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1 Contingency Tables and Markov Chains

The problem motivating this work is that of sampling contingency tables. A
contingency table A is a matrix with nonnegative integer entries whose rows
and columns sum to some specified values. In other words, given vectors
r = (ri)

m
i=1 and c = (cj)

n
j=1 of positive integers, a contingency table with row

sums r and column sums c is some A ∈ Matm×n(N) such that

ri =
n∑
t=1

Ai,t and cj =
m∑
t=1

At,j (1)

for each i ∈ [m] and j ∈ [n] (we use the notation [k] = {1, . . . , k}). Notice that
it must be that

∑
ri =

∑
cj for such a contingency table to possibly exist. We

are motivated by the problem of sampling uniformly from Ω(r, c), the space of
all contingency tables with row sums r and column sums c.

Throughout the majority of this discussion, the primary method of sam-
pling will be using Markov chains. The definitions and main results deal-
ing with Markov chains are primarily acquired from Mark Jerrum’s textbook
Counting, Sampling and Integrating: Algorithms and Complexity [9]. A (finite-
space) Markov chain is a sequence of random variables X0, . . . , Xt, . . . with
values in a finite state space Ω such that

Pr(Xt = a | X0 = a0, X1 = a1, . . . , Xt−1 = at−1) = Pr(Xt = a | Xt−1 = at−1)
(2)

for all t ∈ N and a0, . . . , at ∈ Ω. Specifically, we consider time-homogeneous
Markov chains, where the transition probability is independent of t. Thus, we
may define

P (a, b) := Pr(Xt = b | Xt−1 = a) (3)
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and call P the Markov chain’s transition matrix. It can be easily seen that for
any t ∈ N,

Pr(Xt = b | X0 = a) = P t(a, b). (4)

We define the period of state i to be pi := gcd{t | P t(i, i) > 0}. We then say
that a Markov chain is aperiodic if there exists a state i such that pi = 1. We
say a Markov chain is irreducible or connected if for every two states i, j ∈ Ω,
there exists some t ∈ N such that P t(i, j) > 0. A Markov chain that is both
aperiodic and irreducible is said to be ergodic.

For any probability distribution µt over the elements of Ω, we may think
of µt+1 = µtP as the distribution acquired after performing a transition of
the Markov chain on µt. We say that a distribution π on Ω is a stationary
distribution if π = πP . With these definitions, we can state a fundamental
result.

Theorem 1. An ergodic Markov chain has a unique stationary distribution
π; moreover, the Markov chain tends to π in the sense that P t(a, b) → πb as
t→∞, for all a, b ∈ Ω.

This result implies that an ergodic Markov chain can be used to sample
elements from a distribution close to π over Ω. We can start with any element
a ∈ Ω and transition to other elements according to the rules defined by the
Markov chain. How close the ending distribution is to π is dependent on t,
the number of transitions and the transition matrix. In general, the more
transitions we perform, the closer the distribution gets to π. Thus, a Markov
chain is useful for sampling if its stationary distribution matches the desired
distribution over Ω we wish to sample from and if it can quickly converge to
the stationary distribution.

One useful result in computing the stationary distribution of a Markov
chain is the following:

Theorem 2. Suppose P is the transition matrix of a Markov chain. If the
function π′ : Ω→ [0, 1] satisfies

π′(x)P (x, y) = π′(y)P (y, x) (5)

for all x, y ∈ Ω, and ∑
x∈Ω

π′(x) = 1,

then π′ is a stationary distribution of the Markov chain.
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The condition described in eq. (5) is called the detailed balance condition, and
a Markov chain whose stationary distribution satisfies this condition is said to
be reversible.

To measure how far two given distributions are from each other, we define
the total variation distance between the distributions µ and ν as

dTV(µ, ν) =
1

2

∑
x∈Ω

|µ(x)− ν(x)| = 1

2
||µ− ν||1. (6)

From this, we can talk about the important notion of the mixing time τ(ε) of
an ergodic Markov chain, defined as

τ(ε) = min{t | ∀i ∈ Ω, dTV(eiP
t, π) ≤ ε}, (7)

where ei is the distribution with ei(i) = 1 and ei(j) = 0 for j 6= i.
The problem of sampling using Markov chains is therefore the problem

of designing an ergodic Markov chain on a given state space that has the
desired stationary distribution (e.g. if you wish to sample uniformly from
Ω, then π must be the uniform distribution) and which efficiently reaches
the stationary distribution. Traditionally, we take “efficiently reaching the
stationary distribution” or “the Markov chain mixes fast” to mean that the
mixing time τ(ε) is bounded by a polynomial in 1/ε and any parameters of the
given problem (e.g. m and n in the problem of sampling contingency tables).

1.1 Previous work in sampling contingency tables

In 2002, Morris [16] showed that there exists an efficient (polynomial time)
algorithm to sample contingency tables provided that the row and column sums
are sufficiently large, specifically ri = Ω(n3/2m logm) and cj = Ω(m3/2n log n).
The algorithm they present is based on sampling continuously from the interior
of a convex polytope acquired from the row and column sums.

Diaconis and Gangolli [3] present the following Markov chain for sampling
contingency tables. Given a contingency table A, select a pair of distinct rows
i1 6= i2 uniformly from the set of all such pairs and select a pair of distinct
columns j1 6= j2 from the set of all such pairs. Then, create a new contingency
table A′ whose entries are the same as those in A except for the following
adjustments:

A′i1,j1 = Ai1,j1 + 1 A′i1,j2 = Ai1,j2 − 1

A′i2,j1 = Ai2,j1 − 1 A′i2,j2 = Ai2,j2 + 1
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The Markov chain then transitions from A to A′ if the entries in A′ are non-
negative. Although it is easy to describe, researchers have had a difficult time
analyzing the mixing time of this Markov chain.

In a paper from 2017, Kayibi et al. [12] attempt to show that this Markov
chain mixes fast by using a canonical path argument. However, we managed to
find a counterexample to one of the results used in the argument. Specifically,
the paper states the following claim:

Proposition 3 (Corollary 8 from [12]). Let N be the number of all m × n
contingency tables of fixed row and column sums. The number of contingency
tables having k fixed cells (in lexicographic ordering) is at most N

mn−k
mn .

A counterexample to this proposition can be seen as follows: fix n ∈ Z+

and let r = c = (1, 1, . . . , 1). Then the set of n × n contingency tables with
these row and column sums is exactly the set of tables acquired by permuting
the rows of the n×n identity matrix. So in this case, N = n!. The set of these
contingency tables with the first cell fixed to be 1 is the set of tables acquired
by permuting the last n− 1 rows of the identity matrix, so there are (n− 1)!
such contingency tables. Consequently, there are n! − (n − 1)! tables with 0
fixed as the first entry. The greater of these two values is n!−(n−1)!. We used

k = 1, so the bound given by the proposition is N
mn−k
mn = (n!)

n2−1

n2 . However, if

we take, for example, n = 7, our bound is (7!)
72−1

72 < 4235 whereas the actual
number of contingency tables with one fixed entry is 7! − 6! = 4320. This
shows that the proposition does not hold in general and that there must exist
a breakdown in their argument. However, we can see that, using Stirling’s
approximation for n!,

lim
n→∞

n!− (n− 1)!

(n!)
n2−1

n2

= lim
n→∞

(n− 1)!(n− 1)

n!
(n!)

1
n2 (8)

= lim
n→∞

(
1− 1

n

)(√
2πn

(n
e

)n) 1
n2

(9)

=

(
lim
n→∞

1− 1

n

)(
lim
n→∞

(2πn)
1

2n2

)( limn→∞ n
1
n

limn→∞ e
1
n

)
(10)

= 1. (11)

Thus, it is unclear, given only this counterexample, whether this bound is only
off by a constant or whether there is a more fundamental error in the argument
provided by Kayibi et al. A more in-depth analysis of [12] is needed.
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2 Young Tableaux

We now turn our attention to the study of Young tableaux. Young tableaux,
as we illustrate below, are innately connected to contingency tables, so study-
ing how to sample these objects may provide us with a method of sampling
contingency tables.

A Young diagram (sometimes called a Ferrers diagram) of shape λ =
(λ1, λ2, . . . , λk) is an array of k left-justified rows of cells such that row i has
length λi and λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1. A standard Young tableau of shape λ
is a Young diagram filled with the integers from [n] where n =

∑r
i=1 λi such

that the integers are strictly increasing both from left to right within each
row and from top to bottom within each column (so each integer from [n]
appears precisely once). A semistandard Young tableau is a generalization in
which the integers from [n] are allowed to appear more than once, and the row
condition is relaxed to require that integers are only weakly increasing from
left to right. Such a tableau is said to have weight µ = (µ1, . . . , µn) if each
integer i appears µi times. A standard Young tableau could be considered a
semistandard Young tableau with weight µ = (1, 1, . . . , 1). The following from
left to right are examples of a Young diagram, a standard Young tableau, and
a semistandard Young tableau, each with shape λ = (4, 4, 2, 1):

1 2 5 10
3 7 8 11
4 9
6

1 1 5 5
2 3 6 7
3 5
4 (12)

2.1 Connection to contingency tables

For a given shape λ and a given weight µ, the number of semistandard Young
tableaux of shape λ and weight µ is called the Kostka number Kλ,µ. Young
tableaux and Kostka numbers have connections to many other areas of math-
ematics such as representation theory, symmetric functions, and the study of
longest increasing subsequences (see e.g. [14], [15], [19], [20]). We are most
interested in the connection between Young tableaux and contingency tables
through the Robinson-Schensted-Knuth (RSK) correspondence. This corre-
spondence provides a bijection between the set of contingency tables with
specified row sums r and column sums c and a set of pairs of semistandard
Young tableaux of the same shape, one with weight r and one with weight c.

The RSK correspondence works by first giving a injection from contingency
tables to two-lines arrays whose columns are in lexicographic order. Let A
be a contingency table with row sums r = (r1, . . . , rm) and column sums
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c = (c1, . . . , cn). Let N =
∑
ri =

∑
cj. We will create a 2 × N array B by

adding a total of Ai,j columns
(
i
j

)
to B. Placing these columns in lexicographic

order (i.e. column
(
i
j

)
comes before column

(
i′

j′

)
if i < i′; if i = i′, then

(
i
j

)
comes before column

(
i′

j′

)
if j < j′) yields a unique two-line array. The resulting

array will have ri i’s in its first row and cj j’s in its second row. For example,
the following contingency table maps to the given two-line array:1 0 1

3 2 2
0 0 4

 −→ (
1 1 2 2 2 2 2 2 2 2 3 3 3 3
1 3 1 1 1 2 2 3 3 3 3 3 3 3

)
(13)

This two-line array can then be read column-by-column from left to right
to simultaneously build two semistandard Young tableaux of the same shape
using the Schensted “row-bumping” algorithm. The shape of the tableaux
may be different for different contingency tables. The details of this process is
outside the scope of this work, but a thorough explanation of this algorithm
and the RSK correspondence can be found in [6] and [13].

This correspondence provides a possible route of sampling contingency ta-
bles through the sampling of semistandard Young tableaux. That is, if we can
determine how to efficiently sample pairs of Young tableaux of the same shape
with weights r and c, then we can use the RSK correspondence to efficiently
acquire a sampled contingency table with row sums r and column sums c.

2.2 Connection between sampling and counting

The problem of sampling is innately connected to the problem of counting
when it comes to Young tableaux. If we have an efficient method of counting
the number of Young tableaux with any given shape and weight, then we can
efficiently sample Young tableaux of a given shape and weight. The other
direction holds as well with a slight caveat; if we have an efficient method of
sampling Young tableaux of any given shape and weight, then we can efficiently
approximate the number of Young tableaux with a given shape and weight
Because our work focuses on sampling Young tableaux, we will specify how
counting would give us sampling, but the other direction uses the same general
idea but in reverse.

To see that efficient counting implies efficient sampling, assume that we
have an efficient method of calculating Kλ,µ for any λ and µ. Now fix some
shape λ = (λj)

k
j=1 and weight µ = (µi)

n
i=1, and let a be the largest entry in

a tableau with weight µ, that is, a = max{i | µi > 0}. Let Ω be the set of
all semistandard Young tableaux with shape λ and weight µ. We will sample
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a random Young tableau from Ω by randomly selecting the location of the
largest entry and recursively filling out the rest of the tableau.

A corner of a Young diagram is a cell at the end of both its row and its
column. Let c be the number of corners of λ, and let rt be the row on which
the tth corner lies. Let λt = (λtj)

k
j=1 be the shape derived from λ by removing

the tth corner, so

λtj =

{
λj if j 6= rt

λj − 1 if j = rt
. (14)

Additionally, let µ′ = (µ′i)
n
i=1 be the weight derived from µ by removing one

count of the entry a, so

µ′i =

{
µi if i 6= a

µi − 1 if i = a
. (15)

Since a is the largest entry in µ, it must be located on a corner of any Young
tableau with weight µ. Given the tth corner of λ, we can describe the proba-
bility that a is located at that corner of a Young tableau uniformly selected
from Ω by

pt =
Kλt,µ′

Kλ,µ

. (16)

But if we can efficiently calculate Kostka numbers, then we can efficiently
calculate pt. Thus, we can efficiently determine the correct probabilities with
which to place a on a corner of our Young tableau. After placing a on a
corner, the remainder of the tableau is just a smaller Young tableau, so we
can recursively perform the same procedure to fill it out as well. When we
have finished filling it out, the resulting tableau is one that has been uniformly
selected from Ω.

3 Sampling Standard Young Tableaux

We first discuss the case of sampling standard Young tableaux. These tableaux
have weight µ = (1, 1, . . . , 1), and the RSK correspondence creates a bijection
from contingency tables with row sums r and column sums c to pairs of Young
tableaux with weights r and c. Thus, the ability to sample standard Young
tableaux could provide us a way of sampling contingency tables with all row
and column sums equal to 1. Specifically, we would need to be able to sample
from the set of all Young tableaux with weight µ. This could be done, for
example, by first sampling a Young diagram with shape λ with respect to the
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Plancherel measure (for example, see [11]) and then sampling a Young tableau
with shape λ. However, this special case of sampling contingency tables, as
discussed in Section 1.1, is not particularly interesting, as the set of contin-
gency tables with all row and column sums equal to 1 is just the set of square
matrices whose rows are a permutation of the identity matrix of the same size,
an easy set to sample from. However, we study the case of sampling standard
Young tableaux both because it is mathematically interesting in its own right
and also because understanding this special case may help us understand the
more general problem of sampling semistandard Young tableaux.

3.1 Previous work in sampling standard Young tableaux

Mathematicians have long known formulas for the number of standard Young
tableaux of a given shape. Frobenius in 1900 [5] and Alfred Young (for whom
the tableaux are named) in 1902 [21] were the first to develop such a formula
although it was not convenient to work with. Later, in 1954, Frame, Robinson,
and Thrall [4] found a much simpler formula which is now known as the hook
length formula.

Given a Young diagram of shape λ, the hook Hλ(i, j) of the cell (i, j) is
the set of cells to the right of (i, j) in the same row and the cells below (i, j)
in the same column, along with (i, j) itself. For example, the hook of (2, 2) is
marked in the following diagram:

• • •
•

(17)

The hook length, denoted hλ(i, j), is the number of cells in Hλ(i, j). So, in
eq. (17) above, hλ(2, 2) = 4. If we let fλ be the number of Young tableaux of
shape λ, then the following result states the hook length formula, established
in [4].

Theorem 4. Given a shape λ with size n,

fλ =
n!∏
hλ(i, j)

, (18)

where the product is over all cells of the Young diagram with shape λ.

The hook length formula is an easy formula to compute. Therefore, using the
connection between counting and sampling discussed in Section 2.2, we can
use it to efficiently sample standard Young tableaux.
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In 1979, Greene, Nijenhuis, and Wilf [7] provided an alternative proba-
bilistic proof of the hook length formula. Their goal in reproving the result
was to establish a better combinatorial explanation of why the hooks appear
in the formula, as the proof provided by Frame, Robinson, and Thrall allows
for no intuitive explanation. A convenient product of their new proof is that
it gives an alternative and more efficient method of sampling standard Young
tableaux, described as follows.

Given a Young diagram of shape λ with size n, randomly select a cell (i, j)
with uniform probability 1/n. Then, randomly select a new cell (i′, j′) from
Hλ(i, j) \ {(i, j)} with uniform probability 1/(hλ(i, j)− 1). Select another cell
from Hλ(i

′, j′) \ {(i′j′)}, and continue in the same manner until a corner is
selected. Label this corner (α, β) and call this full process a single trial. To
sample a standard Young tableau with shape λ, we will perform n trials. At
the end of trial j, we will fill in the final cell (α, β) with the integer n− j + 1
and remove the cell from the diagram. At the end of the n trials, we will have
filled out our original diagram completely and therefore have sampled a Young
tableau. The probabilistic proof in [7] ensures that our tableau is selected from
the uniform distribution over the set of standard Young tableaux of shape λ.

Each trial in the above algorithm will select a sequence of at most n cells,
and n trials are performed. Thus, the algorithm has a time complexity of
O(n2) and, hence, is an efficient way of sampling standard Young tableaux.

3.2 A proposed Markov chain

Although a process for sampling uniformly from the set of standard Young
tableaux of a given shape λ already exists, we wish now to explore an alter-
native approach of algorithmic sampling by using a Markov chain. We do
this because we hope that sampling via Markov chains will be fruitful in the
semistandard case, and exploring this sampling method in the simpler case of
sampling standard Young tableaux may aid our understanding of sampling in
the semistandard case. Fix λ = (λr)

k
r=1 with λ1 ≥ · · · ≥ λk, and let n =

∑
λi.

Let Ω be the set of all standard Young tableaux with shape λ. We wish to
sample uniformly from Ω.

We propose the following Markov chain MCswap on Ω. Given T ∈ Ω, let
T [i, j] with i, j ∈ [n] be the table acquired from switching the locations of i
and j in T . Now, for Tt ∈ Ω, select i and j each uniformly at random from [n].
If Tt[i, j] is a valid Young tableau (meaning the row and column constraints
are satisfied), then let Tt+1 = Tt[i, j]. Otherwise, let Tt+1 = Tt. Let P be the
corresponding transition matrix.
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In the following discussion, it will be useful to prove the following lemma
about swaps that can be performed on corners.

Lemma 5. Let T ∈ Ω. If α ∈ [n − 1] is located at a corner of T , then
T [α, α + 1] is a valid Young tableau.

Proof. Consider the two spots of T local to both α and α+1 which, in general,
look like:

. . . β1
...

β2 α

...

. . . γ1
...

γ2 α+1 γ3

... γ4
. . .

Because α is at a corner, the row and column conditions ensure that these two
diagrams can only overlap at β1 = γ2 or β2 = γ1.

Now, if α and α+1 were to be swapped, we need to check the resulting row
and column conditions. Because α+1 < γ3, we immediately know α < γ3, and
likewise for γ4. Similarly, because α > β1, we immediately know α + 1 > β1,
and likewise for β2. Now, we have that γ1 < α+1. But because α only appears
once in T , and γ1 6= α, it must be that γ1 < α. The same can be said for γ2.
Thus, the row and column conditions local to α and α+1 will still be satisfied
after α and α + 1 are swapped. All the other row and column conditions for
T [α, α+1] are satisfied by virtue of their being satisfied in T . Thus, T [α, α+1]
is a valid Young tableau.

Using this lemma, we can establish the following result.

Proposition 6. MCswap is irreducible.

Proof. Fix X0, Y0 ∈ Ω. We will show that there exists some t for which
P t(X0, Y0) > 0; equivalently, we will show that we can make a series of swaps
on X0 to transition it into Y0. We will do this by first making X0 match Y0 in
the location of n, then in the location of n − 1, etc., until they match for all
integers from 1 to n.

Let rn be the row that contains the number n in Y0. Note that n must
be located at the end of row rn in Y0 and that this location is a corner.
We will make swaps on X0 to move n to the end of row rn. Let α be the
number currently located at the end of row rn on X0. If α = n, we are
done, in which case call X ′0 = X0. Otherwise, by Lemma 5, we can make
a series of swaps, say α with α + 1, then α + 1 with α + 2, etc., such that
each intermediate tableau is a valid Young tableau, until we get the tableau
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X ′0 = X0[α, α+ 1][α+ 1, α+ 2] · · · [n− 1, n] which has n at the end of row rn.
Now X ′0 and Y0 match in the location of n.

Now, remove n from bothX ′0 and Y0, giving us two smaller Young tablueaux
of size n− 1 with shape λ′ = (λ′r)

k
r=1 with

λ′r =

{
λr if r 6= rn

λr − 1 if r = rn
. (19)

Call these tableaux X1 and Y1. Now we can use the same process detailed
above to transition X1 to a Young tableau X ′1 that matches Y1 in the location
of n−1. After removing n−1 from both X ′1 and Y1, we get two Young tableaux,
X2 and Y2, of size n−2. We can repeat this process n−2 more times until the
tableau derived from X0 matches Y0. Each swap that we perform has a positive
probability of occurring in the Markov chain, so we have P t(X0, Y0) > 0, where
t is the total number of swaps.

It follows easily that our Markov chain is ergodic.

Proposition 7. MCswap is ergodic.

Proof. First note that for any X ∈ Ω, P(X,X) ≥ Pr(i = j) = 1/n. Thus, the
periodicity of X is 1, so the Markov chain is aperiodic. With Proposition 6,
this implies that the Markov chain is ergodic.

Now, by Theorem 1, we can conclude that this Markov chain has some
stationary distribution π. Furthermore, just as we desire, the stationary dis-
tribution is the uniform distribution as shown here:

Proposition 8. The stationary distribution π of MCswap is uniform on Ω.

Proof. Take any two distinct tableaux X, Y ∈ Ω such that Y differs from X
by a single swap, i.e. there exist distinct α, β ∈ [n] such that X[α, β] = Y .
Then see that P(X, Y ) = Pr({i, j} = {α, β}) = 2/n2, and by symmetry
P(Y,X) = 2/n2. For all other pairs X, Y that do not differ by a single swap
(either X = Y , or P(X, Y ) = 0), we also have P(X, Y ) = P (Y,X). Thus, P
is symmetric.

Let π′ be the uniform distribution on Ω. Then for any x, y ∈ Ω, we get

π′(x)P(x, y) = π′(y)P(y, x). (20)

By Theorem 2, we know that π′ is a stationary distribution for our Markov
chain. Since the chain is ergodic, we know by Theorem 1 that the stationary
distribution is unique. Thus, π = π′ is the uniform distribution on Ω.
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So we now know that we can use MCswap to sample uniformly from the
set of all standard Young tableaux of some fixed shape. Now we would like to
bound the mixing time of this Markov chain. There are two primary methods
to bound the mixing time of a Markov chain, one which uses “couplings” and
one which uses “canonical paths.”

3.3 Coupling for MCswap

A Markovian coupling for a given Markov chain with space Ω and transition
matrix P is a Markov chain (Xt, Yt) on Ω × Ω with the following transition
probabilities:

Pr(Xt+1 = a′ | Xt = a, Yt = b) = P (a, a′),

Pr(Yt+1 = b′ | Xt = a, Yt = b) = P (b, b′).
(21)

The coupling’s transition matrix is often denoted P̂ . Essentially, it is a pair
of two Markov chains run in parallel such that each individual chain looks like
the Markov chain defined by P but which can be dependent on each other.
Using such couplings can often be used to bound the mixing time of a Markov
chain by using the following result often called the “Path Coupling theorem”,
first found in [2]:

Theorem 9. For some Markov chain on Ω with transition matrix P , fix a
coupling (Xt, Yt). Let G = (Ω, E) be a graph and d : E → R be a function
that induces distances on Ω × Ω. If there exists some α > 0 such that for all
{a, b} ∈ E,

E[d(Xt+1, Yt+1) | Xt = a, Yt = b] ≤ (1− α)d(a, b), (22)

then

τ(ε) ≤ 1

α
log

(
dmax
ε

)
, (23)

where dmax = max{d(a, b) | (a, b) ∈ Ω2}.

[2] adds the remark that we can also get a bound on the mixing time if we
assume the premise but with α = 0, albeit a weaker one.

To investigate whether such a method could be used to bound the mixing
time of MCswap, we construct the graph G = (Ω, E) where E = {{a, b} |
P(a, b) > 0}. The distance function we define on G is the natural one; the
whole of d on Ω2 is induced by letting d(a, b) = 1 for every {a, b} ∈ E with
a 6= b.
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Unfortunately, however, we can show that with this definition of G and
d, the Path Coupling theorem cannot be used to bound the mixing time of
MCswap. We do this by defining a linear program that minimizes, over all pos-
sible couplings, the expected distance between two states after one transition
of the Markov chain. It is defined more completely as follows.

Fix some (a, b) ∈ E. For every (a′, b′) ∈ Ω2, let xa′,b′ = P̂((a, b), (a′, b′)) be

a variable to be determined by our linear program. Our transition matrix P̂
must define a coupling, so we must satisfy the constraints in eq. (21). These
constraints are equivalent to∑

b′∈Ω

P̂((a, b), (a′, b′)) = P(a, a′) for all a′ ∈ Ω,∑
a′∈Ω

P̂((a, b), (a′, b′)) = P(b, b′) for all b′ ∈ Ω.
(24)

Translating this into the variables in our linear program, we get the following
constraints: ∑

b′∈Ω

xa′,b′ = P(a, a′) for all a′ ∈ Ω,∑
a′∈Ω

xa′,b′ = P(b, b′) for all b′ ∈ Ω.
(25)

Because all possible outcomes are represented by the probabilities xa′,b′ , we
may consider including the constraint∑

a′∈Ω

∑
b′∈Ω

xa′,b′ = 1, (26)

but this is taken care of by the constraints in eq. (25) and the fact that P is
a transition matrix, as∑

a′∈Ω

∑
b′∈Ω

xa′,b′ =
∑
a′∈Ω

P(a, a′) = 1. (27)

The only other constraints we need are those that force our variables to rep-
resent probabilities:

0 ≤ xa′,b′ ≤ 1 for all (a′, b′) ∈ Ω2. (28)

Note, however, that the constraints listed in eq. (25) automatically provide an
upper bound on the variables, so we do not need to include the upper bound
here; that is, we only need

xa′,b′ ≥ 0 for all (a′, b′) ∈ Ω2. (29)
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Now, we want to know if there exists a coupling such that the expected
value found in eq. (22) is strictly less than d(a, b) = 1. Thus, we wish to
minimize the following objective function:

E[d(Xt, Yt) | Xt = a, Yt = b] =
∑

(a′,b′)∈Ω

d(a′, b′)xa′,b′ . (30)

With this linear program now defined, we can use it to show that the Path
Coupling theorem will not help us bound the mixing time of our Markov chain
in general.

Proposition 10. Using the näıve graph G = (Ω, E) and distance d defined
above, the Path Coupling theorem cannot be used to bound the mixing time of
MCswap.

Proof. Fix the shape λ = (3, 2, 1), and consider the pair of Young tableaux

a = 1 2 4
3 5
6

and b = 1 2 3
4 5
6

. (31)

Since a and b differ by a swap, {a, b} ∈ E.
Notice because each xa′,b′ ≥ 0, the constraints defined in eq. (25) for which

either P(a, a′) = 0 or which P(b, b′) = 0 force the corresponding variables
xa′,b′ = 0. Thus, the only nonzero variables are those xa′,b′ such that both
P(a, a′) > 0 and P(b, b′) > 0.

By analyzing b, we can see that the only tableau it can transition to, besides
a and b itself, is

c = 1 2 3
4 6
5

. (32)

The only tableaux that a can transition to, besides b and a itself, are

d = 1 3 4
2 5
6

, e = 1 2 5
3 4
6

, f = 1 2 4
3 6
5

, and g = 1 2 6
3 5
4

. (33)

With the rules that govern MCswap, we have P(b, a) = P(b, c) = P(a, b) =
P(a, d) = P(a, e) = P(a, f) = P(a, g) = 1/18, P(b, b) = 16/18, and P(a, a) =
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13/18. Thus, the constraints from eq. (25) translate to the following:

xa,a + xb,a + xd,a + xe,a + xf,a + xg,a =
1

18
, (34)

xa,b + xb,b + xd,b + xe,b + xf,b + xg,b =
16

18
, (35)

xa,c + xb,c + xd,c + xe,c + xf,c + xg,c =
1

18
, (36)

xa,a + xa,b + xa,c =
13

18
, (37)

xb,a + xb,b + xb,c =
1

18
, (38)

xd,a + xd,b + xd,c =
1

18
, (39)

xe,a + xe,b + xe,c =
1

18
, (40)

xf,a + xf,b + xf,c =
1

18
, (41)

xg,a + xg,b + xg,c =
1

18
. (42)

Additionally, we still have the constraints xi,j ≥ 0 for each variable in consid-
eration. By analyzing the tableaux, we get

d(a, c) = d(d, b) = d(e, b) = d(f, b) = d(g, b) = 2, (43)

d(d, c) = d(e, c) = d(g, c) = 3, (44)

d(i, i) = 0, and d(i, j) = 1 for all other pairs (i, j) in consideration. This gives
us the following objective function from eq. (30):

minimize Z = xa,b + 2xa,c + xb,a + xb,c + xd,a + 2xd,b + 3xd,c + xe,a + 2xe,b

+ 3xe,c + xf,a + 2xf,b + xf,c + xg,a + 2xg,b + 3xg,c. (45)

Now that we have the linear program defined, we want to show that its
optimum value is strictly larger than d(a, b) = 1, as this implies that the Path
Coupling theorem does not apply. We will do this by considering the dual of
our linear program:

maximize Z ′ =
1

18
y1 +

16

18
y2 +

1

18
y3 +

13

18
y4 +

1

18
y5 +

1

18
y6 +

1

18
y7

+
1

18
y8 +

1

18
y9 (46)
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subject to y1 + y4 ≤ 0 y1 + y7 ≤ 1 (47)

y2 + y4 ≤ 1 y2 + y7 ≤ 2 (48)

y3 + y4 ≤ 2 y3 + y7 ≤ 3 (49)

y1 + y5 ≤ 1 y1 + y8 ≤ 1 (50)

y2 + y5 ≤ 0 y2 + y8 ≤ 2 (51)

y3 + y5 ≤ 1 y3 + y8 ≤ 1 (52)

y1 + y6 ≤ 1 y1 + y9 ≤ 1 (53)

y2 + y6 ≤ 2 y2 + y9 ≤ 2 (54)

y3 + y6 ≤ 3 y3 + y9 ≤ 3 (55)

Now, consider the assignment (yi)
9
i=1 = (1, 2, 1,−1,−2, 0, 0, 0, 0). This

assignment satisfies the constraints above, and with it, the objective function
evaluates to Z ′ = 19/18. It is a well-know result (for example, see [8]) that
all feasible solutions of the dual of a linear program provide a bound (lower
or upper, depending on whether the objective is to minimize or maximize,
respectively) on the optimum value of the primal linear program. Thus, we
have Z ≥ 19/18. This implies that our linear program has an optimum value
strictly greater than 1 = d(a, b), and hence, the Path Coupling theorem cannot
provide a bound forMCswap, given our choice of graph and distance function.

The above counterexample was found using the code in the Appendix (Sec-
tion 6) below. From this result, we can conclude that using this graph G with
the distance function d, both of which were selected to be the most natural for
this Markov chain, we are unable to use the Path Coupling theorem to bound
the mixing time of our Markov chain. It is still open whether this method
could work with a more complicated graph and/or distance function. How-
ever, even if our Markov chain has a polynomial mixing time, this coupling
method may not work. For example, Kumar and Ramesh [1] show that there
exists a fast-mixing Markov chain for the problem of sampling perfect and near
perfect matchings of a given graph but for which any coupling-based argument
will only ever give an exponential bound on the mixing time.

3.4 Canonical paths for MCswap

The canonical path method for bounding the mixing time of a reversible
Markov chain was developed by Jerrum and Sinclair in [10]. To use the
method, for every (x, y) ∈ Ω2 we define a path in the graph G = (Ω, E)
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(where E = {(u, v) | P (u, v) > 0}) from x to y labeled γx,y. Then we let the
congestion of an edge be

Congestion(u, v) =
1

π(u)P (u, v)

∑
x,y

(u,v)∈γx,y

π(x)π(y)|γx,y|. (56)

We then have the following result:

Theorem 11. Let ρ = max{Congestion(u, v) | (u, v) ∈ Ω2}. Then

τ(ε) ≤ 2ρ

(
2 ln

(
1

ε

)
+ ln

(
1

min π(x)

))
. (57)

Thus, if we can describe canonical paths such that we can find a polynomial
bound on the maximum congestion of an edge, we can get a polynomial bound
on the mixing time of our Markov chain.

ForMCswap, we define canonical paths using the process established in the
proof of Proposition 6. Fix two tableaux u, v ∈ Ω. Locate the position p of n
in v. Starting with w = v, use swaps to increment the number at p in w by
1 repeatedly until n is also located at p for w. Repeat this process for n− 1,
n− 2, etc., until w is identical to v. As justified in the proof of Proposition 6,
each of the intermediate tableaux are valid Young tableaux, so this process
defines a canonical path γu,v from vertex u to vertex v in our graph.

With these paths established, we need to bound the congestion of the
edges of our graph. For a given pair of Young tableaux u, v ∈ Ω, we have the
following:

Congestion(u, v) =
1

π(u)P(u, v)

∑
x,y

(u,v)∈γx,y

π(x)π(y)|γx,y| (58)

≤ 1

|Ω|
∑
x,y

(u,v)∈γx,y

|γx,y| (59)

≤ n(n+ 1)

2|Ω|
∑
x,y

(u,v)∈γx,y

1. (60)

Unfortunately, however, we do not currently have a bound on the size of the set
{(x, y) ∈ Ω2 | (u, v) ∈ γx,y} that yields a polynomial bound on the congestion
of the edge (u, v). We leave this for future work.
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4 Sampling Semistandard Young Tableaux

We now switch to the problem of sampling semistandard Young tableaux.
Recall that the RSK correspondence maps contingency tables to pairs of semi-
standard Young tableaux of the same shape. Thus, this more generalized case
is more interesting to us than the case of sampling standard tableaux. Fur-
thermore, once we fix the row and column sums for our contingency tables,
the weights of the corresponding Young tableaux are determined while their
shapes are not. Thus, our overall goal is to sample pairs of semistandard
Young tableaux with fixed weights and the same, but unfixed, shape.

4.1 Complexity of counting Young tableaux

Because of the strong connection between Kostka numbers (and by extension,
Young tableaux) and other areas of mathematics, a lot of work has gone into
understanding and calculating these coefficients (for example, see [18]). How-
ever, definitive results have remained elusive, possibly due to the complexity
of the problem. In fact, in 2006, Hariharan Narayanan [17] showed that the
problem of computing arbitrary Kostka numbers is #P -complete, meaning
that unless P = NP , there does not exist an algorithm that can compute
these numbers in polynomial time. However, even if P 6= NP , the question of
whether we can efficiently sample Young tableaux is still open since efficient
exact counting implies efficient sampling, but efficient sampling only implies
efficient approximate counting, as discussed in Section 2.2.

4.2 Generalizing MCswap will not work

One natural Markov chain to consider is the one that uses swaps as in the case
of sampling standard Young tableaux, generalizing MCswap to the semistan-
dard case. Such a chain would sample Young tableaux with both fixed shapes
and fixed weights. Although this would not immediately serve our end goal of
sampling pairs of tableaux with fixed weights but variable shapes, this process
is still worth studying. For example, such a chain could be useful if we also
found a way of sampling a random shape with the proper distribution. Then,
we could sample a random shape and subsequently use this Markov chain to
sample two Young tableaux with the selected shape and the desired weights.

Unfortunately, however, we can show that generalizingMCswap to the semi-
standard case does not yield an irreducible Markov chain in all cases. For
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example, consider the following Young tableaux:

1 2
3 3
4 5

and 1 3
2 4
3 5

. (61)

These two tableaux both have the same shape and weight, so we would need
to find a way of getting from one to the other using swaps. Recall that the
constraints of semistandard Young tableaux are that the rows need to be
weakly increasing while the columns need to be strictly increasing. Therefore,
there are no swaps we can perform on either of these tableaux that yield a valid
Young tableau. Consequently, there is no way of getting from one tableau to
the other using only swaps, and our Markov chain is not connected. Thus, we
must consider a different type of Markov chain in the semistandard case.

4.3 A Markov chain for variable shapes

We now propose a Markov chain to sample from all Young tableaux of a given
weight regardless of shape. Fix a weight µ = (µj)

n
j=1, and let N =

∑n
j=1 µj.

Let Ω be the set of all semistandard Young tableaux with weight µ; we wish
to sample uniformly from Ω.

We propose the following Markov chainMCshuffle to sample from Ω. Given
a Young tableau Xt with weight µ, select an entry uniformly at random from
the tableau. Let this number be a and let the row it comes from be r0. Now,
randomly select r1 uniformly from [a]. Remove the selected entry a from the
row r0, and shift all of the entries to the right of a in row r0 to the left to fill
in the gap. Move all entries in row r1 greater than a to the right, and insert a
into the gap that is created. If no such entries exist, simply insert a at the end
of row r1. If the resulting tableau, X ′t, is a valid Young tableau, let Xt+1 = X ′t.
Otherwise, let Xt+1 = Xt. Let P be the corresponding transition matrix. An
example of a transition of this Markov chain is illustrated in fig. 1.

We now will show that MCshuffle has many of the desired properties for
sampling from Ω.

Proposition 12. MCshuffle is irreducible.

Proof. Let Y ∈ Ω be the Young tableau with weight µ and only one row, and
let X ∈ Ω be an arbitrary tableau. We will show that we can reach Y starting
from X and vice versa, using only transitions from MCshuffle. This will imply
that MCshuffle is irreducible.

We first show that Y is reachable from X. Label X0 = X. Let Xi+1 be
the tableau acquired by moving the largest entry ai in Xi not in the first row
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1 1 1 2 3
2 3
3

randomly select
an entry−−−−−−−−→

1 1 1 2 3
2 3
3

remove the
entry−−−−−−→

1 1 1 3
2 3
3

fill in
the gap−−−−→

1 1 1 3
2 3
3

randomly select a row
and insert the entry−−−−−−−−−−−−→

1 1 1 3
2 2 3
3

Figure 1: An example of a transition in MCshuffle. Because the resulting
tableau is a valid Young tableau, the Markov chain will transition to it as its
next state.

to the first row, in the manner defined by MCshuffle (if multiple such entries
exist, select the entry latest in lexicographic order). We will show that if Xi

is a valid Young tableau, then so is Xi+1.
Note that ai must be located on a corner of Xi, and therefore, it can be

removed without violating any of the row or column constraints of a Young
tableau. Now, after inserting ai into the first row, we claim that no entry will
be located beneath it. To see this, assume the opposite, and let c be the entry
located directly beneath ai and b be the entry previously located above b (so
ai has moved b and all of the following entries in the first row to the right).
By our assumption that Xi is a valid Young tableau, we know that b < c.
Furthermore, if we inserted ai immediately before b, then ai < b, and hence,
ai < c. But this contradicts the fact that ai was selected as the largest entry
of Xi not contained in the first row. Thus, after inserting ai into the first row,
no entries are located beneath it, and therefore no row or column constraints
are violated. Xi+1, therefore, is a valid Young tableau.

Because there are finitely many entries in X, after finitely many steps,
there will be some i′ for which Xi′ = Y . Therefore, we can reach Y from X
using transitions allowed by MCshuffle.

Now we show that X is reachable from Y . We construct X from Y using
transitions from MCshuffle by building X up, entry-by-entry in lexicographic
order, starting with the second row, and always removing from the first row.
Because X is a valid Young tableau, each of the intermediate tableaux will
necessarily satisfy all row constraints and all column constraints from the
second row down. It is also easy to see that the column constraints between
the first and second rows will also always be satisfied. Let b be an entry in the
second row of X, and let a be the entry immediately above it in the first row (so
a < b). Because Y starts with all entries in weakly increasing order in the first
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row, once b is moved to the second row, the entries located above b throughout
the process will never be any larger than a and, hence, will satisfy the column
constraints of a Young tableau. Since all row and column constraints are
satisfied, each intermediate tableau will be a valid Young tableau. In this way,
we can reach X from Y using transitions allowed by MCshuffle.

Proposition 13. MCshuffle is ergodic.

Proof. Notice that any tableau can transition to itself by inserting an entry in
the row that it started in. Thus, for any X ∈ Ω, P(X,X) > 0, which means
the periodicity of every state in Ω is 1. So, MCshuffle is aperiodic. Combining
this with Proposition 12 gives us that MCshuffle is ergodic.

So, invoking Theorem 1, let π be the stationary distribution of MCshuffle.
We now will show that π is uniform on Ω.

Proposition 14. The stationary distribution π of MCshuffle is uniform on Ω.

Proof. Notice that every transition described byMCshuffle is entirely reversible
in the sense that the probability of selecting entry a in row r0 ofX and inserting
it into row r1 to yield a tableau Y is equal to the probability of selecting entry
a in row r1 of Y and inserting it into row r0 to yield tableau X. Thus, for any
two X, Y ∈ Ω, P(X, Y ) = P(Y,X); i.e. P is symmetric. Thus, just as in the
proof of Proposition 8, the uniform distribution satisfies the detailed balance
condition, so we can conclude π is uniform on Ω.

So, we know that MCshuffle can be used to sample uniformly from Ω. At
this time, we do not have any results related to the mixing time of this Markov
chain, which we leave to future work.

5 Conclusion and Future Work

The study of sampling Young tableaux (and the related problem of computing
Kostka numbers) is a rich problem with many ties to other areas of math-
ematics. Here, we propose potential methods of efficiently sampling Young
tableaux from various distributions. In the future, we hope to continue and
expand on the study of the proposed Markov chains in the hopes that it can
build toward the eventual efficient sampling of contingency tables.

One major direction to continue in is to determine if other graphs and/or
distance functions could be used for path coupling to bound the mixing time
of MCswap, as discussed in Section 3.3. One distance function that we have
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considered but not fully explored is that which calculates the total pairwise
difference between two tableaux’ entries. To define this more rigorously, let X
and Y be two standard Young tableaux with the same shape. Let the entries
of X in lexicographic order be (a1, a2, . . . , an) and those of Y be (b1, b2, . . . , bn).
Then let the distance function d be defined by

d(X, Y ) =
n∑
i=1

|ai − bi|. (62)

Such a distance function could be paired with, for example, the graph G with
E = {{a, b} | P(a, b) > 0} and potentially allow for the use of the Path
Coupling theorem.

Another direction would be to continue exploring methods of bounding
the congestion on the edges of the canonical paths proposed in Section 3.4.
This would mainly come down finding a sufficient bound on the size of the
set {(x, y) ∈ Ω2 | (u, v) ∈ γx,y} or showing that no such bound exists. Alter-
natively, different canonical paths between tableaux could be considered and
explored.

A possibly more interesting (but also more difficult) direction would be to
study couplings and/or canonical paths for MCshuffle for sampling semistan-
dard Young tableaux. Finding polynomial bounds on the mixing time of this
chain would be a big step toward our ultimate goal of sampling contingency
tables, although such bounds are not guaranteed to exist.

Finally, a more general future direction in the study of sampling contin-
gency tables is to explore and identify different connections between contin-
gency tables and other areas of mathematics. Clearly, we can continue to
study Markov chains on sets of contingency tables, including the one proposed
in [3], but it may be easier to approach the problem by way of other areas of
mathematics as we attempt here.
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6 Appendix

The following Mathematica code was used to search for a counterexample in
Section 3.3:

#!/ usr / bin /env wo l f ramsc r ip t
(∗ : : Package : : ∗)

Block [{$ContextPath} , Needs [ ” Combinatorica ‘ ” ] ] ;
Swapped [ e ] := Which [

Count [ y t s [ [ e [ [ 1 ] ] ] ] − yts [ [ e [ [ 2 ] ] ] ] ,
Except [0 ] ,{2} ]==2 ,

True , True , False ]
shape = {3 ,2 , 1} ;
y t s = Combinatorica ‘ Tableaux [ shape ] ;
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n = Total [ shape ] ;
nv = Length [ y t s ] ;
v e r t i c e s = Range [ nv ] ;
edges = Select [ Subsets [ v e r t i c e s , {2} ] , Swapped ] ;
G = Graph [ v e r t i c e s , edges ] ;
deg [ v ] := VertexDegree [G, v ]
d [ v1 , v2 ] := GraphDistance [G, v1 , v2 ]
p [ v1 , v2 ] := Which [ v1==v2 , 1−2deg [ v1 ] / nˆ2 ,

MemberQ[ edges , MinMax[{ v1 , v2 } ] ] ,
2/nˆ2 , True , 0 ]

mu[ v ] := Table [ p [ v ,w] ,{w, nv } ]
x [ v1 , v2 ] := Symbol [ StringJoin [ ”x$” , ToString@v1 , ”$” ,

ToString@v2 ] ]
v a r l i s t = Flatten [Table [Table [ x [ a , b ] ,{ a , nv } ] ,{b , nv } ] ] ;
o b j e c t i v e = Sum[ d [ a , b ] x [ a , b ] ,{ a , 1 , nv} ,{b , 1 , nv } ] ;
rowconst [ i ] := Table [Sum[ x [ a , b ] ,{b , nv}]==mu[ i ] [ [ a ] ] , {a , nv } ] ;
c o l c o n s t [ j ] := Table [Sum[ x [ a , b ] ,{ a , nv}]==mu[ j ] [ [ b ] ] , {b , nv } ] ;
posconst = Table [ v a r l i s t [ [ v ]]>=0 , {v ,Length [ v a r l i s t ] } ] ;
const [ i , j ] := Join [{ o b j e c t i v e } , rowconst [ i ] , c o l c o n s t [ j ] ,

posconst ] ;
opt [ i , j ] := d [ i , j ]−Minimize [ const [ i , j ] , v a r l i s t ] [ [ 1 ] ] ;

(∗A t a b l e o f a l l t he opt ( ) v a l u e s f o r the p a i r s o f v e r t i c e s on
the edges o f the graph . I f any o f t h e s e are nega t i ve , then
us ing the Path Coupl ing Theorem cannot work s i n c e the theorem
r e q u i r e s the expec ted d i s t a n c e to decrease ( i . e . a l l v a l u e s
need to be non−n e g a t i v e ) ∗)
Table [ opt [ e [ [ 1 ] ] , e [ [ 2 ] ] ] , { e , edges } ]
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