}\left(v_{i}\right)-1$.
Let's use Bass's formula to compute the number of classes of prime closed walks on K_{3}. If the formula is correct, we should get exactly two equivalence classes of length 3. The matrix A and Q are given by

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \quad Q=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The term $\operatorname{det}\left(I-u A+Q u^{2}\right)$ expands to

$$
\begin{aligned}
\operatorname{det}\left(I-u A+Q u^{2}\right) & =\operatorname{det}\left(\begin{array}{ccc}
1+u^{2} & -u & -u \\
-u & 1+u^{2} & -u \\
-u & -u & 1+u^{2}
\end{array}\right) \\
& =u^{6}-2 u^{3}+1
\end{aligned}
$$

Since there are exactly 3 vertices and 3 edges, $\left(1-u^{2}\right)^{|E|-|V|}=\left(1-u^{2}\right)^{0}=1$. Thus, the Bass's formula yields the following result.

$$
\begin{aligned}
\zeta_{G}(u) & =\frac{1}{\left(1-u^{2}\right)^{|E|-|V|} \operatorname{det}\left(I-u A+Q u^{2}\right)} \\
& =\frac{1}{u^{6}-2 u^{3}+1} \\
& =\frac{1}{\left(u^{3}-1\right)^{2}} \\
& =\frac{1}{\left(1-u^{3}\right)^{2}} \\
& =\frac{1}{1-u^{L([P])}} \cdot \frac{1}{1-u^{L\left(\left[P^{-1}\right]\right)}}
\end{aligned}
$$

Therefore, the result from Bass's formula agrees with the number of prime closed walks on K_{3} we computed earlier.

While we will be taking a more direct approach to counting closed prime walks, it is worth noting that works such as Terras [2] takes a more complex analytic approach. In particular, due to the reciprocal nature of the Ihara zeta function, it's natural to focus on poles of the Ihara zeta functions on various graphs.

Previously, Munch [1] has proven that the coefficients of Ihara zeta function of the Sierpinski gasket converges 3 -adically. In this paper, we shall generalise this result to other fractal graphs and explore the p-adic convergence of closed prime walks on these graphs. Before diving into the details, let us first review the basic definitions of p-adic numbers and review Munch's proof on the Sierpinski gasket.

3. P-ADIC CONVERGENCE ON THE Sierpinski Gasket

A Sierpinski gasket is a fractal graph which is recursively constructed.
(1) Start with a triangle S_{0}.
(2) Make three copies of S_{i} and glue the corner vertices to form S_{i+1}.

The following is an example of first three iterations of Sierpinski gasket.

\mathbf{S}_{0}

S_{1}

S_{2}

Figure 3. Sierpinski gasket

Intuitively, since the Sierpinski gasket roughly grows in size by a factor of 3 , it's natural to expect that the number of closed prime walks of a fixed length L grows roughly by a factor of 3 . In fact, this guess would be trivially true if Sierpinski gasket did not involve any gluing of vertices. As we will see, the structure and strength of the gluing will be of importance in this paper. In regular notion of convergence, the number of closed prime walks would diverge to infinity as the graph grows. For this reason, we rely on p-adic convergence.

Definition 3.1. Let p be a prime number. We define the p-adic norm on \mathbb{Q} as follows. For any nonzero $x \in \mathbb{Q}$, let $x=p^{k} \frac{a}{b}$ where $p \nmid a$ and $p \nmid b$. Then, we define $|x|_{p}=p^{-k}$.

Example 3.2. For instance, the 3 -adic and 5 -adic norm of $\frac{24}{5}$ are

$$
\begin{aligned}
& \left|\frac{24}{5}\right|_{3}=3^{-1}=\frac{1}{3} \\
& \left|\frac{24}{5}\right|_{5}=5^{-(-1)}=5
\end{aligned}
$$

Given this nortion of p-adic norm, we say that a sequence of rational numbers $\left\{x_{n}\right\}$ converges to x p-adically if $\left|x_{n}-x\right|_{p} \rightarrow 0$ as $n \rightarrow \infty$.

Example 3.3. A divergent geometric series $\sum_{n=0}^{\infty} 3^{n}$ under the usual norm converges 3 -adically to $-\frac{1}{2}$.

$$
\begin{aligned}
\left|\sum_{n=0}^{\infty} 3^{n}-\left(-\frac{1}{2}\right)\right|_{3} & =\lim _{N \rightarrow \infty}\left|\sum_{n=0}^{N} 3^{n}+\frac{1}{2}\right|_{3} \\
& =\lim _{N \rightarrow \infty}\left|\frac{3^{N+1}-1}{2}+\frac{1}{2}\right|_{3} \\
& =\lim _{N \rightarrow \infty}\left|\frac{3^{N+1}}{2}\right|_{3} \\
& =\lim _{N \rightarrow \infty} \frac{1}{3^{N+1}}=0
\end{aligned}
$$

Lemma 3.4. Let S_{i} be the Sierpinski gasket at $i^{\text {th }}$ stage. Then, the length of a shortest walk from one gluing vertex to another gluing vertex is 2^{i-1}.

Proof. Let us prove this by induction. For $i=1$, the answer is trivially 1. Suppose that the statement holds for $i=k$. The $k+1^{t h}$ stage of Sierpinski gasket can be constructed by placing an upside down triangle within each triangle of S_{k}. Since the upside down triangle bisects each side of the triangles in S_{k}, the length of the shortest walk from one gluing vertex to another gluing vertex is $2 \cdot 2^{k-1}=2^{k}$.

Lemma 3.5. Given a fixed length L, let N_{n}^{L} be the number of closed prime walks of length L on S_{i}. Then, there exists C such that if $i>C$, then the following equation holds for some K independent of i.

$$
N_{i}^{L}=3 N_{i-1}^{L}+3 K
$$

Proof. Given the Sierpinski gasket at $i^{\text {th }}$ stage S_{i}, the subsequent stage S_{i+1} contains three copies of S_{i}. There are three types of closed prime walks on S_{i+1}.
(1) Closed prime walks entirely contained in one copy of S_{i}.
(2) Closed prime walks contained in two copies of S_{i}.
(3) Closed prime walks contained in three copies of S_{i}.

Figure 4. Three types of closed prime walks on S_{4} going through one (green), two (blue), and three (red) copies of S_{3} respectively.

By construction, there are $3 N_{i}^{L}$ closed prime walks of type 1 . We argue that for i large enough, the number of closed prime walks of type 2 is a constant independent of i. Furthemore, the number of closed prime walks of type 3 is 0 .

Let us prove the latter claim first. For a closed prime walk to be contained in three copies of S_{i}, it must satisfy the following conditions.
(1) The walk starts at S_{i}, walks to nearest gluing vertex.
(2) The walk walks across S_{i} to the next gluing vertex.
(3) The walk walks into the third copy of S_{i}.

Figure 5. A closed prime walk of type 3 on S_{i+1}. The walk starts at S_{i}, walks to nearest gluing vertex, and walks across S_{i} which requires 2^{i-1} steps.

By Lemma 3.4, for $i>\log _{2}(L)+1$, the number of closed prime walks of type 3 is 0 . It remains to show that the number of closed prime walks of type 2 is a constant independent of i. There are two classes of vertices in S_{i+1}.

Let P be a closed prime walk of type 2 . By construction, a closed prime walk of type 2 starts at some copy of S_{i}, walks to a neighboring copy of S_{i}, and walks back to the original copy of S_{i}. Therefore, $P=W_{1} \cdots W_{k}$ where W_{i} is a closed prime walk entirely within a copy of S_{i} with $k \geq 2$. As $k \geq 2$ and $\sum_{i} L\left(W_{i}\right)=L$, we have that $L\left(W_{i}\right)<L$ for all i. Hence, for $i>\log _{2}(L)+1$, we have that

$$
L\left(W_{i}\right)<L<2^{i-1}
$$

Therefore, W_{i} must be contained entirely within $S_{0}, S_{1}, \ldots, S_{\left\lceil\log _{2}(L)+1\right\rceil}$. It follows that the set of closed prime walks of length L on S_{i+1} for $i>\log _{2}(L)+1$ is a set of all closed prime walk P such that
(1) $P=W_{1} \cdots W_{k}$
(2) W_{i} is a closed prime walk of length $L\left(W_{i}\right)$ on $S_{0}, \cdots, S_{\left\lceil\log _{2}(L)+1\right\rceil}$
(3) $L=\sum_{i} L\left(W_{i}\right)$

The cardinality of this set is clearly independent of i. Hence, the number of closed prime walks of type 2 is a constant independent of i.

Theorem 3.6. Let N_{n}^{L} be the number of closed prime walks of length L on S_{n}. Then, N_{n}^{L} converges 3-adically as $n \rightarrow \infty$.

Proof. Let $C=\left\lceil\log _{2}(L)+1\right\rceil$. By the previous lemma, for $n>C$, we have the following result.

$$
\begin{aligned}
N_{n}^{L} & =3 N_{n-1}^{L}+3 K \\
& =3\left(3 N_{n-2}^{L}+3 K\right)+3 K=3^{2} N_{n-2}^{L}+3^{2} K+3 K \\
& =3^{2}\left(3 N_{n-3}^{L}+3 K\right)+3^{2} K+3 K=3^{3} N_{n-3}^{L}+3^{3} K+3^{2} K+3 K \\
& \vdots \\
& =3^{n-C} N_{C}^{L}+3^{n-C} K+3^{n-C-1} K+\cdots+3 K \\
& =3^{n-C} N_{C}^{L}+3 K \cdot \frac{3^{n-C}-1}{2} \\
& =3^{n-C}\left(\frac{3}{2} K+N_{C}^{L}\right)-\frac{3}{2} K
\end{aligned}
$$

Hence, the 3 -adic norm between N_{n}^{L} and $-\frac{3}{2} K$ is $\left|3^{n-C}\left(\frac{3}{2} K+N_{C}^{L}\right)\right|_{3} \leq \frac{1}{3^{n-C}}$. Therefore, N_{n}^{L} converges 3 -adically to $-\frac{3}{2} K$ as $n \rightarrow \infty$.

Corollary 3.7. All coefficients of the inverse of Ihara zeta function of the Sierpinski gasket converges 3-adically.

4. P-ADIC CONVERGENCE ON N-FLAKES

The key argument of Munch's result can be distilled into two key observations.
(1) As the graph grows, only finitely many vertices can walk to another copy of the graph with fixed length L.
(2) The number of closed prime walks that contains a vertex in a neighboring copy grows by a factor of $p=3$.
These two observations allow us to easily extend the result to other fractal graph, namely n -flakes.

Definition 4.1. A n-flake is a fractal graph which is recursively constructed.
(1) Start with a regular n-gon S_{0}.
(2) Make n copies of S_{i} and place it around the n-gon to form S_{i+1}.

The following is an first three iterations of 5-flake.

Figure 6. The first three iteration of 5-flake. Each iteration is constructed by placing 5 copies of the previous iteration around the pentagon.

The argument for n-flakes natural generalisation of the argument for Sierpinski gasket as you will see below.

Lemma 4.2. Given an n-flake, at $i^{\text {th }}$ iteration, the minimum distance from a vertex from S_{0} to another vertex to S_{0} is at least 2^{i-1}.

Proof. Since the $i+1^{t h}$ iteration is constructed by placing n copies of S_{i} around the n-gon, a side of an n-gon is broken into $2+2 k$ segments where $k \geq 0$. Hence, for each iteration, the minimum distance from a vertex from S_{0} to another vertex to S_{0} at least doubles.

Theorem 4.3. Given an n-flake, the number of closed prime walks of length L converges p-adically as $i \rightarrow \infty$ for $p \mid n$.

Proof. The proof is almost identical to the proof for Sierpinski gasket. Let $C=$ $\left\lceil\log _{2}(L)+1\right\rceil$. By the same argument in the proof of Lemma 3.5, we have the following result for $i \geq C$.

$$
\begin{aligned}
N_{i}^{L} & =n N_{i-1}^{L}+n K \\
& =n\left(n N_{i-2}^{L}+n K\right)+n K=n^{2} N_{i-2}^{L}+n^{2} K+n K \\
& =n^{2}\left(n N_{i-n}^{L}+n K\right)+n^{2} K+n K=n^{3} N_{i-n}^{L}+n^{3} K+n^{2} K+n K
\end{aligned}
$$

$$
=n^{i-C} N_{C}^{L}+n^{i-C} K+n^{i-C-1} K+\cdots+n K
$$

$$
=n^{i-C} N_{C}^{L}+n K \cdot \frac{n^{i-C}-1}{n-1}
$$

$$
=n^{i-C}\left(\frac{n}{n-1} K+N_{C}^{L}\right)-\frac{n K}{(n-1) K}
$$

Hence, for $p \mid n$, the p-adic norm between N_{i}^{L} and $-\frac{n}{n-1} K$ is $\left\lvert\, n^{i-C}\left(\frac{n}{n-1} K+\right.\right.$ $\left.N_{C}^{L}\right)\left.\right|_{p} \leq \frac{1}{p^{i-C}}$. Therefore, N_{i}^{L} converges p-adically to $-\frac{n}{n-1} K$ as $i \rightarrow \infty$.

As demonstrated, this argument is easily generalisable to other fractal graphs.

5. Spectral properties of fractal graphs

In this section, we shall explore both empirical and theoretical findings in the spectral properties of Sierpinski gasket. Analyzing eigenvalues and eigenvectors of the adjacency matrix and Laplacian matrix are of our paticular interest. Before diving into the details, let us first review major definitions and results we will use.

Theorem 5.1. Spectral theorem Let A be a Hermitian matrix. Then, there exists an orthonormal basis of eigenvectors of A.

Since the adjacency matrix of a graph is real and symmetric, the spectral theorem implies the following result.

Corollary 5.2. An adjacency matrix of a graph has an orthonormal basis of eigenvectors. In other words, the adjacency matrix is diagonalisable and has real eigenvalues.

The spectral theorem rules out the possibility of complex eigenvalues as well as non-diagonalisable cases which makes the study of spectral properties of graphs much more tractable. Another crucial result in spectral graph theory is the following.
Theorem 5.3. Perron-Frobeinus theorem Let A be a real positive matrix. Then, there exists an unique largest eigenvalue λ of A.

The largest eigenvalue of A is called the spectral radius of A and is denoted by $\rho(A)$. One may ask why the spectral radius is of particular interest. Many models that describe the real world (including graphs) can be often described as a linear discrete ODE of the form $x_{t+1}=A x_{t}$ where x_{t} is a vector representing the state of the system at time t. A common question is to ask given an initial state x_{0}, whether the system will converge to a stable state or diverge. In the context of graphs, a "state" of the system can be thought of as a distribution of some quantity on the vertices of the graph. The linear discrete ODE described by $x_{t+1}=A x_{t}$ changes the value on each vertex by summation of the values of its neighbors. That is to say

$$
x_{t+1}=A x_{t} \Longrightarrow x_{t+1}(v)=\sum_{u \in N(v)} A_{v u} x_{t}(u)
$$

where $N(v)$ is the set of neighbors of vertex v.

Figure 7. An example of a state update rule on a graph. The value on each vertex is updated by the sum of the values of its neighbors.

This view will be crucial in our analysis of how eigenvectors behave on the Sierpinski gasket. Combined with spectral theorem, the Perron-Frobenius theorem allows us to answer this question. In the context of our question, the number of closed walks of length L is precisely given by $\operatorname{tr}\left(A^{L}\right)$. Therefore, the spectral radius provides a bound for how fast the number of closed walks grows as the graph grows. Namely, the following results are particularly useful.

Theorem 5.4. Let A be the adjacency matrix of a graph. Then, the absolute value of the eigenvalues of A are bounded by the maximum degree of the graph.

Proof. Let λ be an eigenvalue of A and x be the corresponding eigenvector. Then, we have

$$
|\lambda|\|x\|=\|A x\|=\left\|\sum_{u \in V} A_{v u} x_{u}\right\| \leq \sum_{u \in V}\left|A_{v u}\left\|x_{u} \mid \leq \operatorname{deg}(v)\right\| x \|\right.
$$

Therefore, $|\lambda| \leq \operatorname{deg}(v)$.
In the case of Simplepinski gasket, the degrees of the vertices are either 2 or 4. Therefore, the spectral radius of the adjacency matrix is always bounded by 4 . Hence, we obtain the following result.

Corollary 5.5. The number of closed prime walks of length L on the Sierpinski gasket is bounded by 4^{L}.

Proof. Let A be the adjacency matrix of the Sierpinski gasket. Then, the number of closed walks of length L is given by $\operatorname{tr}\left(A^{L}\right)$. By spectral theorem, $A=U D U^{T}$ where U is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues. Therefore, $\operatorname{tr}\left(A^{L}\right)=\operatorname{tr}\left(U D^{L} U^{T}\right)=\operatorname{tr}\left(D^{L}\right) \leq 4^{L}$. By definition, the number of closed prime walks is less than the number of closed walks. We have the desired result.

Definition 5.6. The Laplacian matrix of a graph $G=(V, E)$ is defined as $L=D-A$ where A is the adjacency matrix and D is the degree matrix.

The eigenvalue of the Laplacian matrix reveals many information about the graph such as the number of connected components and the number of spanning trees. It's also useful for our empricial analysis because of the following result.

Lemma 5.7. Let $G=(V, E)$ be a graph. Let L be the Laplacian matrix of G. Then, the eigenvalues of L are non-negative.

This result makes numerical analysis easier since the signs of the eigenvalues are guranteed to be positive, making comparisons and applying log transformations much easier. Now, we shall present several empirical findings on the spectral properties of Sierpinski gasket. All computations were done using python package networkx. The code used for the computation can be found in the appendix.
5.1. On spectral distribution of Sierpinski gasket. A well-known fact in spectral graph theory is that the distribution of adjacency and laplacian eigenvalues of a graph converges to a limiting distribution as the size of the graph grows under certain conditions. More precisely, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of a ma$\operatorname{trix} A$. We define the empirical spectral distribution of A as the probability measure μ_{A} defined by

$$
\mu_{A}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}}
$$

where $\delta_{\lambda_{i}}$ is the Dirac measure at λ_{i}. As an example, the following are empirical spectral distributions of the Laplacian matrix of a cycle graph and a grid graph.

Figure 8. Empirical spectral distribution of Laplacian matrix of a cycle graph and a grid graph. The histogram is binned into 42 buckets for visualisation.

As figure 8 demonstrates, the empirical spectral distribution for cycle graph seems to converge to a Laplace distribution and that of cycle graph seems to converge to a beta distribution. A conjecture for the Sierpinski gasket is that the empirical spectral distribution will have either an exponential or a distribution with repeating shapes. However, contrary to our expectation, the computed empirical spectral distribution of the Sierpinski gasket does not seem to have any discernible pattern as shown below.

Figure 9. Empirical spectral distribution of Laplacian matrix of the Sierpinski gasket.

Similarly, applying log transformation to the eigenvalues does not seem to reveal any pattern.

Figure 10. Empirical spectral distribution of Laplacian matrix of the Sierpinski gasket after log (base 3) transformation.

The distribution certainly does not display a "smooth" pattern as we found it for the case of cycle and grid graphs. It's clear that the distribution display a sparse, irregular pattern which seems to converge. While a clear pattern is not visible, a more detailed analysis of the mulitplicity of the eigenvalues reveals a more interesting result.

S_{3}	S_{4}		S_{5}		S_{6}		S_{7}		S_{8}	
$1{ }^{1} 4$	1	7	1	24	1	47	1	90	1	180
24	2	8	2	31	2	62	2	121	2	243
31	3	1	3	5	3	10	3	23	3	45
	4	1	4	4	4	8	4	16	4	32
	12	1	12	2	12	4	12	8	12	16
			13	2	13	4	13	8	13	16
			39	1	39	2	39	4	39	8
			40	1	40	2	40	4	40	8
			120	1	120	1	120	2	120	4
					121	1	121	2	121	4
					363	1	363	1	363	2
							364	1	364	2
							1092	1	1092	1
									1093	1
									3279	1

Table 1. Multiplicity of eigenvalues of the adjacency matrix of the Sierpinski gasket. The left column is the mulitplicity and the right column is the number of eigenvalues with that multiplicity. For example, the second row for table S_{5} means that there were 31 eigenvalues which had mulitplicity 2.
5.2. On spectral multiplicity of Sierpinski gasket. Table 1 shows the mulitplicity of the eigenvalues of the adjacency matrix of the Sierpinski gasket. From the table, we observe three clear patterns. Let $m_{i}^{(n)}$ be the multiplicity of i-th adjacency eigenvalue of S_{n} (in ascending order). Let $c_{k}^{(n)}$ be the number of adjacency eigenvalues of S_{n} with multiplicity k. Then, we observe the following patterns.
(1) $c_{i}^{(n)} \leq c_{i}^{(n+1)}$ for all i and n.
(2) $m_{i}^{(n)}=3 m_{i-1}^{(n)}$ or $m_{i}^{(n)}=m_{i}^{(n-1)}+1$ for all i.
(3) For large enough S_{n}, tail of $c_{i}^{(n)}$ is $1,1,1,2,2,4,4,8,8 \cdots$.

The first pattern is reasonable to expect since the Sierpinski gasket is constructed recursively. The second pattern is also expected since S_{i} is constructed by gluing three copies of S_{i-1}. What's interesting is that the multiplicities increase in an alternating pattern. For instance, in table S_{8}, we observe that the progression is $1,2 \cdots 13,39,40,120,121,363,364,1092,1093,3279$. It either triples or increases by one in an alternating fashion. The last pattern also displays a clear converging pattern as the size of S_{n} grows, which ties back to the idea of our proof for p-adic convergence of number of prime paths.
5.3. On properties of leading eigenvector on Sierpinski gasket. In spectral graph theory, the eigenvalues receive much attention, and the eigenvectors are often overlooked. Motivated by Perron-Frobenius theorem, a reasonable eigenvector to start our analysis is the leading eigenvector of the adjacency matrix.

Figure 11. Distribution of values of leading eigenvector on first 3 iterations of Sierpinski gasket.

In figure 11, we plot the values of leading eigenvector on the Sierpinski gasket. Since each value of an eigenvector corresponds to a vertex, we can visualise the eigenvector as a distribution of values on the vertices. To do this, we use numpy's eigh function to compute orthonormal eigenvectors. After overlaying the eigenvector values on the vertices, in all iterations, we observe a rotational symmetry of values of the leading eigenvector. Furthermore, in odd iterations, the values are maximal gluing vertices and minimal at the corners of the triangle. In even iterations, the pattern manifests in the opposite way. The symmetry of the leading eigenvector has a clear theoretical explanation.

Theorem 5.8. The eigenvectors of multiplicity 1 of the adjacency matrix of the Sierpinski gasket are symmetric with respect to Dihedral group of order 6. Simply put, the eigenvectors with multiplicity 1 are invariant under rotation and reflection.

Proof. Suppose v is an eigenvector of the adjacency matrix of the Sierpinski gasket. Let $G=\left\{I, R, R^{2}, F, F R, F R^{2}\right\}$ be the dihedral group of order 6 where I is the identity, R is a permutation matrix which rotates the triangle by $\frac{2 \pi}{3}$, and F is a permutation matrix which reflects the triangle along the vertical axis. Since v has mulitplicity one, it follows that $R \cdot v=c_{R} v$ for some constant c_{R}. Therefore, $R^{3} v=v=c_{R}^{3} v$ which implies $c_{R}=1$. Therefore, the values of eigenvector on left, right, and top corners of the Sierpinski gasket must be the same. Similarly, $F^{2} v=v=c_{F}^{2} v$ which implies $c_{F}= \pm 1$. Therefore, the values of eigenvector must be symmetric with respect to the reflective axis (upto a sign).

Remark 5.9. While the proof is only done in context of the Sierpinski gasket and Dihedral group of order 6 , one should see that this argument easily extends to other graphs with symmetries. In particular, the core idea of the proof came from the fact that there exists an element in the symmetry group of odd order which allowed us to conclude that the eigenvector is symmetric.

Combined with Perron-Frobenius theorem, we obtain the following corollary which explains the empirical observation in figure 11.
Corollary 5.10. The leading eigenvector of the adjacency matrix of the Sierpinski gasket is symmetric with respect to D_{6}.
5.4. Alternating recurrence relations on multiplicity of eigenvalues. In previous sections, we observed a number of interesting patterns in the multiplicity of eigenvalues of the adjacency matrix of the Sierpinski gasket. In this section, we shall offer an conjectures on where these patterns come.

S_{4}		S_{5}		S_{6}		S_{7}	
-2	39	-2	120	-2	363	-2	1092
-1	13	-1	40	-1	121	-1	364
1	12	1	39	1	120	1	363
2.618	4	2.618	13	2.618	40	2.618	121
0.382	4	0.382	13	0.382	40	0.382	121
3.303	4	3.303	12	3.303	39	3.303	120
-0.302	4	-0.302	12	-0.302	39	-0.302	120

TABLE 2. Multiplicity of eigenvalues of the adjacency matrix, sorted from highest to lowest. Eigenvalues were rounded to 3 decimal places.

The table above shows how multiplicity of the eigenvalues change as the size of the Sierpinski gasket grows. We see that there are two recurrence patterns $R_{1}: x_{n+1}=3\left(x_{n}+1\right)$ and $R_{2}: x_{n+1}=3 x_{n}+1$. For example, the multiplicity of -2 follow pattern R_{1} with progression $39,120,363,1092$, whereas the multiplicity of -1 follow pattern R_{2} with progression $13,40,121,364$. What's interesting is that the recurrence rule alternates between R_{1} and R_{2} in powers of 2 . We see that eigenvalue -2 follows $R_{1},-1$ follows $R_{2}, 1$ follows $R_{1}, 2.618$ follows $R_{2}, 0.382$ follows $R_{2}, 3.303$ follows R_{1}, and -0.302 follows R_{1}. Table 3 shows the recurrence pattern of eigenvalues for S_{6}.

Eigenvalue	-2	-1	1	2.618	0.382	3.303	-0.302
Multiplicity	363	121	120	40	40	39	39
Recurrence	R_{1}	R_{2}	R_{1}	R_{2}	R_{2}	R_{1}	R_{1}

Eigenvalue	3.706	3.122	-0.706	-0.122	3.856	2.895	-0.856	0.104
Multiplicity	13	13	13	13	12	12	12	12
Recurrence	R_{2}	R_{2}	R_{2}	R_{2}	R_{1}	R_{1}	R_{1}	R_{1}

Table 3. Reccurence pattern of eigenvalues for S_{6}
Assuming this reccurence persists for all S_{i}, this observation explains patterns 1,2 , and 3 we observed in section 5.2. The question is where are these reccurence patterns coming from.

Theorem 5.11. Let $u_{1}, u_{2}, \cdots, u_{k}$ be the eigenvectors of the adjacency matrix of S_{n} with eigenvalue λ, whose eigenvalues vanish on the corner vertices. Then, there are at least $3 k$ eigenvectors of the adjacency matrix of S_{n+1} with eigenvalue λ.

Due to the recursive nature of the Sierpinski gasket, the reader's first intuition might be that one can simply copy the eigenvectors of S_{n-1} and glue them together to form the eigenvectors of S_{n}. However, for this to work, the eigenvectors of S_{n-1}
must vanish on the corners. Otherwise, in the subsequent iteration, the neighboring vertices of the corners will receive nonzero values and the previous eigenvectors will no longer work as eigenvectors of S_{n}.

Figure 12. The eigenvector values must vanish on the gluing vertices

On the other hand, if the eigenvectors vanish on the corners, then one can simply copy the eigenvectors of S_{n} three times and glue them together to form the eigenvectors of S_{n+1}. The new eigenvector can be written as a linear combination of the previous eigenvectors (See figure 12). Therefore, a single eigenvector of S_{n} whose eigenvalues vanish on the corners creates at least three eigenvectors of S_{n+1}. Moreover, since the new eigenvectors in S_{n+1} also vanish on the corners of S_{n+1}, we can inductively apply the same argument to obtain that at least 3^{k} eigenvectors of the same eigenvalue exist in S_{n+k}. For eigenvalues, $-2,-1,1$, and 2.618 , one can empirically verify that the eigenvectors indeed vanish on the corners (See figure 13).

Figure 13. Eigenvectors of eigenvalues $-2,-1,1$, and 2.618 vanish on the corners. We only display one eigenvector for each eigenvalue, but the same pattern persists for all eigenvectors.

Now, we shall formally prove the theorem 5.11.
Proof. Let $u_{1}, u_{2}, \cdots, u_{k}$ be the eigenvectors of the adjacency matrix of S_{n} with eigenvalue λ whose eigenvalues vanish on the corners. Let $u_{i, \text { top }}, u_{i, \text { left }}, u_{i, \text { right }}$ be a vector in S_{n+1} by placing u_{i} on the top, left, and right corners of the Sierpinski
gasket and setting the values of the other vertices to 0 . As discussed above, the value of $[A u]_{v}$ only depends on the values of the neighbors of v. Consider the case of $u_{i, \text { top }}$. Since the values of $u_{i, \text { top }}$ are all zeros except on the top S_{n}, it suffices to check that $\left[A u_{i, \text { top }}\right]_{c}=\lambda\left[u_{i, \text { top }}\right]_{c}$ where c is either the left/right gluging vertex of the top S_{n} or its neighboring vertex (See figure 12). Since the values of u_{i} vanish on the corners, we have $\left[A u_{i, \text { top }}\right]_{c}=\left[\lambda u_{i, \mathrm{top}}\right]_{c}=0$ and we are done. The same argument applies to $u_{i, \text { left }}$ and $u_{i, \text { right }}$.

It remains to show that the eigenvectors $u_{i, \text { top }}, u_{i, \text { left }}, u_{i, \text { right }}$ for $i=1,2, \cdots, k$ are linearly independent. Consider the following linear combination

$$
\sum_{i=1}^{k} \alpha_{i, \text { top }} u_{i, \text { top }}+\sum_{i=1}^{k} \alpha_{i, \text { left }} u_{i, \text { left }}+\sum_{i=1}^{k} \alpha_{i, \text { right }} u_{i, \text { right }}=0
$$

Since the values of $u_{i, \text { left }}$ and $u_{i, \text { right }}$ are zeros on the top S_{n}, we have

$$
\sum_{i=1}^{k} \alpha_{i, \text { top }} u_{i, \text { top }}=0
$$

By assumption, the eigenvectors $u_{i, \text { top }}$ are linearly independent. Therefore, $\alpha_{i, \text { top }}=$ 0 for all i. Similarly, by the same argument, we have $\alpha_{i, \text { left }}=0$ and $\alpha_{i, \text { right }}=0$ for all i. Therefore, the eigenvectors $u_{i, \text { top }}, u_{i, \text { left }}, u_{i, \text { right }}$ are linearly independent and we have at least $3 k$ eigenvectors of the adjacency matrix of S_{n+1} with eigenvalue λ.

6. Conjectures on the recursion patterns

In previous section, we have shown that "if eigenvectors vanish on the corners", then the number of eigenvectors of the same eigenvalue grows by at least a factor of 3. However, this doesn't explain the recursion patterns $R_{1}: x_{n+1}=3\left(x_{n}+1\right)$ and $R_{2}: x_{n+1}=3 x_{n}+1$ we observed. One would naturally expect that the number of eigenvectors should grow roughly by a factor of 3 , but it seems unintuitive where +1 is coming from. In this section, we shall derive a lower bound on the number of eigenvectors of the same eigenvalue which obeys the recursion patterns.

Theorem 6.1. Let u be an eigenvector of the adjacency matrix of S_{n} with eigenvalue λ. Suppose u vanishes on the vertices on the reflective axis of the Sierpinski gasket. Futhermore, suppose the values of u are invariant under rotation by $\frac{2 \pi}{3}$ and symmetric upto a sign with respect to the reflective axis. Let x_{n} be the multiplicity of λ in S_{n}. Then, multiplicity of λ in S_{n+1} is at least $3 x_{n}+1$.

Figure 14. Eigenvalue of -1 on the Sierpinski gasket
Before we prove the theorem, we shall motivate the theorem with an empirical observation for $\lambda=-1$ which exhibits recursion pattern $x_{n+1}=3 x_{n}+1$. As shown in figure above, the eigenvalues of -1 are zeros on the reflective axis and are symmetric upto a sign with respect to the reflective axis. Hence, apart from the $3 x_{n}$ eigenvectors we obtained from theorem 5.11, we can construct one more eigenvector by cleverly piecing together the eigenvectors of S_{n} (See figure 15).

Figure 15. Constructing an eigenvector of eigenvalue -1 for S_{n+1} and S_{n+2} from eigenvectors of S_{n}. The area with the same color ahve the same eigenvector. Blue and red areas are negatives of each other. The dotted vertices indicate vertices with zero values.

Proof. By the same argument as theorem 5.11, we can show that the eigenvector constructed in figure 15 is indeed an eigenvector of S_{n+1}. In other words, it suffices to check the values of the vertices on the gluing vertices (red/green on the figure) and its neighbors under action of the adjacency matrix. For red vertices, the argument from the theorem 5.11 applies. For the green vertices, we see that the values of the neighbors are identical to that of the previous iteration.

Therefore, the eigenvector constructed in figure 15 is indeed an eigenvector of S_{n+1}. It remains to show that the $3 x_{n}$ eigenvectors along with the one constructed in figure are linearly independent.

Let $u_{i, \text { top }}, u_{i, \text { left }}, u_{i, \text { right }}$ be defined same as theorem 5.11 . Let $u_{\text {center }}$ be the eigenvector constructed in figure 15 . Consider the following linear combination

$$
\sum_{i=1}^{x_{n}} \alpha_{i, \text { top }} u_{i, \text { top }}+\sum_{i=1}^{x_{n}} \alpha_{i, \text { left }} u_{i, \text { left }}+\sum_{i=1}^{x_{n}} \alpha_{i, \text { right }} u_{i, \text { right }}+\alpha_{\text {center }} u_{\text {center }}=0
$$

Let us focus our attention on the values of the vertices on top S_{n}. We see that there're vertices where $u_{\text {center }}$ are zeros, but $u_{i \text {,top }}$ are nonzero. (See figure 16). Therefore, we have that $\sum_{i=1}^{x_{n}} \alpha_{i, \text { top }} u_{i, \text { top }}=0$ which implies $\alpha_{i, \text { top }}=0$ for all i by the linear independence of $u_{i, \text { top }}$. The same argument applies to $u_{i, \text { left }}$ and $u_{i, \text { right }}$. Since all three sums of above linear combination are zeros and $u_{\text {center }}$ is nonzero, we have that $\alpha_{\text {center }}=0$.

Figure 16. On the top S_{n}, we see that the red vertices have zero values for $u_{\text {center }}$ but nonzero values for $u_{i, \text { top }}$.

Remark 6.2. It is no suprise that the eigenvector constructed in figure 15 is invariant under rotation by $\frac{2 \pi}{3}$. If it wasn't, then instead of getting just one new eigenvector, we would have gotten at least three types of rotation. While the contruction may seem obvious in hindsight, these insights are crucial in coming up with the potential candiates for the eigenvectors.

Theorem 6.3. Let u be an eigenvector of the adjacency matrix of S_{n} with eigenvalue λ. Suppose u vanishes on the corners of the Sierpinski gasket and the values of u "not" invariant under rotation by $\frac{2 \pi}{3}$. More precisely, $u, R u, R^{2} u$ are linearly independent where R is a permutation matrix which rotates the triangle by $\frac{2 \pi}{3}$. Let x_{n} be the multiplicity of λ in S_{n}. Then, multiplicity of λ in S_{n+1} is at least $3\left(x_{n}+1\right)$.

Figure 17. Eigenvalue of -2 on the Sierpinski gasket
Again, we motivate the theorem with an empirical observation for $\lambda=-2$ which exhibits recursion pattern $x_{n+1}=3\left(x_{n}+1\right)$ and starts with mulitplicity 3 on S_{2}. As shown in figure above, the eigenvalues of 2 are zeros on the corners and are not invariant under rotation by $\frac{2 \pi}{3}$. Hence, for eigenvectors of these form on S_{n}, we can contruct an eigenvector of S_{n+1} by piecing together the eigenvectors of S_{n} (See figure 18).

Figure 18. Constructing an eigenvector of eigenvalue 2 for S_{n+1} and S_{n+2} from eigenvectors of S_{n}. The areas of the same color have the same value. The dotted vertices indicate vertices with zero values.

Proof. As in the previous theorem, it suffices to check the values of the vertices on the gluing vertices and its neighbors (i.e red/green/blue vertices which glue red/green/blue triangles in the figure). Clearly, the values of the neighbors of
the gluing vertices are identical to that of the previous iteration. Since the constructed eigenvector is "not" invariant under rotation by $\frac{2 \pi}{3}$, one can create additional two eigenvectors by rotating the constructed eigenvector by $\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$. Let $u_{I}, u_{R}, u_{R^{2}}$ be these three eigenvectors. It remains to show that $u_{I}, u_{R}, u_{R^{2}}$ and $u_{i, \text { top }}, u_{i, \text { left }}, u_{i, \text { right }}$ for $i=1,2, \cdots, x_{n}$ are linearly independent. Consider the following linear combination
$\sum_{i=1}^{x_{n}} \alpha_{i, \text { top }} u_{i, \text { top }}+\sum_{i=1}^{x_{n}} \alpha_{i, \text { left }} u_{i, \text { left }}+\sum_{i=1}^{x_{n}} \alpha_{i, \text { right }} u_{i, \text { right }}+\alpha_{I} u_{I}+\alpha_{R} u_{R}+\alpha_{R^{2}} u_{R^{2}}=0$
Focusing our attention on the top S_{n} of S_{n+1}, we see that $u_{i, \text { top }}$ are nonzero where $u_{\text {center }}$ are zeros. Hence, we have that $\sum_{i=1}^{x_{n}} \alpha_{i, \text { top }} u_{i, \text { top }}=0$ which implies $\alpha_{i, \text { top }}=0$ for all i. The same argument applies to $u_{i, \text { left }}$ and $u_{i, \text { right }}$. The problem now reduces to the following linear combination

$$
\alpha_{I} u_{I}+\alpha_{R} u_{R}+\alpha_{R^{2}} u_{R^{2}}=0
$$

For contradiction, suppose that there exists a nontrivial linear combination of $u_{I}, u_{R}, u_{R^{2}}$ which satisfies the above equation. Focusing our attention, on a single colored area, we see that this would imply a nontrivial linear combination of red, green, and blue areas is zero. But, this would imply that a nontrivial linear combination of $u, R u, R^{2} u$ is zero which contradicts our assumption. (See figure 19).

Figure 19. A nontrivial linear combination of $u, R u, R^{2} u$ is zero which contradicts our assumption.

7. Conclusion and future work

In this paper, we have stuided Sieprinski gasket from two different perspectives: spectral graph theory and p-adic analysis on the number of prime paths. For prime path counting, this paper has shown that Munch's argument can be easily extended to similar fractals beyond the Sierpinski gasket. A natural question is to test how
far this argument can be extended to other fractals beyond n-flakes. From spectral graph theory perspective, this paper has provided a both empirical and theoretical insights on where the multiplicity of eigenvalues and the structure of eigenvectors. However, there are still two open questions which we have not addressed in this paper.
(1) We have shown that if conditions of the theorems 6.1 and 6.3 are satisfied, then one can obtain a lower bound on the multiplicity which obeys the empirical recursion patterns. The empirical result suggests that the multiplicity of eigenvalues are fully determined by the construction presented in theorem 5.11, 6.1, and 6.3. For instance, why is it that the eigenvectors with -2 are only obtained from the recursion described in theorem $6.3 ?$
(2) It also seems that it is a necessary condition for the eigenvectors to vanish on the corners in order to obtain the recursion patterns. Is there another way to obtain the recursion patterns without the eigenvectors vanishing on the corners? If not, what is the reason behind this?
As for potential directions in addressing these questions, one potential approach is to first show that the adjacency matrix of the Sierpinski gasket is always full rank and show that the lower bounds of each multiplicies add up to the total number of vertices. Since we have obtained a lower bound by recursively constructing eigenvectors from the previous iteration, it would be natural to try to obtain an upper bound by starting with an eigenvector from iteration above and decompose it to form an eigenvector in preceding iteration. Furthermore, applying the theory of group actions on graphs even at a shallow level has already provided us with a lot of insights. It may be wise to further explore this direction. For instance, one could treat assignment of values to the vertices as colorings and apply Burnside's lemma to count the number of eigenvectors.

Another underdeveloped approach is to study Sierpinski gasket by performing a similar analysis on the Laplacian matrix which allows us to leverage tools like Graph Fourier Transform. Even doing analysis on adjacency matrix shows that orthonormal basis of fractal graphs show alternating patterns and values vanishing on the "boundaries" of the fractal. A spectral analysis on the Laplacian matrix may provide us with more insights on the structure of the eigenvectors for adjacency matrices since a Laplacian eigenvector is also an eigenvector of the adjacency matrix for d-regular graphs.

Lemma 7.1. Let G be a d-regular graph. (i.e all vertices have degree d) Then, an eigenvector of the Laplacian matrix of G is also an eigenvector of the adjacency matrix of G.

Proof. Let u be an eigenvector of the Laplacian matrix of G with eigenvalue λ. Then, we have that

$$
L u=\lambda u \Longleftrightarrow(D-A) u=\lambda u \Longleftrightarrow A u=D u-\lambda u \Longleftrightarrow A u=(d-\lambda) u
$$

Therefore, u is an eigenvector of the adjacency matrix of G with eigenvalue $d-\lambda$.
While the Sierpinski gasket is not a regular graph, it "converges" to a 4-regular graph since all vertices except the corners have degree 4. Therefore, one could potentially approximate the adjacency eigenvectors of the Sierpinski gasket with the Laplacian eigenvectors.

8. Acknowledgements

I would like to thank my advisor, Professor Jonathan Pakianathan for his guidance and support throughout the project. I would not have been able to complete this work without his help. I would also like to thank Professor Douglass C. Haessig who first introduced me to the topic of p-adic analysis and Ihara zeta functions, but most of all for getting me interested in mathematics. I do not think I would have pursued mathematics as a major without Professor Haessig's and Professor Gonek's encouragement early on in my undergraduate career. Lastly, I would like to thank Professor Iosevich and Professor Geba for their support throughout the years. They have certainly taught me that mathematics is not a spectator sport.

References

[1] Munch, Elizabeth, Counting Prime Paths in Fractals Built from Triangles, journal of undergraduate research, 2008.
[2] Terras, Audrey, Zeta Functions of Graphs: A Stroll through the Garden, Cambridge University Press, 2010.
[3] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internatl. J. Math., 3 (1992), 717-797
[4] Godsil, Chris, Royle, Gordon, Algebraic Graph Theory, Springer, 2001.
[5] Ding, Xue, Jiang, Tiefeng, Spectral distribution of adjacency matrix and Laplacian matrices of random graphs, The Annals of Applied Probability, 2010

Appendix

Python code for Sierpinski gasket generation.

```
import networkx as nx
def _sierpinski(last, ends):
    n = len(last.nodes)
    top = nx.relabel_nodes(last, { i:i for i in last.nodes })
    left = nx.relabel_nodes(last, { i:i+n for i in last.nodes })
    right = nx.relabel_nodes(last, { i:i+2*n for i in last.nodes })
    top = nx.relabel_nodes(
        top, { ends["left"] : ends["top"] + n })
    left = nx.relabel_nodes(
        left, { ends["right"] + n : ends["left"] + 2 * n })
    right = nx.relabel_nodes(
        right, { ends["top"] + 2 * n : ends["right"] })
    ends = {
            "top":ends["top"],
            "left":ends["left"] + n,
            "right":ends["right"] + 2 * n
    }
    x = nx.compose_all([top, left, right])
    update = { node : idx for idx, node in enumerate(x.nodes) }
    x = nx.relabel_nodes(x, update)
    ends = { end: update[node] for end, node in ends.items() }
    return x, ends
def sierpinski(n:int):
    last = nx.complete_graph(3)
    ends = { "top":0, "left":1, "right":2 }
    for _ in range(n):
        last, ends = _sierpinski(last, ends)
    return last, ends
```

Example usage.
G, ends = sierpinski(2)
nx.draw(G)
Python code for empirical spectral distribution.

```
    import seaborn as sns
    import numpy as onp
    \# cycle graph
    \(\mathrm{G}=\mathrm{nx} . \operatorname{cycle}\) _graph(64)
```


Figure 20. Sierpinski gasket of 2nd iteration.

```
A = nx.laplacian_spectrum(G)
A = A.astype(float)
sns.histplot(A, bins=42)
# grid graph
G = nx.grid_graph((64,64))
A = nx.laplacian_spectrum(G)
A = A.astype(float)
sns.histplot(A, bins=42)
# sierpinski gasket
G, ends = sierpinski(5)
A = nx.adjacency_spectrum(G)
A = A.astype(float)
sns.histplot(A, bins=42)
```

Python code for dominant eigenvector analysis.

```
import matplotlib.pyplot as plt
import numpy as np
G, corners = sierpinski(1)
A = nx.to_numpy_array(G)
eigenvalues, eigenvectors = np.linalg.eig(A)
# Sort eigenvalues and eigenvectors based on eigenvalues
sorted_indices = np.argsort(eigenvalues)[::-1]
sorted_eigenvalues = eigenvalues[sorted_indices]
sorted_eigenvectors = eigenvectors[:, sorted_indices]
# Select the eigenvector you want to plot
eigenvector_to_plot = sorted_eigenvectors[:, 0]
```

```
# Create a dictionary mapping nodes to their eigenvector values
eigenvector_values = {
    node: eigenvector_to_plot[i]
    for i, node in enumerate(G.nodes)
}
# Draw the graph with node colors based on eigenvector values
pos = nx.spring_layout(G) # positions for all nodes
nx.draw(
    G, pos, node_color=list(eigenvector_values.values()),
    cmap=plt.cm.viridis
)
nx.draw_networkx_nodes(
    G, pos, node_color=list(eigenvector_values.values()),
    cmap=plt.cm.viridis, node_size=128
)
# Add a colorbar
sm = plt.cm.ScalarMappable(cmap=plt.cm.viridis)
sm.set_array([])
plt.colorbar(sm)
# Display the plot
plt.show()
```

Python code for multiplicity analysis.

```
import numpy as onp
from collections import Counter
for i in range(10):
    print(f"Sierpinski iteration: {i}")
    G, corners = sierpinski(i)
    spectrums = nx.adjacency_spectrum(G)
    counter = Counter([onp.round(n,8) for n in spectrums])
    multiples = Counter([count for _, count in counter.items()])
    spectrums = sorted(spectrums)
    # print spectral gap as well
    print("the gap", spectrums[-1] - spectrums[-2])
    for factor, count in sorted(multiples.items()):
        print(factor, "^", count)
    print("\n#####\n")
    for spectrum, count in counter.most_common():
        print(spectrum, count)
```

```
print("\n")
```

Example output.

```
Sierpinski iteration: 0
the gap (2.999999999999999+0j)
1 ^ 1
2 ` 1
```

\#\#\#\#\#
$(-1+0 j) 2$
($2+0 \mathrm{j}$) 1
Sierpinski iteration: 1
the gap (2.6180339887498945+0j)
1~2
2 ~ 2
\#\#\#\#\#
(0.61803399+0j) 2
(-1.61803399+0j) 2
(3.23606798+0j) 1
(-1.23606798+0j) 1
Sierpinski iteration: 2
the gap (0.8096973139654096+0j)
1~4
2-4
3-1
\#\#\#\#\#
$(-2+0 j) 3$
(2.9687598+0j) 2
(0.84179978+0j) 2
(-0.25767832+0j) 2
(-1.55288127+0j) 2
(3.77845712+0j) 1
(0.71083145+0j) 1
(-1.48928857+0j) 1
($-1+0 j$) 1

