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Abstract. In this paper, we shall explore the p-adic convergence of number
of closed prime walks on growing fractal graphs. We will briefly review 3-

adic convergence of closed prime walks on the Sierpinski gasket proven by

Munch [1] and generalise the result to n-flakes. Furthermore, we also explore
the spectral properties of the Sierpinski gasket. In particular, we present an

explicit recursive construction of the adjacency eigenvectors of the Sierpinski

gasket.

1. Introduction

Fractals are a fascinating subject in mathematics. Fractal and recursive struc-
tures serve as a source of research topics in various fields of mathematics. Self-
similar strctures such as Cantor sets, Koch snowflakes, and Merger sponge serve as
counter examples in topology and analysis. Furthermore, space-filling curves such
as Peano curve and Hilbert curve are a special class of fractal curves which not
only have interesting properites, but also has practical applications in geolocation
systems. In this paper, we shall study a well-known fractal structure called the
Sierpinski gasket in context of graph theory.

In 2008, Munch [1] has proven that the number of a special class of walks called
closed prime walks on the Sierpinski gasket converges 3-adically. In the first section
of this paper, we shall review Munch’s proof and generalise the result to a broader
class of fractal graphs called n-flakes. In the second section, we shall explore the
eigenvalues and eigenvectors of the adjacency matrix of the Sierpinski gasket. We
present empricial findings that the multiplicities of the eigenvalues either follows the
recursion xn+1 = 3xn + 3 or xn+1 = 3xn + 1. Furthermore, we provide an explicit
recursive construction of the eigenvectors and prove the lower of the mulitplicities
which follows the recursion formula.

2. Background

Let us first review the basic definitions on simple graph theory and closed prime
walks. An undirected graph is a set of vertices and edges (V,E) where E ⊂
{{u, v} : u, v ∈ V }. A walk is a sequence of vertices v0, v1, . . . , vn such that
{vi, vi+1} ∈ E for all i. We say that a walk v0, v1 . . . , vn is closed if it starts
and ends at the same vertex. i.e. v0 = vn. Given two walks P = v0, v1, . . . , vn
and Q = w0, w1, . . . , wm, one can define the concatenation of P and Q as PQ =
v0, v1, . . . , vn−1, w0, w1, w2, . . . , wm, assuming that vn = w0. For closed walk P , we
define P k as the concatenation of k copies of P . A path is a walk with no repeated
vertices.

A graph is connected if there is a walk between any two vertices. In this paper,
we will only consider finite, connected, undirected graphs. We will focus on a special
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class of walks called closed prime walks on these graphs. Before we define closed
prime walks, we need to define a few more terms.

Definition 2.1. Let G = (V,E) be a graph. A walk v0, v1, . . . , vn has a backtrack
if there exists consecutive vertices vi ̸= vi+1 ̸= vi+2 such that vi = vi+2.

Definition 2.2. Let G = (V,E) be a graph. A walk v0, v1, . . . , vn has a tail if
(v0, v1) = (vn, vn−1).

For instance, the following are examples of walks with backtracks and tails.
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Figure 1. Example of walks with backtracks and tails.

We say that a walk is prime if it has no backtracks or tails. One can easily
define an equivalence relation on the set of closed paths by saying that two closed
paths are equivalent if they are cyclic permutations of each other.

Definition 2.3. Let G = (V,E) be a graph. Let P = (v0, v1, . . . , vn) be a closed
path on G. Then, the equivalence class of P , denoted by [P ] is the set of all cyclic
permutations of P . That is to say

[P ] = {(v0, v1, . . . , vn−1, vn), (v1, v2, . . . , vn, v0), . . . (vn, v0, . . . , vn−2, vn−1)}

A keen reader might have noticed that counting the number of equivalence classes
of closed prime cycles under this definition allows for infinite number. For instance,
one can define a closed path C on a K3 which goes around the triangle once. Our
definition allows for [C], [C2], [C3], . . . to be distinct equivalence classes. Hence, this
observation motivates us to redefine the equivalence relation on the set of prime
closed walks.

Definition 2.4. Two prime closed walks P and P ′ are equivalent if

(1) P and P ′ are cyclic permutations of each other.
(2) there exists a prime closed walk Q such that P and P ′ are powers of Q.

An example can be worth a thousand words. Let us consider the prime closed
walks on K3.



ON SPECTRAL PROPERTIES OF SIERPINSKI GASKET 3

P

P
-1

Figure 2. Example of prime closed walks on K3

Given an arbitary starting point on K3, the walk is forced to go around the
triangle in either clockwise or anticlockwise direction. Let us denote the clockwise
walk as P and anticlockwise walk as P−1. Combining P and P−1 will yield a
backtrack and any powers of P and P−1 will be equivalent to P and P−1. Hence,
there are only two equivalence classes of prime closed walks on K3.

In fact, there exists a concrete formula for computing the number of prime closed
walks on a graph as a generating function. This formulation is called the Ihara zeta
function. The formula was first given by Bass [3].

Theorem 2.5. Let G = (V,E) be a graph. Let A be the adjacency matrix of
G. Ihara zeta function of G is defined as the following formal power series in
variable u.

ζG(u) =
∏
[P ]

1

1− uL([P ])

where [P ] is the set of all equivalence classes of prime closed walks on G and
L([P ]) is the length of the shortest closed walk in [P ]. Then, the coefficients of
ζG(u) are given by Bass’s formula

ζG(u) =
1

(1− u2)|E|−|V | det(I − uA+Qu2)

where I is the identity matrix, Q is the diagonal matrix with Qii = deg(vi)− 1.

Let’s use Bass’s formula to compute the number of classes of prime closed walks
on K3. If the formula is correct, we should get exactly two equivalence classes of
length 3. The matrix A and Q are given by

A =

0 1 1
1 0 1
1 1 0

 Q =

1 0 0
0 1 0
0 0 1


The term det(I − uA+Qu2) expands to
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det(I − uA+Qu2) = det

1 + u2 −u −u
−u 1 + u2 −u
−u −u 1 + u2


= u6 − 2u3 + 1

Since there are exactly 3 vertices and 3 edges, (1 − u2)|E|−|V | = (1 − u2)0 = 1.
Thus, the Bass’s formula yields the following result.

ζG(u) =
1

(1− u2)|E|−|V | det(I − uA+Qu2)

=
1

u6 − 2u3 + 1

=
1

(u3 − 1)2

=
1

(1− u3)2

=
1

1− uL([P ])
· 1

1− uL([P−1])

Therefore, the result from Bass’s formula agrees with the number of prime closed
walks on K3 we computed earlier.

While we will be taking a more direct approach to counting closed prime walks,
it is worth noting that works such as Terras [2] takes a more complex analytic
approach. In particular, due to the reciprocal nature of the Ihara zeta function, it’s
natural to focus on poles of the Ihara zeta functions on various graphs.

Previously, Munch [1] has proven that the coefficients of Ihara zeta function of
the Sierpinski gasket converges 3-adically. In this paper, we shall generalise this
result to other fractal graphs and explore the p-adic convergence of closed prime
walks on these graphs. Before diving into the details, let us first review the basic
definitions of p-adic numbers and review Munch’s proof on the Sierpinski gasket.

3. p-adic convergence on the Sierpinski gasket

A Sierpinski gasket is a fractal graph which is recursively constructed.

(1) Start with a triangle S0.
(2) Make three copies of Si and glue the corner vertices to form Si+1.

The following is an example of first three iterations of Sierpinski gasket.
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S0 S1 S2

Figure 3. Sierpinski gasket

Intuitively, since the Sierpinski gasket roughly grows in size by a factor of 3, it’s
natural to expect that the number of closed prime walks of a fixed length L grows
roughly by a factor of 3. In fact, this guess would be trivially true if Sierpinski
gasket did not involve any gluing of vertices. As we will see, the structure and
strength of the gluing will be of importance in this paper. In regular notion of
convergence, the number of closed prime walks would diverge to infinity as the
graph grows. For this reason, we rely on p-adic convergence.

Definition 3.1. Let p be a prime number. We define the p-adic norm on Q as
follows. For any nonzero x ∈ Q, let x = pk a

b where p ∤ a and p ∤ b. Then, we define

|x|p = p−k.

Example 3.2. For instance, the 3-adic and 5-adic norm of 24
5 are∣∣∣∣245

∣∣∣∣
3

= 3−1 =
1

3∣∣∣∣245
∣∣∣∣
5

= 5−(−1) = 5

Given this nortion of p-adic norm, we say that a sequence of rational numbers
{xn} converges to x p-adically if |xn − x|p → 0 as n → ∞.

Example 3.3. A divergent geometric series
∑∞

n=0 3
n under the usual norm con-

verges 3-adically to − 1
2 .∣∣∣∣∣
∞∑

n=0

3n − (−1

2
)

∣∣∣∣∣
3

= lim
N→∞

∣∣∣∣∣
N∑

n=0

3n +
1

2

∣∣∣∣∣
3

= lim
N→∞

∣∣∣∣3N+1 − 1

2
+

1

2

∣∣∣∣
3

= lim
N→∞

∣∣∣∣3N+1

2

∣∣∣∣
3

= lim
N→∞

1

3N+1
= 0
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Lemma 3.4. Let Si be the Sierpinski gasket at ith stage. Then, the length of a
shortest walk from one gluing vertex to another gluing vertex is 2i−1.

Proof. Let us prove this by induction. For i = 1, the answer is trivially 1. Suppose
that the statement holds for i = k. To go from one gluing vertex to another gluing
vertex on Sk+1, one must walk to the nearest gluing vertex on Sk, and walk to a
gluing vertex on Sk+1. By induction hypothesis, the length of the shortest walk
from one gluing vertex to another gluing vertex on Sk is 2 · 2k−1 = 2k. □

Lemma 3.5. Given a fixed length L, let NL
n be the number of closed prime walks of

length L on Si. Then, there exists C such that if i > C, then the following equation
holds for some K independent of i.

NL
i = 3NL

i−1 + 3K

Proof. Given the Sierpinski gasket at ith stage Si, the subsequent stage Si+1 con-
tains three copies of Si. There are three types of closed prime walks on Si+1.

(1) Closed prime walks entirely contained in one copy of Si.
(2) Closed prime walks contained in two copies of Si.
(3) Closed prime walks contained in three copies of Si.

S3

Figure 4. Three types of closed prime walks on S4 going through
one (green), two (blue), and three (red) copies of S3 respectively.

By construction, there are 3NL
i closed prime walks of type 1. We argue that for i

large enough, the number of closed prime walks of type 2 is a constant independent
of i. Furthemore, the number of closed prime walks of type 3 is 0.

Let us prove the latter claim first. For a closed prime walk to be contained in
three copies of Si, it must satisfy the following conditions.

(1) The walk starts at Si, walks to nearest gluing vertex.
(2) The walk walks across Si to the next gluing vertex.
(3) The walk walks into the third copy of Si.
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Si+1

Si Si

Si

2
i-1

Figure 5. A closed prime walk of type 3 on Si+1. The walk starts
at Si, walks to nearest gluing vertex, and walks across Si which
requires 2i−1 steps.

By Lemma 3.4, for i > log2(L) + 1, the number of closed prime walks of type
3 is 0. It remains to show that the number of closed prime walks of type 2 is a
constant independent of i.

Let P be a closed prime walk of type 2. By construction, a closed prime walk
of type 2 starts at some copy of Si, walks to a neighboring copy of Si, and walks
back to the original copy of Si. Therefore, P must go through a gluing vertex and
P can be decomposed into a concatenation of closed prime walks P = W1 · · ·Wk.
Here, Wi is a closed prime walk entirely within a copy of Si which starts and ends
at a gluing vertex. As k ≥ 2 and

∑
i L(Wi) = L, we have that L(Wi) < L for all i.

Hence, for i > log2(L) + 1, we have that

L(Wi) < L < 2i−1

Therefore, the number of closed prime walks of type 2 is remains constant for
log2(L) + 1 < i, i+ 1, i+ 2 . . . (See Figure 6).

Figure 6. A closed prime walk of type 2 on Si+1. The walk can be
decomposed into a concatenation of closed prime walks W1 · · ·Wk

(in red). Each Wi has length < L so that the number of closed
prime walks of type 2 does not change after i > log2(L) + 1.
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□

Theorem 3.6. Let NL
n be the number of closed prime walks of length L on Sn.

Then, NL
n converges 3-adically as n → ∞.

Proof. Let C = ⌈log2(L) + 1⌉. By the previous lemma, for n > C, we have the
following result.

NL
n = 3NL

n−1 + 3K

= 3(3NL
n−2 + 3K) + 3K = 32NL

n−2 + 32K + 3K

= 32(3NL
n−3 + 3K) + 32K + 3K = 33NL

n−3 + 33K + 32K + 3K

...

= 3n−CNL
C + 3n−CK + 3n−C−1K + · · ·+ 3K

= 3n−CNL
C + 3K · 3

n−C − 1

2

= 3n−C(
3

2
K +NL

C )−
3

2
K

Hence, the 3-adic norm between NL
n and − 3

2K is |3n−C( 32K + NL
C )|3 ≤ 1

3n−C .

Therefore, NL
n converges 3-adically to − 3

2K as n → ∞. □

Corollary 3.7. All coefficients of the inverse of Ihara zeta function of the Sier-
pinski gasket converges 3-adically.

4. p-adic convergence on n-flakes

The key argument of Munch’s result can be distilled into two key observations.

(1) As the graph grows, only finitely many vertices can walk to another copy
of the graph with fixed length L.

(2) The number of closed prime walks that contains a vertex in a neighboring
copy grows by a factor of p = 3.

These two observations allow us to easily extend the result to other fractal graph,
namely n-flakes.

Definition 4.1. A n-flake is a fractal graph which is recursively constructed.

(1) Start with a regular n-gon S0.
(2) Make n copies of Si and place it around the n-gon to form Si+1.

The following is an first three iterations of 5-flake.
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Figure 7. The first three iteration of 5-flake. Each iteration is
constructed by placing 5 copies of the previous iteration around
the pentagon.

The argument for n-flakes natural generalisation of the argument for Sierpinski
gasket as you will see below.

Lemma 4.2. Given an n-flake, at ith iteration, the minimum distance from a
vertex from S0 to another vertex to S0 is at least 2i−1.

1 1

k k

One iteration breaks a side of an n-gon into 2 + 2k parts

Proof. Since the i + 1th iteration is constructed by placing n copies of Si around
the n-gon, a side of an n-gon is broken into 2 + 2k segments where k ≥ 0. Hence,
for each iteration, the minimum distance from a vertex from S0 to another vertex
to S0 at least doubles. □

Theorem 4.3. Given an n-flake, the number of closed prime walks of length L
converges p-adically as i → ∞ for p|n.

Proof. The proof is almost identical to the proof for Sierpinski gasket. Let C =
⌈log2(L) + 1⌉. By the same argument in the proof of Lemma 3.5, we have the
following result for i ≥ C.
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NL
i = nNL

i−1 + nK

= n(nNL
i−2 + nK) + nK = n2NL

i−2 + n2K + nK

= n2(nNL
i−n + nK) + n2K + nK = n3NL

i−n + n3K + n2K + nK

...

= ni−CNL
C + ni−CK + ni−C−1K + · · ·+ nK

= ni−CNL
C + nK · n

i−C − 1

n− 1

= ni−C(
n

n− 1
K +NL

C )−
nK

(n− 1)K

Hence, for p|n, the p-adic norm between NL
i and − n

n−1K is |ni−C( n
n−1K +

NL
C )|p ≤ 1

pi−C . Therefore, NL
i converges p-adically to − n

n−1K as i → ∞. □

As demonstrated, this argument is easily generalisable to other fractal graphs.

5. Spectral properties of fractal graphs

In this section, we shall explore both empirical and theoretical findings in the
spectral properties of Sierpinski gasket. Analyzing eigenvalues and eigenvectors of
the adjacency matrix and Laplacian matrix are of our paticular interest. Before
diving into the details, let us first review major definitions and results we will use.

Theorem 5.1. Spectral theorem Let A be a Hermitian matrix. Then, there exists
an orthonormal basis of eigenvectors of A.

Since the adjacency matrix of a graph is real and symmetric, the spectral theorem
implies the following result.

Corollary 5.2. An adjacency matrix of a graph has an orthonormal basis of eigen-
vectors. In other words, the adjacency matrix is diagonalisable and has real eigen-
values.

The spectral theorem rules out the possibility of complex eigenvalues as well as
non-diagonalisable cases which makes the study of spectral properties of graphs
much more tractable. Another crucial result in spectral graph theory is the follow-
ing.

Theorem 5.3. Perron-Frobeinus theorem Let A be a real positive matrix.
Then, there exists an unique largest eigenvalue λ of A.

The largest eigenvalue of A is called the spectral radius of A and is denoted by
ρ(A). One may ask why the spectral radius is of particular interest. Many models
that describe the real world (including graphs) can be often described as a linear
discrete ODE of the form xt+1 = Axt where xt is a vector representing the state of
the system at time t. A common question is to ask given an initial state x0, whether
the system will converge to a stable state or diverge. In the context of graphs, a
“state” of the system can be thought of as a distribution of some quantity on the
vertices of the graph. The linear discrete ODE described by xt+1 = Axt changes
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the value on each vertex by summation of the values of its neighbors. That is to
say

xt+1 = Axt =⇒ xt+1(v) =
∑

u∈N(v)

Avuxt(u)

where N(v) is the set of neighbors of vertex v.

1
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0

5

4 3
1

12

4

5

1+0

3

3+5+4

0+4

0+5

Figure 8. An example of a state update rule on a graph. The
value on each vertex is updated by the sum of the values of its
neighbors.

This view will be crucial in our analysis of how eigenvectors behave on the
Sierpinski gasket. Combined with spectral theorem, the Perron-Frobenius theorem
allows us to answer this question. In the context of our question, the number of
closed walks of length L is precisely given by tr(AL). Therefore, the spectral radius
provides a bound for how fast the number of closed walks grows as the graph grows.
Namely, the following results are particularly useful.

Theorem 5.4. Let A be the adjacency matrix of a graph. Then, the absolute value
of the eigenvalues of A are bounded by the maximum degree of the graph.

Proof. Let λ be an eigenvalue of A and x be the corresponding eigenvector. Then,
we have

|λ|||x|| = ||Ax|| =

∣∣∣∣∣
∣∣∣∣∣∑
u∈V

Avuxu

∣∣∣∣∣
∣∣∣∣∣ ≤ ∑

u∈V

|Avu||xu| ≤ deg(v)||x||

Therefore, |λ| ≤ deg(v). □

In the case of Simplepinski gasket, the degrees of the vertices are either 2 or
4. Therefore, the spectral radius of the adjacency matrix is always bounded by 4.
Hence, we obtain the following result.

Corollary 5.5. The number of closed prime walks of length L on the Sierpinski
gasket is bounded by 4L.

Proof. Let A be the adjacency matrix of the Sierpinski gasket. Then, the number
of closed walks of length L is given by tr(AL). By spectral theorem, A = UDUT

where U is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues.
Therefore, tr(AL) = tr(UDLUT ) = tr(DL) ≤ 4L. By definition, the number of
closed prime walks is less than the number of closed walks. We have the desired
result. □
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Definition 5.6. The Laplacian matrix of a graph G = (V,E) is defined as
L = D −A where A is the adjacency matrix and D is the degree matrix.

The eigenvalue of the Laplacian matrix reveals many information about the
graph such as the number of connected components and the number of spanning
trees. It’s also useful for our empricial analysis because of the following result.

Lemma 5.7. Let G = (V,E) be a graph. Let L be the Laplacian matrix of G.
Then, the eigenvalues of L are non-negative.

This result makes numerical analysis easier since the signs of the eigenvalues
are guranteed to be positive, making comparisons and applying log transforma-
tions much easier. Now, we shall present several empirical findings on the spectral
properties of Sierpinski gasket. All computations were done using python package
networkx. The code used for the computation can be found in the appendix.

5.1. On spectral distribution of Sierpinski gasket. A well-known fact in spec-
tral graph theory is that the distribution of adjacency and laplacian eigenvalues of
a graph converges to a limiting distribution as the size of the graph grows under
certain conditions. More precisely, let λ1, λ2, . . . , λn be the eigenvalues of a ma-
trix A. We define the empirical spectral distribution of A as the probability
measure µA defined by

µA =
1

n

n∑
i=1

δλi

where δλi
is the Dirac measure at λi. As an example, the following are empirical

spectral distributions of the Laplacian matrix of a cycle graph and a grid graph.

8 by 8 grid graph

64 cycle graph 256 cycle graph 1024 cycle graph 4096 cycle graph

16 by 16 grid graph 32 by 32 grid graph 64 by 64 grid graph

Figure 9. Empirical spectral distribution of Laplacian matrix of
a cycle graph and a grid graph. The histogram is binned into 42
buckets for visualisation.

As figure 9 demonstrates, the empirical spectral distribution for cycle graph
seems to converge to a Laplace distribution and that of cycle graph seems to con-
verge to a beta distribution. A conjecture for the Sierpinski gasket is that the em-
pirical spectral distribution will have either an exponential or a distribution with
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repeating shapes. However, contrary to our expectation, the computed empirical
spectral distribution of the Sierpinski gasket does not seem to have any discernible
pattern as shown below.

Iteration 1

Iteration 4 Iteration 5

Iteration 2 Iteration 3

Figure 10. Empirical spectral distribution of Laplacian matrix of
the Sierpinski gasket.

Similarly, applying log transformation to the eigenvalues does not seem to reveal
any pattern.

Iteration 1

Iteration 4 Iteration 5

Iteration 2 Iteration 3

Figure 11. Empirical spectral distribution of Laplacian matrix of
the Sierpinski gasket after log (base 3) transformation.

The distribution certainly does not display a “smooth” pattern as we found
it for the case of cycle and grid graphs. It’s clear that the distribution display
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a sparse, irregular pattern which seems to converge. While a clear pattern is not
visible, a more detailed analysis of the mulitplicity of the eigenvalues reveals a more
interesting result.

S3

1 4
2 4
3 1

S4

1 7
2 8
3 1
4 1
12 1

S5

1 24
2 31
3 5
4 4
12 2
13 2
39 1
40 1
120 1

S6

1 47
2 62
3 10
4 8
12 4
13 4
39 2
40 2
120 1
121 1
363 1

S7

1 90
2 121
3 23
4 16
12 8
13 8
39 4
40 4
120 2
121 2
363 1
364 1
1092 1

S8

1 180
2 243
3 45
4 32
12 16
13 16
39 8
40 8
120 4
121 4
363 2
364 2
1092 1
1093 1
3279 1

Table 1. Multiplicity of eigenvalues of the adjacency matrix of
the Sierpinski gasket. The left column is the mulitplicity and the
right column is the number of eigenvalues with that multiplicity.
For example, the second row for table S5 means that there were
31 eigenvalues which had mulitplicity 2.

5.2. On spectral multiplicity of Sierpinski gasket. Table 1 shows the mulit-
plicity of the eigenvalues of the adjacency matrix of the Sierpinski gasket. From

the table, we observe three clear patterns. Let m
(n)
i be the multiplicity of i-th ad-

jacency eigenvalue of Sn (in ascending order). Let c
(n)
k be the number of adjacency

eigenvalues of Sn with multiplicity k. Then, we observe the following patterns.

(1) c
(n)
i ≤ c

(n+1)
i for all i and n.

(2) m
(n)
i = 3m

(n)
i−1 or m

(n)
i = m

(n)
i−1 + 1 for all i.

(3) For large enough Sn, tail of c
(n)
i is 1, 1, 1, 2, 2, 4, 4, 8, 8 · · · .

The first pattern is reasonable to expect since the Sierpinski gasket is constructed
recursively. The second pattern is also expected since Si is constructed by gluing
three copies of Si−1. What’s interesting is that the multiplicities increase in an
alternating pattern. For instance, in table S8, we observe that the progression is
1, 2 · · · 13, 39, 40, 120, 121, 363, 364, 1092, 1093, 3279. It either triples or increases by
one in an alternating fashion. The last pattern also displays a clear converging
pattern as the size of Sn grows, which ties back to the idea of our proof for p-adic
convergence of number of prime paths.

5.3. On properties of leading eigenvector on Sierpinski gasket. In spectral
graph theory, the eigenvalues receive much attention, and the eigenvectors are often
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overlooked. Motivated by Perron-Frobenius theorem, a reasonable eigenvector to
start our analysis is the leading eigenvector of the adjacency matrix.

-1 -0.5 0.50 1

Figure 12. Distribution of values of leading eigenvector on first
3 iterations of Sierpinski gasket.

In figure 12, we plot the values of leading eigenvector on the Sierpinski gasket.
Since each value of an eigenvector corresponds to a vertex, we can visualise the
eigenvector as a distribution of values on the vertices. To do this, we use numpy’s
eigh function to compute orthonormal eigenvectors. After overlaying the eigen-
vector values on the vertices, in all iterations, we observe a rotational symmetry
of values of the leading eigenvector. Furthermore, in odd iterations, the values are
maximal gluing vertices and minimal at the corners of the triangle. In even iter-
ations, the pattern manifests in the opposite way. The symmetry of the leading
eigenvector has a clear theoretical explanation.

Theorem 5.8. The eigenvectors of multiplicity 1 of the adjacency matrix of the
Sierpinski gasket are symmetric with respect to Dihedral group of order 6. Simply
put, the eigenvectors with multiplicity 1 are invariant under rotation and reflection.

Proof. Suppose v is an eigenvector of the adjacency matrix of the Sierpinski gasket.
Let G = {I,R,R2, F, FR, FR2} be the dihedral group of order 6 where I is the
identity, R is a permutation matrix which rotates the triangle by 2π

3 , and F is
a permutation matrix which reflects the triangle along the vertical axis. Since v
has mulitplicity one, it follows that R · v = cRv for some constant cR. Therefore,
R3v = v = c3Rv which implies cR = 1. Therefore, the values of eigenvector on
left, right, and top corners of the Sierpinski gasket must be the same. Similarly,
F 2v = v = c2F v which implies cF = ±1. Therefore, the values of eigenvector must
be symmetric with respect to the reflective axis (upto a sign). □

Remark 5.9. While the proof is only done in context of the Sierpinski gasket and
Dihedral group of order 6, one should see that this argument easily extends to other
graphs with symmetries. In particular, the core idea of the proof came from the
fact that there exists an element in the symmetry group of odd order which allowed
us to conclude that the eigenvector is symmetric.

Combined with Perron-Frobenius theorem, we obtain the following corollary
which explains the empirical observation in figure 12.
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Corollary 5.10. The leading eigenvector of the adjacency matrix of the Sierpinski
gasket is symmetric with respect to D6.

5.4. Alternating recurrence relations on multiplicity of eigenvalues. In
previous sections, we observed a number of interesting patterns in the multiplicity
of eigenvalues of the adjacency matrix of the Sierpinski gasket. In this section, we
shall offer an conjectures on where these patterns come.

S4

-2 39
-1 13
1 12

2.618 4
0.382 4
3.303 4
−0.302 4

S5

-2 120
-1 40
1 39

2.618 13
0.382 13
3.303 12
−0.302 12

S6

-2 363
-1 121
1 120

2.618 40
0.382 40
3.303 39
−0.302 39

S7

-2 1092
-1 364
1 363

2.618 121
0.382 121
3.303 120
−0.302 120

Table 2. Multiplicity of eigenvalues of the adjacency matrix,
sorted from highest to lowest. Eigenvalues were rounded to 3 dec-
imal places.

The table above shows how multiplicity of the eigenvalues change as the size
of the Sierpinski gasket grows. We see that there are two recurrence patterns
R1 : xn+1 = 3(xn + 1) and R2 : xn+1 = 3xn + 1. For example, the multiplicity of
−2 follow pattern R1 with progression 39, 120, 363, 1092, whereas the multiplicity
of −1 follow pattern R2 with progression 13, 40, 121, 364. What’s interesting is
that the recurrence rule alternates between R1 and R2 in powers of 2. We see
that eigenvalue −2 follows R1, −1 follows R2, 1 follows R1, 2.618 follows R2, 0.382
follows R2, 3.303 follows R1, and −0.302 follows R1. Table 3 shows the recurrence
pattern of eigenvalues for S6.

Eigenvalue -2 -1 1 2.618 0.382 3.303 -0.302
Multiplicity 363 121 120 40 40 39 39
Recurrence R1 R2 R1 R2 R2 R1 R1

Eigenvalue 3.706 3.122 -0.706 -0.122 3.856 2.895 -0.856 0.104
Multiplicity 13 13 13 13 12 12 12 12
Recurrence R2 R2 R2 R2 R1 R1 R1 R1

Table 3. Reccurence pattern of eigenvalues for S6

Assuming this reccurence persists for all Si, this observation explains patterns
1,2, and 3 we observed in section 5.2. The question is where are these reccurence
patterns coming from.

Theorem 5.11. Let u1, u2, · · · , uk be the eigenvectors of the adjacency matrix of
Sn with eigenvalue λ, whose eigenvalues vanish on the corner vertices. Then, there
are at least 3k eigenvectors of the adjacency matrix of Sn+1 with eigenvalue λ.
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Due to the recursive nature of the Sierpinski gasket, the reader’s first intuition
might be that one can simply copy the eigenvectors of Sn−1 and glue them together
to form the eigenvectors of Sn. However, for this to work, the eigenvectors of Sn−1

must vanish on the corners. Otherwise, in the subsequent iteration, the neighboring
vertices of the corners will receive nonzero values and the previous eigenvectors will
no longer work as eigenvectors of Sn.

0

0

0
Sums up to 0 Spreads 0

0

00 0

0

0

Figure 13. The eigenvector values must vanish on the gluing vertices

On the other hand, if the eigenvectors vanish on the corners, then one can
simply copy the eigenvectors of Sn three times and glue them together to form the
eigenvectors of Sn+1. The new eigenvector can be written as a linear combination
of the previous eigenvectors (See figure 13). Therefore, a single eigenvector of Sn

whose eigenvalues vanish on the corners creates at least three eigenvectors of Sn+1.
Moreover, since the new eigenvectors in Sn+1 also vanish on the corners of Sn+1,
we can inductively apply the same argument to obtain that at least 3k eigenvectors
of the same eigenvalue exist in Sn+k. For eigenvalues, −2, −1, 1, and 2.618, one
can empirically verify that the eigenvectors indeed vanish on the corners (See figure
14).

-2 -1 1 2.618

Figure 14. Eigenvectors of eigenvalues −2, −1, 1, and 2.618 van-
ish on the corners. We only display one eigenvector for each eigen-
value, but the same pattern persists for all eigenvectors.

Now, we shall formally prove the theorem 5.11.
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Proof. Let u1, u2, · · · , uk be the eigenvectors of the adjacency matrix of Sn with
eigenvalue λ whose eigenvalues vanish on the corners. Let (ui)top, (ui)left, (ui)right
be a vector in Sn+1 by placing ui on the top, left, and right corners of the Sierpinski
gasket and setting the values of the other vertices to 0.

Let [Au]v be the value of the vector Au at vertex v. As discussed above, the
value of [Au]v only depends on the values of the neighbors of v. Consider the case
of (ui)top. Since the values of (ui)top are all zeros except on the top Sn, it suffices to
check the values at ther left/right corners and its neighbors (See figure 13). If c is a
left/right corner of top triangle, we have [(ui)top]c = 0 and the neighboring values
of c sum to 0. Therefore, [A(ui)top]c = λ(ui)top = 0. Moreover, since [(ui)top]c = 0,
the values of neighboring vertices of c after applying A will be same as the previous
iteration.

It remains to show that the eigenvectors (ui)top, (ui)left, (ui)right for i = 1, 2, · · · , k
are linearly independent. Consider the following linear combination

k∑
i=1

αi,top(ui)top +

k∑
i=1

αi,left(ui)left +

k∑
i=1

αi,right(ui)right = 0

Since the values of (ui)left and ui,right are zeros on the top Sn, we have

k∑
i=1

αi,top(ui)top = 0

By assumption, the eigenvectors (ui)top are linearly independent. Therefore, αi,top =
0 for all i. Similarly, by the same argument, we have αi,left = 0 and αi,right = 0
for all i. Therefore, the eigenvectors (ui)top, (ui)left, (ui)right are linearly indepen-
dent and we have at least 3k eigenvectors of the adjacency matrix of Sn+1 with
eigenvalue λ. □

6. Conjectures on the recursion patterns

In previous section, we have shown that “if eigenvectors vanish on the corners”,
then the number of eigenvectors of the same eigenvalue grows by at least a factor
of 3. However, this doesn’t explain the recursion patterns xn+1 = 3(xn + 1) and
xn+1 = 3xn + 1 we observed. One would naturally expect that the number of
eigenvectors should grow roughly by a factor of 3, but it seems unintuitive where
+1 is coming from. In this section, we shall derive a lower bound on the number
of eigenvectors of the same eigenvalue which obeys the recursion patterns.

Theorem 6.1. Let u be an eigenvector of the adjacency matrix of Sn with eigen-
value λ. Suppose u vanishes on the vertices on the reflective axis of the Sierpinski
gasket. Futhermore, suppose the values of u are invariant under rotation by 2π

3 and
symmetric upto a sign with respect to the reflective axis. Then, multiplicity of λ in
Sn+1 is at least 3 · 1 + 1 = 4.



ON SPECTRAL PROPERTIES OF SIERPINSKI GASKET 19

Figure 15. Eigenvalue of −1 on the Sierpinski gasket

Before we prove the theorem, we shall motivate the theorem with an empirical
observation for λ = −1 which exhibits recursion pattern xn+1 = 3xn + 1. As
shown in figure above, the eigenvalues of −1 are zeros on the reflective axis and
are symmetric upto a sign with respect to the reflective axis. Hence, apart from
the 3xn eigenvectors we obtained from theorem 5.11, we can construct one more
eigenvector by cleverly piecing together the eigenvectors of Sn (See figure 16).

Figure 16. Constructing an eigenvector of eigenvalue −1 for Sn+1

and Sn+2 from eigenvectors of Sn. The area with the same color
ahve the same eigenvector. Blue and red areas are negatives of
each other. The dotted vertices indicate vertices with zero values.

For the purpose of our discussion, let us introduce some notations.

Definition 6.2. Let u be an adjacency eigenvector of Sn with eigenvalue λ. We de-
note u(p) for p ∈ {top, left, right} as the values of u on the top, left, and right corners
of the Sierpinski gasket. Furthermore, we denote (u(p))(q) for p, q ∈ {top, left, right}
as u(pq) and u(p···p) = u(pn).



20 SANGWU LEE

Definition 6.3. Let u be an adjacency eigenvector of Sn with eigenvalue λ. We
denote utop, uleft, uright as the eigenvectors of Sn+1 constructed from u by placing
u on the top, left, and right corners of the Sierpinski gasket and setting the values
of the other vertices to 0.

Proof. By the same argument as theorem 5.11, we can show that the eigenvector
constructed in figure 16 is indeed an eigenvector of Sn+1. In other words, it suffices
to check the values of the vertices on the gluing vertices (red/green on the figure)
and its neighbors under action of the adjacency matrix. For red vertices, the argu-
ment from the theorem 5.11 applies. For the green vertices, we see that the values
of the neighbors are identical to that of the previous iteration.

Therefore, the eigenvector constructed in figure 16 is indeed an eigenvector of
Sn+1. It remains to show that the 3xn eigenvectors along with the one constructed
in figure are linearly independent.

Let v be the eigenvector constructed in figure 16. Consider the following linear
combination

αtoputop + αleftuleft + αrighturight + αvv = 0

Let us focus our attention on the values of the vertices on top Sn. On the top Sn,
we must have that

αtopu+ αvv
(top) = 0

We see that there’re vertices where v are zeros, but utop are nonzero. (See figure
17). Therefore, we have that αtop = 0 which also implies that αv = 0. The same
argument applies to αleft and αright. Hence, αleft = αright = αleft = 0. □

Figure 17. On the top Sn, we see that the red vertices have zero
values for v but nonzero values for utop.

Remark 6.4. It is no suprise that the eigenvector constructed in figure 16 is invariant
under rotation by 2π

3 . If it wasn’t, then instead of getting just one new eigenvector,
we would have gotten at least three types of rotation. While the contruction may
seem obvious in hindsight, these insights are crucial in coming up with the potential
candiates for the eigenvectors.

Theorem 6.5. Let u be an eigenvector of the adjacency matrix of Sn with eigen-
value λ. Suppose u vanishes on the corners of the Sierpinski gasket and the values
of u “not” invariant under rotation by 2π

3 . More precisely, u, Ru, R2u are lin-
early independent where R is a permutation matrix which rotates the triangle by
2π
3 . Then, multiplicity of λ in Sn+1 is at least 3 · (3 + 1) = 12.
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Figure 18. Eigenvalue of −2 on the Sierpinski gasket

Again, we motivate the theorem with an empirical observation for λ = −2 which
exhibits recursion pattern xn+1 = 3(xn + 1) and starts with mulitplicity 3 on S2.
As shown in figure above, the eigenvalues of 2 are zeros on the corners and are not
invariant under rotation by 2π

3 . Hence, for eigenvectors of these form on Sn, we
can contruct an eigenvector of Sn+1 by piecing together the eigenvectors of Sn (See
figure 19).

Figure 19. Constructing an eigenvector of eigenvalue −2 for Sn+1

and Sn+2 from eigenvectors of Sn. The areas of the same color have
the same value. The dotted vertices indicate vertices with zero
values.

Proof. Let vI be a vector in Sn+1 constructed in figure 19. As in the previous
theorem, it suffices to check the values of the vertices on the gluing vertices and its
neighbors (i.e red/green/blue vertices which glue red/green/blue triangles in the
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figure). Clearly, the values of the neighbors of the gluing vertices are identical to
that of the previous iteration. Since the constructed eigenvector is “not” invariant
under rotation by 2π

3 , one can create additional two eigenvectors by rotating the

constructed eigenvector by 2π
3 and 4π

3 . Let vR, vR2 be these three eigenvectors.

It remains to show that vI , vR, vR2 and (Riu)top, (R
iu)left, (R

iu)right for i = 0, 1, 2
are linearly independent. Here we use the convention that R0 = I. Consider the
following linear combination∑

p∈{top,left,right}

2∑
i=0

α
(p)
Riu(R

iu)p + αIvI + αRvR + αR2vR2

Similar to last proof, let us focus our attention on top Sn of Sn+1. For above
equation to hold, the values at the top Sn must vanish.

Then, it follows that the following equation must hold

αIv
(top)
I + αRv

(top)
R + αR2v

(top)
R2 + α(top)

u u+ α
(top)
Ru Ru+ α

(top)
R2u R2u = 0

We see that v
(top)
I , v

(top)
R , v

(top)
R2 vanish on the top Sn−1. However, u,Ru,R2u are

nonzero on top Sn−1. Hence, the above equation decouples into two equations

αIv
(top)
I + αRv

(top)
R + αR2v

(top)
R2 = 0(6.1)

α(top)
u u+ α

(top)
Ru Ru+ α

(top)
R2u R2u = 0(6.2)

By linear independence of u,Ru,R2u, we have that α
(top)
u = α

(top)
Ru = α

(top)
R2u = 0.

For contradiction, suppose that there exists nontrivial αI , αR, αR2 which satisfy
equation (6.1). (i.e there exists nontrivial linear combination of red, green, blue
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triangles which sum to zero). But, we see that this would imply αIu + αRRu +
αR2R2u = 0 which would be a contradiction. Repeating this argument for left/right
Sn of Sn+1, we have that all α’s are zeros and we are done. □

The previous two theorems have that if the eigenvectors at SN obey certain
boundary conditions and symmetries, then one can obtain eigenvectors for SN+1

which follows the recursion patterns. From figure 19 and figure 16, one can cer-
tainly keep constructing eigenvectors for SN+2, SN+3, · · · which follow the recursion
patterns. (See figure 22 in Appendix). However, it’s entirely possible that these
eigenvectors are not linearly independent. The following corallaries show that this
is indeed the case and we obtain a lower bound on the multiplicity of adjacency
eigenvectors.

Lemma 6.6. Let u be an adjacency eigenvector of SN with eigenvalue λ which
satisfies the conditions of theorem 6.1. By applying the process in theorem 6.1,
recursively construct eigenvectors for SN+1, SN+2, · · · . Let Un be the set of eigen-
vectors constructed for Sn. Let vn be the eigenvector constructed by tiling u in the

manner of figure 16 for Sn. Let wn = v
(top)
n+1 . Then, wn /∈ span(Un) for all n ≥ N .

(See figure 20)

Figure 20. Can we construct wn from Un?

Proof. Let us proceed by induction. By theorem 6.1, the base case n = N holds.
Suppose the lemma holds upto n = k ≥ N . An eigenvector ui ∈ Un falls into four
categories.

(1) ui = utop for u ∈ Uk−1.
(2) ui = uleft for u ∈ Uk−1.

(3) ui = uright for u ∈ Uk−1.
(4) ui = vk.

It’s clear that wk only has nonzero values on left Sk−1 and right Sk−1 of Sk.
Therefore, (1) cannot be used to construct wk. We also see that (4) has nonzero
values on top Sk−1 of Sk, where (2) and (3) are zeros. Hence, (4) also cannot be
used to construct wk. Lastly, (2) and (3) orthnogonal complements of each other
and have no overlap. By symmetry, the problem now reduces to showing that
(wk)left cannot be constructed from Uk−1. But, (wk)left = wk−1 and by induction
hypothesis, wk−1 /∈ span(Uk−1). □

Corollary 6.7. Let u be an adjacency eigenvector of SN with eigenvalue λ which
satisfies the conditions of theorem 6.1. Let xn be the multiplicity of λ in Sn. Then,
xn+1 ≥ 3xn + 1 for all n ≥ N .
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Proof. Let Un, vn and wn be as above lemma. To check for independence, our goal
is to show that vn /∈ span(Un \{vn}). The set of eigenvectors in Un \{vn} are either
utop, uleft, uright for u ∈ Un−1. Consider the linear combination∑

i

αi,topui,top +
∑
i

αi,leftui,left +
∑
i

αi,rightui,right = αvnvn

where ui ∈ Un−1. Focusing on the top Sn−1 of Sn, for above equation to hold, we
must have that ∑

i

αi,topui = αvnv
(top)
n

But, v
(top)
n = wn−1 by definition. Hence, we have that wn−1 ∈ span(Un−1) if above

equation holds for nontrivial coefficients. By the lemma, this cannot happen and
we are done.

□

Remark 6.8. The above lemma and corollary only relies on where zero and nonzero
values are placed on the Sierpinski gasket. A similar argument can be applied to
show that the eigenvectors contructed recursively from theorem 6.5 are also linearly
independent.

7. Conclusion and future work

In this paper, we have stuided Sieprinski gasket from two different perspectives:
spectral graph theory and p-adic analysis on the number of prime paths. For prime
path counting, this paper has shown that Munch’s argument can be easily extended
to similar fractals beyond the Sierpinski gasket. A natural question is to test how
far this argument can be extended to other fractals beyond n-flakes. From spectral
graph theory perspective, this paper has provided a both empirical and theoretical
insights on where the multiplicity of eigenvalues and the structure of eigenvectors.
However, there are still two open questions which we have not addressed in this
paper.

(1) We have shown that if conditions of the theorems 6.1 and 6.5 are satisfied,
then one can obtain a lower bound on the multiplicity which obeys the
empirical recursion patterns. The empirical result suggests that the mul-
tiplicity of eigenvalues are fully determined by the construction presented
in theorem 5.11, 6.1, and 6.5. For instance, why is it that the eigenvectors
with −2 are only obtained from the recursion described in theorem 6.5?

(2) It also seems that it is a necessary condition for the eigenvectors to vanish
on the corners in order to obtain the recursion patterns. Is there another
way to obtain the recursion patterns without the eigenvectors vanishing on
the corners? If not, what is the reason behind this?

As for potential directions in addressing these questions, one potential approach
is to first show that the adjacency matrix of the Sierpinski gasket is always full rank
and show that the lower bounds of each multiplicies add up to the total number
of vertices. Since we have obtained a lower bound by recursively constructing
eigenvectors from the previous iteration, it would be natural to try to obtain an
upper bound by starting with an eigenvector from iteration above and decompose
it to form an eigenvector in preceding iteration. Furthermore, applying the theory
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of group actions on graphs even at a shallow level has already provided us with a
lot of insights. It may be wise to further explore this direction. For instance, one
could treat assignment of values to the vertices as colorings and apply Burnside’s
lemma to count the number of eigenvectors.

Another underdeveloped approach is to study Sierpinski gasket by performing
a similar analysis on the Laplacian matrix which allows us to leverage tools like
Graph Fourier Transform. Even doing analysis on adjacency matrix shows that
orthonormal basis of fractal graphs show alternating patterns and values vanishing
on the “boundaries” of the fractal. A spectral analysis on the Laplacian matrix
may provide us with more insights on the structure of the eigenvectors for adjacency
matrices since a Laplacian eigenvector is also an eigenvector of the adjacency matrix
for d-regular graphs.

Lemma 7.1. Let G be a d-regular graph. (i.e all vertices have degree d) Then, an
eigenvector of the Laplacian matrix of G is also an eigenvector of the adjacency
matrix of G.

Proof. Let u be an eigenvector of the Laplacian matrix of G with eigenvalue λ.
Then, we have that

Lu = λu ⇐⇒ (D −A)u = λu ⇐⇒ Au = Du− λu ⇐⇒ Au = (d− λ)u

Therefore, u is an eigenvector of the adjacency matrix ofG with eigenvalue d−λ. □

While the Sierpinski gasket is not a regular graph, it “converges” to a 4-regular
graph since all vertices except the corners have degree 4. Therefore, one could
potentially approximate the adjacency eigenvectors of the Sierpinski gasket with
the Laplacian eigenvectors.

8. Acknowledgements

I would like to thank my advisor, Professor Jonathan Pakianathan for his guid-
ance and support throughout the project. I would not have been able to complete
this work without his help. I would also like to thank Professor Douglass C. Haessig
who first introduced me to the topic of p-adic analysis and Ihara zeta functions,
but most of all for getting me interested in mathematics. I do not think I would
have pursued mathematics as a major without Professor Haessig’s and Professor
Gonek’s encouragement early on in my undergraduate career. Lastly, I would like
to thank Professor Iosevich and Professor Geba for their support throughout the
years. They have certainly taught me that mathematics is not a spectator sport.

References

[1] Munch, Elizabeth, Counting Prime Paths in Fractals Built from Triangles, journal of under-
graduate research, 2008.

[2] Terras, Audrey, Zeta Functions of Graphs: A Stroll through the Garden, Cambridge University

Press, 2010.
[3] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internatl. J. Math., 3 (1992), 717-797

[4] Godsil, Chris, Royle, Gordon, Algebraic Graph Theory, Springer, 2001.

[5] Ding, Xue, Jiang, Tiefeng, Spectral distribution of adjacency matrix and Laplacian matrices
of random graphs, The Annals of Applied Probability, 2010



26 SANGWU LEE

Appendix

Python code for Sierpinski gasket generation.

import networkx as nx

def _sierpinski(last, ends):

n = len(last.nodes)

top = nx.relabel_nodes(last, { i:i for i in last.nodes })

left = nx.relabel_nodes(last, { i:i+n for i in last.nodes })

right = nx.relabel_nodes(last, { i:i+2*n for i in last.nodes })

top = nx.relabel_nodes(

top, { ends["left"] : ends["top"] + n })

left = nx.relabel_nodes(

left, { ends["right"] + n : ends["left"] + 2 * n })

right = nx.relabel_nodes(

right, { ends["top"] + 2 * n : ends["right"] })

ends = {

"top":ends["top"],

"left":ends["left"] + n,

"right":ends["right"] + 2 * n

}

x = nx.compose_all([top, left, right])

update = { node : idx for idx, node in enumerate(x.nodes) }

x = nx.relabel_nodes(x, update)

ends = { end: update[node] for end, node in ends.items() }

return x, ends

def sierpinski(n:int):

last = nx.complete_graph(3)

ends = { "top":0, "left":1, "right":2 }

for _ in range(n):

last, ends = _sierpinski(last, ends)

return last, ends

Example usage.

G, ends = sierpinski(2)

nx.draw(G)

Python code for empirical spectral distribution.

import seaborn as sns

import numpy as onp

# cycle graph

G = nx.cycle_graph(64)
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Figure 21. Sierpinski gasket of 2nd iteration.

A = nx.laplacian_spectrum(G)

A = A.astype(float)

sns.histplot(A, bins=42)

# grid graph

G = nx.grid_graph((64,64))

A = nx.laplacian_spectrum(G)

A = A.astype(float)

sns.histplot(A, bins=42)

# sierpinski gasket

G, ends = sierpinski(5)

A = nx.adjacency_spectrum(G)

A = A.astype(float)

sns.histplot(A, bins=42)

Python code for dominant eigenvector analysis.

import matplotlib.pyplot as plt

import numpy as np

G, corners = sierpinski(1)

A = nx.to_numpy_array(G)

eigenvalues, eigenvectors = np.linalg.eig(A)

# Sort eigenvalues and eigenvectors based on eigenvalues

sorted_indices = np.argsort(eigenvalues)[::-1]

sorted_eigenvalues = eigenvalues[sorted_indices]

sorted_eigenvectors = eigenvectors[:, sorted_indices]

# Select the eigenvector you want to plot

eigenvector_to_plot = sorted_eigenvectors[:, 0]
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# Create a dictionary mapping nodes to their eigenvector values

eigenvector_values = {

node: eigenvector_to_plot[i]

for i, node in enumerate(G.nodes)

}

# Draw the graph with node colors based on eigenvector values

pos = nx.spring_layout(G) # positions for all nodes

nx.draw(

G, pos, node_color=list(eigenvector_values.values()),

cmap=plt.cm.viridis

)

nx.draw_networkx_nodes(

G, pos, node_color=list(eigenvector_values.values()),

cmap=plt.cm.viridis, node_size=128

)

# Add a colorbar

sm = plt.cm.ScalarMappable(cmap=plt.cm.viridis)

sm.set_array([])

plt.colorbar(sm)

# Display the plot

plt.show()

Python code for multiplicity analysis.

import numpy as onp

from collections import Counter

for i in range(10):

print(f"Sierpinski iteration: {i}")

G, corners = sierpinski(i)

spectrums = nx.adjacency_spectrum(G)

counter = Counter([onp.round(n,8) for n in spectrums])

multiples = Counter([count for _, count in counter.items()])

spectrums = sorted(spectrums)

# print spectral gap as well

print("the gap", spectrums[-1] - spectrums[-2])

for factor, count in sorted(multiples.items()):

print(factor, "^", count)

print("\n#####\n")

for spectrum, count in counter.most_common():

print(spectrum, count)
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print("\n")

Example output.

Sierpinski iteration: 0

the gap (2.999999999999999+0j)

1 ^ 1

2 ^ 1

#####

(-1+0j) 2

(2+0j) 1

Sierpinski iteration: 1

the gap (2.6180339887498945+0j)

1 ^ 2

2 ^ 2

#####

(0.61803399+0j) 2

(-1.61803399+0j) 2

(3.23606798+0j) 1

(-1.23606798+0j) 1

Sierpinski iteration: 2

the gap (0.8096973139654096+0j)

1 ^ 4

2 ^ 4

3 ^ 1

#####

(-2+0j) 3

(2.9687598+0j) 2

(0.84179978+0j) 2

(-0.25767832+0j) 2

(-1.55288127+0j) 2

(3.77845712+0j) 1

(0.71083145+0j) 1

(-1.48928857+0j) 1

(-1+0j) 1
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Figure 22. Constructing eigenvectors of eigenvalue −2 for SN+2

from eigenvectors of SN . These are all eigenvectors of −2 for SN+2.
The question is whether these eigenvectors are linearly indepen-
dent.


