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1 Introduction

In F2, two lines intersect at no more than one point. This means that two lines can
share at most one incidence between a point and the lines. Given a set of n lines
and n points, this fact can be used to discover the upper bound on the number of
possible incidences between lines and points. We can understand this case of n
lines and n points by considering a matrix of ones and zeros. Let us call our matrix
I with Iij indicating the value in the i

th row and j

th column. We will designate
that the points are represented by rows and the lines by the columns (although the
reverse would also be valid). We represent an incidence of the point i and the line
j by setting Iij = 1. For example, the arrangement of lines

can be represented by the matrix
0

@
0 1 0
1 0 1
0 1 1

1

A
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The condition of having no more than one intersection between any two lines
is the same as saying we cannot have a "rectangle" of ones, ie that IijIij0 = 1 for
at most one value of i. Equivalently, this condition says that IijIij0Ii0jIi0j0 = 0 for
all values of i, i0, j, j0. Notice that the matrix above obeys this condition.

The trivial bound on the number of ones in a matrix is n2 = n

4/2 because that
is a matrix where all values are one. We will show in the following section that
a stronger bound can be found for a matrix with our "rectangle" constraint. We
can improve our exponent by 1/2 and find that a matrix can contain at most Cn

3/2

many ones where C is a constant.

2 The Two Dimensional Box Problem

Theorem 2.1. The Two Dimensional Box Problem

Consider an n by n matrix of 1’s and 0’s such that Iij*Iij0 = 1 for at most one value

of i. This matrix can contain at most Cn

3/2
many ones where C is a constant.

Proof. Our matrix I contains
nX

i=1

nX

j=1

Iij

many points where Iij*Iij0 = 1 for at most one value of i. Thus our goal is to
bound this sum. We know

⇣ nX

i=1

nX

j=1

Iij

⌘2

=
⇣ nX

i=1

� nX

j=1

Iij

�
⇤ 1

⌘2

Applying the Cauchy Schwartz Inequality


nX

i=1

12 ⇤
nX

i=1

� nX

j=1

Iij

�2

= n

nX

i=1

nX

j=1

nX

j0=1

IijIij0

 n ⇤
nX

i=1

nX

j=j0

IijIij0 + n ⇤
nX

i=1

nX

j 6=j0

IijIij0
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Let us call this first value in the sum A and the other B such that

A = n

nX

i=1

nX

j=j0

IijIij0

= n

nX

i=1

nX

j=1

I

2
ij

= n

nX

i=1

nX

j=1

Iij  n

3

so A  n

3

B = n ⇤
nX

i=1

nX

j 6=j0

IijIij0

 n ⇤ n(n� 1)

because the sum is less than the number of pairs (j,j’) where j6=j’ so B  n

3

Thus ⇣ nX

i=1

nX

j=1

Iij

⌘2

 A+ B  2n3

)
nX

i=1

nX

j=1

Iij 
p
2n3/2

thus
Pn

i=1

Pn
j=1 Iij  Cn

3/2

This bound is sharp. Nets Katz, Elliot Krop, and Mauro Maggioni [KKM]
discuss an example of sharpness in their paper "Remarks on the Box Problem."
Consider an q � 1 x q � 1 matrix of ones and zeros following the "no rectangle"
criterion where q = p

2n for some p prime. This represents the incidences between
points in F2

q/{(0, 0)} and lines of the form ax + by = 1 in F2
q such that (a.b) 2

F2
q/{(0, 0)}. Two lines can only intersect at no more than one point. Thhe number

of lines possible is the number of points in F2
q/{(0, 0)}, which is (q2 � 1). There

are q points per line. Thus we can produce a matrix with q(q2 � 1) many ones,
the number of lines possible multiplied by the number of points per line, which is
close to the most possible..;l.,
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3 The Box Problem in Three Dimensions

Similar to how in two dimensions the matrix is analogous to incidences between
lines and points, in three dimensions the ones in the matrix represent where a point
and plane coincide. Since two different planes intersect each other at no more than
one line in R3, we cannot have a "cube" of ones. ie

2Y

j1

· · ·
2Y

jd

Ii1j1
...idjd

= 0 8il1 6= il2 , l = 1, 2, ..., d

Although we will not prove it here, the number of ones is at most cn11/4 where c

is a constant.
[KKM] also discuss the three dimensional case of the box problem. They

prove the following theorem to show the sharpness of the bound in three dimen-
sions:

Theorem 3.1. Let p be any prime. There is a p

3 � 1 ⇥ p

3 � 1 ⇥ p

3 � 1 tensor I

containing p

2(p3 � 1)2 many ones that satisfies the condition

2Y

l=1

2Y

m=1

2Y

n=1

Iiljmkn = 0

The proof of this theorem is analogous to the proof of sharpness presented in
two dimensions. Instead of considering lines, we examine planes in F3

p , which
can be written as ax + by + cz = 1 where (a, b, c) 2 F3

/{(0, 0, 0)} . Fp3 is an
extension of Fp by an irreducable cubic, ie an element of Fp3/{0} can be written
as ↵ = a+ rb+ r

2
c. Thus we can say that P↵ is the plane ax+ by+ cz = 0 when

↵ = a+ rb+ r

2
c.

Consider the matrix I where Iijk = 1 iff k 2 Pi⇤j and is 0 otherwise. I has
p

2(p3 � 1)2 many ones, which is the numner of points per plane multiplied by the
number of planes possible. This matrix satisfies the criterion that

2Y

j1

· · ·
2Y

jd

Ii1j1
...idjd

= 0

because the cardinality of

Aii0jj0 = Pi⇤j \ Pi0⇤j \ Pi⇤j0 \ Pi0⇤j0

is at most one due to the fact that two different planes are either parallel, intersect
at a line, or intersect at a point.
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4 The d Dimensional Box Problem

While the geometric interpretation of our matrix of ones and zeros is less clear in
greater than three dimensions, it is still possible to define a limiting condition as
we did in two and three dimensions and to find a bound for the number of ones
possible in the resulting matrix. We will show this in the following theorem:

Theorem 4.1. Consider a d-dimensional matrix of ones and zeros such that

2Y

j1

· · ·
2Y

jd

Ii1j1
...idjd

= 0 8il1 6= il2 , l = 1, 2, ..., d

The number of ones in such a matrix is less than Cn

d�2�d+1
where C is a constant

Proof. The number of ones in a d-dimensional matrix of ones and zeros is
nX

i1,...,id=1

Ii1...id =
nX

i1,...,id�1=1

nX

id=1

Ii1...id

To bound this sum, we consider
⇣ nX

i1,...,id�1=1

nX

id=1

Ii1...id

⌘2

 n

d�1 ⇤
nX

i1,...,id�1=1

nX

id

nX

i0d

Ii1...idIi1...i0d

 n

d�1 ⇤
nX

i1,...,id�1=1

nX

id 6=i0d

Ii1...idIi1...i0d
+ n

d�1 ⇤
nX

i1,...,id�1=1

nX

id=i0d

Ii1...idIi1...i0d

By Cauchy Schwartz.

Calling the first term of the sum Ad and the second Bd, we see that

Ad = n

d�1 ⇤
nX

i1,...,id�1=1

nX

id 6=i0d

Ii1...idIi1...i0d

A2
d = n

2(d�1) ⇤
⇣ nX

i1,...,id�1=1

nX

id 6=i0d

Ii1...idIi1...i0d

⌘2
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 n

2(d�1) ⇤ nd ⇤
nX

i1,...,id�2,id,i0d=1

nX

id�1,i0d�1

Ii1...id�1idIi1...id�1i0d
Ii1...i0d�1id

Ii1...i0d�1i
0
d

 n

2(d�1)+d ⇤
nX

i1,...,id�2,id,i0d=1

nX

id�1 6=i0d�1

Ii1...id�1idIi1...id�1i0d
Ii1...i0d�1id

Ii1...i0d�1i
0
d

+n

2(d�1)+d ⇤
nX

i1,...,id�2,id,i0d=1

nX

id�1=i0d�1

Ii1...id�1idIi1...id�1i0d
Ii1...i0d�1id

Ii1...i0d�1i
0
d

By Cauchy Schwartz.

As before, we name the first term in the sum Ad�1 and the second Bd�1 so that

A2
d�1

 n

(d�1)22+2d+d+1
nX

i1,...,id�3,id�1,i0d�1,id,i
0
d=1

nX

id�2 6=i0d�2

Ii1...id�2id�1id . . . Ii1...i0d�2i
0
d�1id

Ii1...i0d�2i
0
d�1i

0
d

+n

(d�1)22+2d+d+1⇤
nX

i1,...,id�3,id�1,i0d�1,id,i
0
d=1

nX

id�2=i0d�2

Ii1...id�2id�1id . . . Ii1...i0d�2i
0
d�1id

Ii1...i0d�2i
0
d�1i

0
d

Continuing in this fashion and repeatedly applying Cauchy Schwartz we find
that for l = 2, 3, ..., d� 1, d

Al = n

(d�1)2d�l+d2d�l�1+···+(l+2)2+(l+1)
nX

i1,...il�1,il+1,i0l+1,...,id,i
0
d

nX

il 6=i0l

Ii1...il...id�2id�1i0d
. . . Ii1...i0l...i

0
d�2i

0
d�1id

so

A2 = n

(d�1)2d�2+d2d�3+···+(4)2+(3)
nX

i1,i3,i03,...,id,i
0
d

nX

i2 6=i02

Ii1i2...id�2id�1i0d
. . . Ii1i02...i

0
d�2i

0
d�1id

 n

(d�1)2d�2+d2d�3+···+(4)2+(3) ⇤ n2(d�1)+1

because Ii1i2...id�2id�1idIi1...id�2id�1i0d
. . . Ii1i02i

0
3...i

0
d�2i

0
d�1i

0
d
= 1 for at most one

value of i1.
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Assuming for now that Bl  cAlfor c constant and l = 2, 3, ...d�1, d (we will
show this is true later) we find that

Ad  (n(d�1)2d�2+d2d�3+···+(4)2+(3) ⇤ n2(d�1)+1)2
�(d�2)

which is on the order of nd�2�d+1

Now we want to show that Bl  cAl for c constant and l = 2, ...d� 1, d.

Bl = n

(d�1)2d�l+d2d�l�1+···+(l+2)2+(l+1)
nX

i1,...il�1,il+1,i0l+1,...,id,i
0
d

nX

il=i0l

Ii1...il...id�2id�1i0d
. . . Ii1...i0l...i

0
d�2i

0
d�1id

 n

(d�1)2d�l+d2d�l�1+···+(l+2)2+(l+1) ⇤ n2d�l

so Bl  cAl for c constant

5 Two Dimensional Box Game

It is possible to turn the two dimensional box problem into a game with two play-
ers. Each player takes a turn choosing a spot in the matrix to place a one. The
player who places a one in spot Iij where IijIij0Ii0jIi0j0 = 1 loses.

For a 2x2 matrix the game is trivial, with the first player always winning re-
gardless of strategy. For a 3x3 matrix the game is just slightly more complicated,
with the first player always winning if they use a rational strategy. Finding strate-
gies for nxn matricies for n>3 becomes more difficult and is an avenue for future
research.

The following Java program allows players to play on a computer with a
square matrix of arbitrary size. This program contains two classes. The class
GamePanel contains the methods required for gameplay. The class SquareMa-
trixGame contains the code needed to set up the user interface.
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